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Music Genre Classification via Joint Sparse
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Abstract—A novel framework for music genre classification,
namely the joint sparse low-rank representation (JSLRR) is
proposed in order to: 1) smooth the noise in the test samples,
and 2) identify the subspaces that the test samples lie onto.
An efficient algorithm is proposed for obtaining the JSLRR
and a novel classifier is developed, which is referred to as
the JSLRR-based classifier. Special cases of the JSLRR-based
classifier are the joint sparse representation-based classifier and
the low-rank representation-based one. The performance of the
three aforementioned classifiers is compared against that of
the sparse representation-based classifier, the nearest subspace
classifier, the support vector machines, and the nearest neighbor
classifier for music genre classification on 6 manually annotated
benchmark datasets. The best classification results reported here
are comparable with or slightly superior than those obtained by
the state-of-the-art music genre classification methods.

Index Terms—Music Genre Classification, Sparse Representa-
tion, Low-Rank Representation, `1 Norm Minimization, Nuclear
Norm Minimization, Auditory Representations.

I. INTRODUCTION

Music genre is probably the most popular semantic descrip-
tion of music content [1]. It is worth mentioning that, 68%
of the tags that appeared in last.fm were related to music
genre [2]. Increasing the accuracy of automatic music genre
classification is a cornerstone toward the deployment of robust
music information retrieval systems.

Despite the considerable volume of research conducted so
far, that is surveyed in [3]–[5], music genre classification
remains a difficult problem due to the fuzzy boundaries
between the different genres, depending on cultural, artistic, or
market factors [4]. In most systems, each music recording is
represented by suitable features first, which frequently undergo
a dimensionality reduction [3], [4], [6] prior to their classifica-
tion into music genres by machine learning algorithms. A va-
riety of features has been tested for music genre classification
in the so-called bag-of-features (BOF) approaches [7]–[14].
Such features include timbral texture ones, rhythmic ones,
pitch content, or their combinations. Furthermore, spectral,
cepstral, and auditory modulation-based features have been
recently employed either in BOF approaches or as autonomous
music representations in order to capture both the timbral
and the temporal structure of music [15]–[17]. Commonly
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used classifiers have been the support vector machines (SVM),
the nearest-neighbor (NN), and the Gaussian Mixture Model-
based classifiers [3].

In pattern analysis, an underlying tenet is that the data
have some type of intrinsic structure, enabling their proper
representation and efficient classification. A common choice
is to assume that any given set of samples, originating from a
specific class, lies onto a linear subspace. Therefore, multiple
data classes can be modeled by a union of independent linear
subspaces. Such an assumption is valid in many real-world
cases [18]–[20]. Accordingly, a test sample is represented as
a linear combination of the training samples stemming from
the class it actually belongs to and the class label assigned to
it is inferred by that of the training samples weighted by non-
zero coefficients. Hence, one needs to derive the representation
coefficients by solving an appropriate inverse problem. In this
context, one way to obtain coefficients suitable for classifica-
tion is to seek for the sparsest representation of the test sample
with respect to a dictionary formed by the training samples.
If the sample dimension is much smaller than the number of
training samples, such a representation is computed efficiently
by solving an underdetermined system of linear equations
via `1 norm minimization, which is a convex problem [21].
This idea has been employed in the sparse representation-
based classifier (SRC) [20]. A second approach comes from
recent advances on low-rank representations [19]. That is, a
representation matrix suitable for classification (i.e., a matrix
that contains the representation coefficients in its columns)
is found by seeking for the lowest-rank representation of
the test samples with respect to the training samples. This
is achieved by solving a convex problem that involves the
minimization of the nuclear norm [19]. Under the assumption
made at the beginning of this paragraph, it has been proved
that the latter representation possesses both dense within-class
affinities and almost zero between-class affinities [19]. Thus,
it reveals exactly the classification of the data, resulting into
the so-called low-rank representation-based classifier (LRRC)
[22].

Consequently, when the data samples are low-dimensional
and drawn exactly from a union of independent linear sub-
spaces the SRC, the LRRC, or even the nearest subspace-type
classifiers (e.g., the linear regression classifier (LRC) [23])
can achieve an almost perfect classification accuracy. However,
in practice, the data may not come strictly from subspace
structures. Small (but densely supported) perturbations of the
ideal underlying model may occur as well as arbitrarily large
in magnitude (but sparse) deviations may affect a fraction of
the data. Both types of errors are termed as modeling noise (or
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noise for short) and take into account either real-world mea-
surement/recording errors or outliers. For example, due to the
semantic fuzziness between certain music genre classes, such
as the boundaries between rock and metal or between rock
and pop, a densely supported classification noise is observed
in music genre classification. Therefore, a challenging problem
is the classification of data that are approximately drawn from
a union of independent linear subspaces in order to account
for the noise. A common method to cope with the noise, is to
apply dimensionality reduction to the data by using appropriate
subspace learning algorithms, aiming to derive features that
belong to the signal subspace and not to that of the noise.
The major drawback in the just described approach is that an
intermediate stage is introduced before classification, which is
often highly demanding in terms of memory or computations,
involving also multiple parameters to be properly chosen. In
many cases, the subspaces learned are suboptimal as approx-
imate solutions of non-convex problems, e.g., [6].

Here, the just mentioned classification problem is addressed
without employing dimensionality reduction. In particular,
a novel classification framework is introduced, where the
unknown noise in the test data is simultaneously corrected
and the subspaces, where the test data actually lie onto, are
correctly identified. That is, given a sufficiently dense training
set and a test set of noisy samples, the joint sparse low-
rank representation (JSLRR) of the test set with respect to
the training set is sought by solving an appropriate convex
problem, which involves the nuclear norm, the `1 norm, and
the `2/`1 norm minimization. The `2/`1 norm is adopted as a
regularization term in order to fit the noise. Whenever the
samples come exactly from a union of independent linear
subspaces (i.e., there is no noise), the JSLRR is proved
to be dense for within-class affinities, while exhibiting zero
between-class affinities, similarly to the sparse representation
[24] and the low-rank one [19]. Consequently, the subspaces
are revealed, where the test samples lie onto. In the noisy case,
the JSLRR is designed to be simultaneously sparse and low-
rank in order to combine the benefits of both representations
for classification purposes. The joint sparsity constraint implies
that only a small fraction of the dictionary atoms is involved
in the representation of a test sample with respect to a
dictionary formed by the training samples. Such parsimonious
representations are desirable, since they are robust to noise,
yielding a high classification accuracy [20]. The low-rank
constraint is important for two reasons. First, it captures
efficiently the underlying data generation process. Indeed,
the majority of subspace learning algorithms (e.g., principal
component analysis, nonnegative matrix factorization) find a
low-rank representation. Second, the rank of the representation
increases in the presence of noise, as shown by recent inves-
tigations in matrix completion [18]. Therefore, by demanding
the representation to be low-rank, noise correction is enforced.
Having found the JSLRR of the test samples with respect to
the training samples, each test sample is assigned to the class
spanned by the subspace yielding the minimum reconstruction
error, which results to a novel classier, referred to as joint
sparse low-rank representation-based classifier. Special cases
of the JSLRR are the joint sparse representation (JSR) and

the robust low-rank representation (LRR). Based on these
representations, another two novel classifiers are developed,
namely the joint sparse representation-based classifier (JSR)
and the robust low-rank representation-based one.

In this paper, each music recording is represented by 3
song-level audio features, namely the auditory cortical rep-
resentations or cortical representation for short [25], the mel-
frequency cepstral coefficients [26], and the chroma features
[27]. The proposed 3 classifiers, namely the JSLRR-, the JSR-,
and the LRR-, based classifiers are applied to the classification
of audio features into music genres. Their performance is
assessed by conducting experiments on 6 manually annotated
benchmark datasets employing both the standard evaluation
protocol for each dataset and a small sample size setting.
The proposed classifiers are compared against 4 well-known
classifiers, namely the SRC [20], the LRC, the SVM with a
linear kernel, and the NN classifier with the cosine similarity.
The experimental results indicate that the proposed classifiers
exhibit a better performance with respect to the music genre
classification accuracy than the classifiers they are compared
to. Moreover, the best classifications results disclosed are
comparable with or slightly superior than those obtained by
the state-of-the-art music genre classification methods.

In summary, the contributions the paper are: 1) The devel-
opment of an efficient algorithm for finding the JSLRR of the
test feature vectors with respect to training feature vectors.
2) The proposal of three general purpose classifiers robust to
noise that resort to the JSLRR, and its special cases the JSR,
and the LRR. 3) The proposal of a novel automatic music
genre classification framework by employing the JSLRR-, the
JSR, and the LRR-based classifiers for classifying song-level
audio features into music genres.

The paper is organized as follows. In Section II, notation
conventions are introduced. The audio feature extraction pro-
cess is briefly described in Section III. The JSLRR as well
as its special cases (i.e., the JSR and the LRR) are detailed
in Section IV. Classifiers emerging from the aforementioned
representations are developed in Section IV. Datasets and
experimental results are presented in Section V. Conclusions
are drawn in Section VI.

II. NOTATIONS

Throughout the paper, scalars are denoted by lowercase
letters (e.g., i, µ, ε, θ1), vectors appear as lowercase boldface
letters (e.g., x), and matrices are indicated by uppercase
boldface letters (e.g., X,Y,A). I is the identity matrix of
compatible dimensions. The ith column of X is denoted by
xi. Let span(X) be the linear space spanned by the columns
of X. Then, Y ∈ span(X) implies that all column vectors of
Y belong to span(X). The set of real numbers is denoted by
R, while the set of nonnegative real numbers is denoted by
R+.

A variety of norms on real-valued vectors and matrices are
used. For example, ‖x‖0 is the `0 quasi-norm counting the
number of nonzero entries in x. If |.| denotes the absolute value
operator, ‖x‖1 =

∑
i |xi| and ‖x‖2 =

√∑
i x

2
i are the `1 and

the `2 norm of x, respectively. The mixed `p,q matrix norm is
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defined as ‖X‖p,q =

(∑
i

(∑
j |xij |p

) q
p

) 1
q

. For p = q = 0,

the matrix `0 quasi-norm is denoted by ‖X‖0 and returns the
number of nonzero entries in X. For p = q = 1, the matrix `1
norm is defined as ‖X‖1 =

∑
i

∑
j |xij |. The Frobenius norm

is defined as ‖X‖F =
√∑

i

∑
j x

2
ij . The `2/`1 norm of X is

given by ‖X‖2,1 =
∑
j

√∑
i x

2
ij . Clearly, the `2,1 norm and

the `2/`1 norm are different norms. The former is the sum of
`2 norms of the row vectors of X, while the latter is the sum
of the `2 norms of the column vectors of X. This ambiguity
in notation is resolved by the context. The nuclear norm of
X (i.e., the sum of singular values of a matrix) is denoted by
‖X‖∗. The `∞ norm of X, denoted by ‖X‖∞, is defined as
the element of X with the maximum absolute value. XT is the
transpose of X. If X is a square matrix, X−1 is its inverse,
provided that the inverse matrix exists.

A vector x is said to be q-sparse if the size of the
support of x (i.e., the set of indices associated to non-zero
vector elements) is no larger than q: |supp(x)| ≤ q. The
support of a collection of vectors X = [x1,x2, . . . ,xN ]
is defined as the union over all the individuals supports:
supp(X) ,

⋃N
n=1 supp(xn). A matrix X is called q joint

sparse, if |supp(X)| ≤ q. That is, there are at most q rows in X
that contain nonzero elements, because ‖X‖0,q = |supp(X)|
for any q [28].

III. AUDIO FEATURE EXTRACTION

Each music recording is represented by 3 song-level feature
vectors.

A. Auditory cortical representations
The auditory sensations turn into perception and cognition

only when they are processed by the cortical area [29]. The
mechanical and neural processing in the early and central
stages of the auditory system can be modeled as a two-
stage process. At the first stage, which models the cochlear,
the audio signal is converted into an auditory representation,
i.e., the auditory spectrogram, by employing the constant-Q
transform (CQT). The CQT is a time-frequency representation
where the frequency bins are geometrically spaced and the Q-
factors (i.e., the ratios of the center frequencies to the band-
widths) of all bins are equal [30]. The neurons in the primary
auditory cortex are organized according to their selectivity
on different spectral and temporal stimuli [29]. To this end,
in the second stage, the spectral and temporal modulation
content of the auditory spectrogram is estimated by two-
dimensional (2D) multiresolution wavelet analysis, ranging
from slow to fast temporal rates and from narrow to broad
spectral scales. The analysis yields a four-dimensional (4D)
representation of time, frequency, rate, and scale that captures
the slow spectral and temporal modulations content of audio
that is referred to as auditory cortical representation. More
details on the mathematical formulation of the auditory cortical
representations can be found in [25].

Parameters and implementation. The CQT is computed
efficiently by employing the fast implementation scheme pro-
posed in [30]. The audio signal is analyzed by employing

128 constant-Q filters covering 8 octaves from 44.9 Hz to 11
KHz (i.e., 16 filters per octave). The magnitude of the CQT
is compressed by raising each element of the CQT matrix to
the power of 0.1. At the second stage, the 2D multiresolution
wavelet analysis is implemented via a bank of 2D Gaussian fil-
ters with scales ∈ {0.25, 0.5, 1, 2, 4, 8} (Cycles / Octave) and
(both positive and negative) rates ∈ {±2,±4,±8,±16,±32}
(Hz) [25]. For each music recording, the extracted 4D cortical
representation is time-averaged and a rate-scale-frequency 3D
cortical representation is thus obtained. The overall procedure
is depicted in Fig. 1. Accordingly by stacking the elements
of the 3D cortical representation into a vector, each music
recording can be represented by a vector x ∈ R7680

+ . The
dimension of the vectorized cortical representation comes from
the product of 128 frequency channels, 6 scales, and 10 rates.
An ensemble of music recordings is represented by the data
matrix X ∈ R7680×S

+ , where S is the number of the available
recordings. Finally, the entries of X are post-processed as
follows: Each row of X is normalized to the range [0, 1] by
subtracting from each entry the row minimum and then by
dividing it with the difference between the row maximum and
the row minimum.

B. Mel-frequency cepstral coefficients and chroma features
The MFCCs encode the timbral properties of the music

signal by encoding the rough shape of the log-power spectrum
on the mel-frequency scale [26]. They exhibit the desirable
property that a numerical change in the MFCC coefficients
corresponds to a perceptual change. The MFCC extraction
employs frames of duration 92.9 ms with a hop size of 46.45
ms, and a 42 bandpass filter bank. The filters are uniformly
spaced on the Mel-frequency scale. The correlation between
the frequency bands is reduced by applying the discrete cosine
transform along the log-energies of the bands, yielding a
sequence of 20-dimensional MFCC vectors.

The chroma features [27] characterize the harmonic content
of the music signal by projecting the entire spectrum onto
12 bins, representing the 12 distinct semitones (or chroma)
of a musical octave. They are calculated by employing 92.9
ms frames with a hop size of 23.22 ms as follows. First,
the salience of different fundamental frequencies in the range
80−640 Hz is calculated. The linear frequency scale is trans-
formed into a musical one by selecting the maximum salience
value in each frequency range corresponding to one semitone.
Finally, the octave equivalence classes are summed over the
whole pitch range to yield a sequence of 12-dimensional
chroma vectors.

Following Mandel et al. [31], the mean and the full co-
variance matrix of the MFCCs and the chroma features are
computed over the duration of each music recording. Conse-
quently, each song is represented by a 420-dimensional MFCC
song-level vector and a 156-dimensional song-level chroma
vector, which are obtained by stacking the mean vectors on
the top of the vectorized covariance matrices.

The song-level chroma and the MFCCs, extracted from an
ensemble of music recordings, are normalized over all songs to
be zero-mean with unit-variance. Furthermore, they are post-
processed as described in subsection III-A.
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Fig. 1. Flow chart of cortical representation extraction.

IV. CLASSIFICATION VIA JOINT SPARSE LOW-RANK
REPRESENTATION

First, the sparsest representation (SR) [24] and the lowest-
rank representation (LRR) [19] are briefly introduced. Next,
the JSLRR is developed in order to account for the noise and
the outliers. Finally, three novel classifiers are proposed, which
resort to the JSLRR, and its special cases, namely the JSR,
the LRR, respectively.

A. Suitable data representations for classification

Let X ∈ Rd×S be the data matrix that contains S vector
samples of size d in its columns. That is, xs ∈ Rd, s =
1, 2, . . . , S. Without loss of generality, the data matrix can be
partitioned as X = [A | Y], where A = [A1|A2| . . . |AK ] ∈
Rd×N represents a set of N training samples that belong to
K classes and Y = [Y1|Y2| . . . |YK ] ∈ Rd×M contains
M = S − N test samples in its columns. Assume that the
training samples are drawn from a union of K independent
linear subspaces of unknown dimensions. The columns of
Ak ∈ Rd×Nk , k = 1, 2, . . . ,K correspond to the Nk training
samples originating from the kth subspace. Similarly, the
columns of Yk ∈ Rd×Mk refer to Mk test samples stemming
from the kth class1.

Assumption. If: 1) the data are drawn exactly from inde-
pendent linear subspaces, i.e., span(Ak) linearly spans the
kth class data space, k = 1, 2, . . . ,K, 2) Y ∈ span(A),
and 3) the data contain neither outliers nor noise, then each
test vector sample that belongs to the kth class is repre-
sented as a linear combination of the training samples in Ak.
That is, Yk = AkZk with Zk ∈ RNk×Mk . Accordingly,
Y = AZ, where Z = diag[Z1,Z2, . . . ,ZK ] ∈ RN×M
is the block-diagonal representation matrix. Therefore, the
ith test sample is represented as yi = Azi ∈ Rd, where
zi = [0T | . . . |0T |zTk |0T | . . . |0T ]T ∈ RN is the augmented
coefficient vector, whose elements are non-zero if they weigh
training vectors stemming from the kth class. Consequently,
having found such a block-diagonal representation matrix Z
capturing both dense within-class affinities and zero between-
class affinities, the classification of the data is revealed exactly.

1∑K
k=1 Nk = N and

∑K
k=1 Mk = M .

Indeed, under the aforementioned three assumptions it has
been proved that the block-diagonal representation matrix
Z ∈ RN×M is the sparsest representation (SR) [24] or the
lowest-rank representation [19] of the test data Y ∈ Rd×M
with respect to the training data A ∈ Rd×N . Equivalently,
the representation matrix Z is obtained by solving the opti-
mization problem (1) for the SR and (2) for the lowest-rank
representation:

argmin
zi

‖zi‖0 subject to yi = A zi, (1)

argmin
Z

rank(Z) subject to Y = A Z. (2)

Problems (1) and (2) are non-convex and NP-hard, in general,
due to the discrete nature of the `0 norm [32] and the rank
function [33] and thus they are difficult to be solved. It
has been proved that the convex envelope of the `0 norm
is the `1 norm [21], while the convex envelope of the rank
function is the nuclear norm [34]. It is worth mentioning that
rank minimization generalizes the notion of vector sparsity
to spectrum sparsity for matrices [34]. Consequently, convex
relaxations of (1) and (2) are obtained by replacing the `0 norm
and the rank function by their convex envelopes as follows:

argmin
zi

‖zi‖1 subject to yi = A zi, (3)

argmin
Z

‖Z‖∗ subject to Y = A Z. (4)

Under the conditions set in [21], the solution of (1) is
equivalent to that of (3). Similarly, the solution of (4) is always
a solution of (2) [19].

The SR matrix Z ∈ RN×M , which contains the representa-
tion vectors zm, m = 1, 2, . . . ,M in its columns obtained by
solving (3), is sparse block-diagonal [24]. That is, the within-
class affinities are nonzero, but sparse and the between-class
affinities are all zeros. Consequently, it has good discriminat-
ing properties, making it suitable for classification, as has been
demonstrated for the SRC [20]. However, the SR seems to
face some difficulties in modeling generic subspace structures.
Indeed, the SR models accurately subregions on subspaces,
the so-called bouquets, rather than generic subspaces [35].
Furthermore, the SR does not capture the global structure of
the data, since it is computed for each data sample individually.
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This may affect the SRC performance, when the data are
heavily contaminated due to the damage of the high within-
class homogeneity [19].

The solution of (4) provides the lowest-rank representation
matrix Z ∈ RN×M , which alleviates the aforementioned
drawbacks of the SR. In particular, Z being low-rank, it
models the data generation process. Since the lowest-rank
representation is computed by taking into account all the data,
it preserves more accurately the data structure than the SR
does [19]. In the case of clean data, the lowest-rank represen-
tation also exhibits dense within-class homogeneity and zero
between-class affinities, making it an attractive representation
for classification, as has been demonstrated for the LRR-
based classifier in music mood classification [22]. For data
contaminated with noise and outliers, the low-rank constraint
seems to enforce noise correction [18], [19].

B. Joint sparse low-rank representation

Considering the properties of the sparse representation and
the low-rank one in subspace modeling, it is interesting to
identify the most characteristic subregions of the subspaces
spanning the data. Intuitively, a representation matrix is needed
that is simultaneously row sparse and low-rank. The row
sparsity ensures that only a small fraction of the training
samples is involved in the representation. In addition, the low-
rank constraint ensures that the representation vectors (i.e.,
the columns of the representation matrix) are correlated in
the sense that the data lying onto a particular subspace are
represented as a linear combination of the same few training
samples. Such a representation is referred to as JSLRR.
Furthermore, in the presence of noise, both the rank and
the density of the representation matrix increases, since its
columns contain non-zero elements associated with more than
one class. Accordingly, if one demands to reduce the rank
of the representation matrix or to increase its sparsity, the
noise in the test set can be smoothed and simultaneously
the representation matrix admits a structure close to a block-
diagonal one, which is desirable for data classification. More-
over, since the JSLRR is row sparse, the contaminated training
samples are expected not to be involved in the representation
of the test samples. In that sense, the JSLRR provides a more
robust to noise representation than the SR and the lowest-rank
representation. This property of the JSLRR is illustrated in the
Example 1 at the end of this subsection.

Formally, given the test data Y ∈ Rd×M and the training
data A ∈ Rd×N , the JSLRR of Y with respect to A is the
matrix Z ∈ RN×M with rank r � min(q,M), where q � N
is the size of the support of Z. Such a representation is found
by minimizing the rank function regularized by the `0,q quasi-
norm. The `0,q regularization term ensures that the low-rank
matrix is also row sparse, since ‖Z‖0,q = |supp(Z)| for any q
[28]. Such an optimization problem is an NP-hard non-convex
problem. A convex relaxation of the just mentioned problem is
considered by replacing the rank function and the `0,q quasi-
norm by their convex envelopes.

In practice, the assumption stated in subsection IV-A does
not hold exactly. That is, the data are approximately drawn

from a union of subspaces. This fact introduces certain devi-
ations from the ideal modeling assumptions. These deviations
can be treated collectively as additive noise contaminating the
ideal model (i.e., Y = AZ + E). The noise term E models
both small (but densely supported) deviations and grossly (but
sparse) corrupted observations (i.e., outliers or missing data).
To account for the noise, the JSLRR solves the following
convex optimization problem:

argmin
Z,E

‖Z‖∗ + θ1‖Z‖1 + θ2‖E‖2,1

subject to Y = A Z + E, (5)

where θ2 > 0 is a regularization parameter and ‖.‖2,1
denotes the `2/`1 norm. The choice of `2/`1 norm for noise
characterization is attributed to the assumptions for the noise
term E stated previously. Several JSLRR methods have been
proposed in the literature. Table I indicates the optimization
problem solved in each method and reveals the novelty of the
proposed JSLRR formulation (5). Parameters θ1 and θ2 can be
selected as follows: θ1 =

√
r/q, requiring a rough estimation

of the rank r and sparsity-level q of the representation matrix
[36] and θ2 = 3

7
√
γ·M , where γ denotes the estimated portion

of outliers in the test set [37].

By assuming that there are no outliers in the test set (i.e.,
θ2 = 0 and E = 0 in (5)), the JSLRR (i.e., Z) has a
block-diagonal structure, a property that makes it appealing
for classification. This is guaranteed by Theorem 1, which is
a consequence of Lemma 1. The proofs of both Lemma 1 and
Theorem 1 can be found in the Supplementary Material.

Lemma 1: Let ‖.‖θ = ‖.‖∗ + θ‖.‖1, with θ > 0. For any
four matrices B,C,D, and F of compatible dimensions,∥∥∥∥[ B C

D F

]∥∥∥∥
θ

≥
∥∥∥∥[ B 0

0 F

]∥∥∥∥
θ

= ‖B‖θ + ‖F‖θ. (6)

Theorem 1: Assume that the data are exactly drawn from
independent linear subspaces. That is, span(Ak) linearly spans
the training vectors of the kth class, k = 1, 2, . . . ,K, Y ∈
span(A) and E = 0. Then, the minimizer of (5) is block-
diagonal.

Problem (5) can be solved by employing various opti-
mization methods, namely semi-definite programming [44],
first order proximal-point methods, such as the iterative soft-
thresholding algorithm (ISTA) [45], the fast iterative soft-
thresholding algorithm (FISTA) [46], the SpaRSA [20], and
the accelerated proximal gradient (APG) [47], as well as the
algorithms that resort to the augmented Lagrange multiplier
(ALM) methods [48], [49]. In this paper, the linearized alter-
nating direction augmented Lagrange multiplier (LADALM)
method is employed for solving (5). This choice is attributed to
the fact that it suits well for large scale classification problems,
yielding higher classification accuracy than other methods like
FISTA [50]. The LADALM is a variant of the alternating
direction augmented Lagrange multiplier (ADALM) method
[49] for optimization problems, whose subproblems not admit-
ing closed-formed solutions are linearized, to obtain closed-
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TABLE I
POPULAR JSLRR METHODS.

Reference Objective Sparsity inducing representation Error term
Here argminZ,E ‖Z‖∗ + θ1 ‖Z‖1 + θ2 ‖E‖2,1 subject to Y =

A Z + E
‖Z‖1 ‖E‖2,1

[38] argminZ,E ‖Z‖∗ + θ ‖E‖1 subject to Y = Z + E - ‖E‖1
[39] argminZ ‖Z‖∗ + θ1‖Z‖1 + θ2 ‖Y − Z‖2F ‖Z‖1 ‖Y − Z‖2F
[40] argminZ ‖Z‖∗+θ1‖Z‖1 +θ1‖E‖1 subject to PΩ(B1ZBT

2 +
E) = PΩ(Y ) for some properly chosen bases (B1,B2), where
PΩ(·) is a linear operator that restricts the equality only on
the entries which belong to the domain Ω (i.e., a subset of
observations)

‖Z‖1 PΩ(B1 Z BT
2 + E) = PΩ(Y )

[41] argminZ,E ‖Z‖∗+θ1‖Z‖1+θ2‖E‖1 subject to Y = AZ+E ‖Z‖1 ‖E‖1
[36] argminZ ‖Z‖∗ + θ ‖Z‖2,1 subject to ‖Y −AΦ2DZ‖2F ≤ ε

for a threshold ε, where Φ2D is a 2D spatial wavelet basis
‖Z‖2,1 ‖Y −AΦ2DZ‖2F ≤ ε

[42] argminZ ‖Y −AZ‖2F + θ1‖Z‖1,2 + θ2

∑K
l=1 ωi ‖Z− Zl‖2F

where Z and Zl, l = 1, 2, . . . ,K, is the sparse code of the
encoded group G and its baseline group Gl and ωl is the
appearance similarity between them

θ1‖Z‖1,2 + θ2

∑K
l=1 ωi ‖Z− Zl‖2F ‖Y −AZ‖2F

[43] argminZ,E ‖Z‖∗ + θ1 ‖ZT ‖1 + θ2 ‖E‖2,1 subject to Y =
Y Z + E and Z ≥ 0.

‖ZT ‖1 ‖E‖2,1

formed solutions [48]. To this end, (5) is rewritten as

argmin
J,Z,W,E

‖J‖∗ + θ1‖W‖1 + θ2‖E‖2,1

subject to Y = A Z + E, Z = J, J = W, (7)

which can be solved by minimizing the augmented Lagrangian
function:

L(J,Z,W,E,Λ1,Λ2,Λ3) = ‖J‖∗ + θ1‖W‖1
+θ2‖E‖2,1 + tr

(
ΛT

1 (Y −AZ−E)
)

+ tr
(
ΛT

2 (Z− J)
)

+tr
(
ΛT

3 (J−W)
)

+
µ

2

(
‖Y −AZ−E‖2F

+‖Z− J‖2F + ‖J−W‖2F
)
, (8)

where Λ1,Λ2, and Λ3 gather the Lagrange multipliers and
µ > 0 is a penalty parameter. By employing the LADALM,
(8) is minimized with respect to each variable in an alternat-
ing fashion and finally the Lagrange multipliers are updated
at each iteration. Let t denote the iteration index. Given
J[t],Z[t],W[t],E[t], and µ, the iteration of LADALM for (7)
reads

J[t+1] = argmin
J[t]

L(J[t],Z[t],W[t],E[t],Λ1[t],Λ2[t],Λ3[t]),

(9)
Z[t+1] = argmin

Z[t]

L(J[t+1],Z[t],W[t],E[t],Λ1[t],Λ2[t],Λ3[t]),

(10)

W[t+1] = argmin
W[t]

L(J[t+1],Z[t+1],W[t],E[t],Λ1[t],Λ2[t],Λ3[t])

(11)

≈ argmin
W[t]

θ1

µ
‖W[t]‖1 +

1

2
‖W[t] − (J[t+1] + Λ3[t]/µ)‖2F ,

(12)

E[t+1] = argmin
E[t]

L(J[t+1],Z[t+1],W[t+1],E[t],Λ1[t],Λ2[t],Λ3[t])

(13)

≈ argmin
E[t]

θ2

µ
‖E[t]‖2,1 +

1

2
‖E[t] − (Y −AZ[t+1] + Λ1[t]/µ)‖2F ,

(14)

Λ1[t+1] = Λ1[t] + µ(Y −AZ[t+1] −E[t+1]),

Λ2[t+1] = Λ2[t] + µ(Z[t+1] − J[t+1]),

Λ3[t+1] = Λ3[t] + µ(J[t+1] −W[t+1]),

In order to solve (9), we have to minimize (8) with respect
to J, which does not admit a closed form solution. Let f(J) be
the smooth term in (8) i.e., f(J) = tr

(
ΛT

1 (Y −AZ−E)
)

+
tr
(
ΛT

2 (Z− J)
)

+ tr
(
ΛT

3 (J−W)
)

+ µ
2

(
‖Y −AZ−E‖2F +

‖Z − J‖2F + ‖J − W‖2F
)
. Following [48], f(J) is lin-

early approximated with respect to J at J[t] as: f(J) ≈
f(J[t]) + tr

(
(J− J[t])

T∇f(J[t])
)

+ µ
2 ‖J − J[t]‖2F , where

∇f(J) = −Λ2[t] + Λ3[t] + µ(2J[t] −Z[t] −W[t]). Therefore,
an approximate solution of (9) is obtained by minimizing the
linearized augmented Lagrangian function as follows:

J[t+1] ≈ argmin
J
‖J‖∗ + f(J[t])

+tr
(
(J− J[t])

T∇f(J[t])
)

+
µ

2
‖J− J[t]‖2F

= argmin
J
‖J‖∗ +

µ

2
‖J− (J[t] −

1

µ
∇f(J[t])‖2F

= Dµ−1 [Z[t] − J[t] −Λ3[t]/µ+ W[t] + Λ2[t]/µ],

(15)

where Dτ [Q] = USτVT is the singular value thresholding
operator for any matrix Q with singular value decomposition
(SVD) Q = UΣVT . Sτ [q] = sgn(q) max(|q| − τ, 0) is
the shrinkage operator that is extended to matrices if applied
elementwise [18]. Problem (10) is an unconstrained least-
squares problem, admitting a simple closed form solution.
It is easy to see that (11) and (13) reduce into (12), and
(14), respectively. In particular, the subproblem (12) has a
unique solution, that is obtained by the shrinkage operator:
W[t+1] = Sθ1µ−1 [J[t+1]+Λ3[t]/µ]. Let M[t] = Y−AZ[t+1]+
Λ1[t]/µ. The solution of (14) is obtained column-wise as
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ej[t+1] = Sθ2µ−1 [‖mj[t]‖2]
mj[t]

‖mj[t]‖2
[51]. The LADALM

method for the minimization of (7) is outlined in Algorithm 1.
The dominant cost of each iteration in Algorithm 1 is the
computation the singular value thresholding operator (i.e.,
Step 3). That is, the calculation of the singular vectors of(
Z[t] − J[t] −Λ3[t]/µ+ W[t] + Λ2[t]/µ

)
whose correspond-

ing singular values are larger than the threshold µ−1, yielding
a O(N3) complexity at each iteration.

Algorithm 1 Solving (7) by the LADALM method.
Input: Training matrix A ∈ Rd×N , test matrix Y ∈ Rd×M
and the parameters θ1, θ2.
Output: Matrix Z ∈ RN×M and matrix E ∈ Rd×M .

1: Initialize: Z[0] = J[0] = W[0] = 0, Λ1[0] = 0, Λ2[0] = 0,
Λ3[0] = 0, µ = 10−6, ρ = 1.1, ε = 10−8.

2: while not converged do
3: Fix Z[t], W[t], and E[t], and update J[t+1] by

J[t+1] ← Dµ−1 [Z[t]−J[t]−Λ3[t]/µ+ W[t] + Λ2[t]/µ].
4: Fix J[t+1], W[t], and E[t], and update Z[t+1] by

Z[t+1] ←
(
I + ATA

)−1
(AT (Y −E[t]) + J[t+1]+

(ATΛ1[t] −Λ2[t])/µ).
5: Fix J[t+1], Z[t+1], and E[t], and update W[t+1] by

W[t+1] ← Sθ1µ−1 [J[t+1] + Λ3[t]/µ].
6: Fix Z[t+1], J[t+1], and W[t+1], form M[t] = Y −

AZ[t+1] + Λ1[t]/µ, and update E[t+1] column-wise by
ej[t+1] ← Sθ2µ−1 [‖mj[t]‖2]

mj[t]

‖mj[t]‖2
.

7: Update the Lagrange multipliers by
Λ1[t+1] ← Λ1[t] + µ(Y −AZ[t+1] −E[t+1]).
Λ2[t+1] ← Λ2[t] + µ(Z[t+1] − J[t+1]).
Λ3[t+1] ← Λ3[t] + µ(J[t+1] −W[t+1]).

8: Update µ by µ← min(ρ · µ, 106).
9: Check convergence conditions

‖Y−AZ−E‖∞ < ε, ‖Z−J‖∞ < ε, ‖J−W‖∞ < ε.
10: t← t+ 1.
11: end while

Special cases of the JSLRR are the JSR and the robust low-
rank representation (LRR). In particular, a robust JSR matrix
is found by solving the convex optimization problem (16) in
the presence of noise:

Robust JSR: argmin
Z,E

‖Z‖1 + θ2‖E‖2,1

subject to Y = A Z + E. (16)

(16) is known as the sparse multiple measurement vector
(MMV) [28], which is an extension of the sparse single
measurement vector (SMV) in (3). The key difference between
the MMV and the SMV is that the correlations between the
test samples are taken into account, as well as the test samples
from a specific class are simultaneously represented by few
columns of the training matrix.

A robust LRR is obtained as the solution of the following
convex optimization problem:

Robust LRR: argmin
Z,E

‖Z‖∗ + θ2‖E‖2,1

subject to Y = A Z + E. (17)

Actually, (16) and (17) are `2/`1 norm regularized versions of
(3) and (4) in order to account for the noise.

Similarly to the derivation of the JSLRR, the optimization
problem (16) is solved by minimizing the augmented La-
grangian function:

L1(Z,J,E,Λ1,Λ2) = ‖J‖1 + θ2‖E‖2,1
+ tr

(
ΛT

1 (Y −AZ−E)
)

+ tr
(
ΛT

2 (Z− J)
)

+
µ

2

(
‖Y −AZ−E‖2F + ‖Z− J‖2F

)
, (18)

where Λ1,Λ2 are the Lagrange multipliers and µ > 0 is a
penalty parameter. (18) can be minimized by employing the
ADALM method [49],s as is outlined in Algorithm 2.

Algorithm 2 Solving (16) by the ADALM method.
Input: Training matrix A ∈ Rd×N , test matrix Y ∈ Rd×M
and the parameter θ2.
Output: Matrix Z ∈ RN×M and matrix E ∈ Rd×M .

1: Initialize: Z[0] = J[0] = 0, Λ1[0] = 0, Λ2[0] = 0, µ =
10−6, ρ = 1.1, ε = 10−8.

2: while not converged do
3: Fix Z[t] and E[t], and update J[t+1] by

J[t+1] ← Sµ−1 [Z[t] + Λ2[t]/µ].
4: Fix J[t+1], and E[t], and update Z[t+1] by

Z[t+1] ←
(
I + ATA

)−1
(AT (Y −E[t])+

J[t+1] + (ATΛ1[t] −Λ2[t])/µ).
5: Fix J[t+1], Z[t+1], form M[t] = Y−AZ[t+1]+Λ1[t]/µ,

and update E[t+1] column-wise by
ej[t+1] ← Sθ2µ−1 [‖mj[t]‖2]

mj[t]

‖mj[t]‖2
.

6: Update the Lagrange multipliers by
Λ1[t+1] ← Λ1[t] + µ(Y −AZ[t+1] −E[t+1]).
Λ2[t+1] ← Λ2[t] + µ(Z[t+1] − J[t+1]).

7: Update µ by µ← min(ρ · µ, 106).
8: Check convergence conditions

‖Y −AZ−E‖∞ < ε and ‖Z− J‖∞ < ε.
9: t← t+ 1.

10: end while

Problem (17), can be solved by minimizing the augmented
Lagrangian function:

L2(Z,J,E,Λ1,Λ2) = ‖J‖∗ + θ2‖E‖2,1
+ tr

(
ΛT

1 (Y −AZ−E)
)

+ tr
(
ΛT

2 (Z− J)
)

+
µ

2

(
‖Y −AZ−E‖2F + ‖Z− J‖2F

)
. (19)

The minimization of (19) can be obtained, following a similar
procedure to that described in Algorithm 2. The only differ-
ence is that the Step 3 in Algorithm 2 should be replaced by
[19]:

J[t+1] = argmin
J[t]

1

µ
‖J[t]‖∗ +

1

2
‖J[t] − (Z[t] + Λ2[t]/µ)‖2F

= Dµ−1 [Z[t] + Λ2[t]/µ]. (20)

Example: For illustration, 4 linear pairwise independent
subspaces are constructed, whose basis {Ui}4i=1 are computed
by Ui+1 = RUi, i = 1, 2, 3. U1 ∈ R600×110 is a column
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Fig. 2. Representation matrices in Example. (a) The JSLRR obtained by
solving (5). (b) The LRR obtained by solving (17). (c) The JSR obtained by
solving (16). Representation coefficients of the 5th and the 15th test sample
obtained by (d) the JSLRR, (e) the LRR, and (f) the JSR.

orthonormal random matrix and R ∈ R600×600 is a random
rotation matrix. The data matrix X = [X1,X2,X3,X4] ∈
R600×400 is obtained by picking 100 samples from each
subspace. That is, Xi ∈ R600×100, i = 1, 2, 3, 4. Next, the data
matrix is partitioned into the training matrix A ∈ R600×360

and the test matrix Y ∈ R600×40 by employing a 10-fold cross
validation. The matrices A and Y have the structure described
at the beginning of subsection IV-A. Next, we pick randomly
50 columns of A and we replace them by a linear combination
of randomly chosen vectors from the two subspaces with
random weights. Thus, the training set is now contaminated
by outliers. The 5th column of the test matrix Y is replaced
by a linear combination of vectors not drawn from any of the
4 subspaces and the 15th column of Y is replaced by a vector
drawn from the 1st and the 4th subspace, as previously said. In
the first row of Fig. 2, the representation matrices are depicted
that are obtained by solving (5), (17), and (16), respectively.
The second row in Fig. 2 depicts the representation coefficients
of the 5th and the 15th test sample obtained by the JSLRR,
the LRR, and the JSR, respectively. The inspection of Fig. 2
reveals that the JSLRR admits a structure closer to a block-
diagonal one compared to that of the LRR and the JSR.
Furthermore, the vector of representation coefficients for the
5th test sample is dense for the JSLRR (Fig. 2 (d)), the LRR
(Fig. 2 (e)), and the JSR (Fig. 2 (f)). Thus, it does not provide
information about the subspace the 5th test sample lies onto.
For the 15th sample, the JSLRR is able to capture that this
sample lies onto the intersection of two subspaces by providing
two blocks of representation coefficients. In addition, there are
some zero coefficients inside these coefficient blocks. This fact
can be interpreted as correction, meaning that the outliers of
the training set are not used to represent this test sample. This
is not the case for the LRR and the JSR.

C. Joint sparse low-rank representation-based classifier

Having found the JSLRR matrix Z ∈ RN×M and the
noise matrix E ∈ Rd×M , the mth test sample ym ∈ Rd is
classified as follows. First, noise correction is enforced to ym

by subtracting em yielding ȳm = ym − em. Ideally, the mth
column of Z (i.e., zm ∈ RN ) contains non-zero entries in the
positions associated with the columns of the training matrix
A spanned from a single subspace, corresponding thus to a
single class. Consequently, we can easily assign ȳm to that
class. However, in practice, there are small non-zero entries
in zm that are associated to multiple subspaces (i.e., classes).
To cope with this problem, each noise corrected test sample
ȳm is classified to the class that minimizes the `2 squared
norm residual between ȳm and ŷk = A δk(zm) divided by
the squared `2 norm of δk(zm), where δk(zm) ∈ RN is a new
vector whose nonzero entries are the entries in zm that are
associated to the kth class only. The procedure is outlined in
Algorithm 3.

Algorithm 3 Joint Sparse Low-Rank Representation-based
Classifier.
Input: Training matrix A ∈ Rd×N and test matrix
Y ∈ Rd×M .
Output: A class label for each column of Y.

1: Solve (7) by employing Algorithm 1 and obtain Z ∈
RN×M and E ∈ Rd×M .

2: for m = 1 to M do
3: ȳm = ym − em.
4: for k = 1 to K do
5: Compute the residuals rk(ȳm) = ‖ȳm −

A δk(zm)‖22/‖δk(zm)‖22.
6: end for
7: class(ȳm) = argmink rk(ȳm).
8: end for

The same procedure is applicable to the JSR and the LRR
of the test set with respect to the training set, yielding the
JSR-based and the LRR-based classifier, respectively.

The JSR-based classifier differs from the SRC [20] in that
the test samples, which belong to the same class, have the same
sparse support of the coefficient vectors. In other words, all
the test samples drawn from a certain class are spanned by the
same, few, training samples that share the same sparse pattern.
Furthermore, noise correction is enforced by the JSR-based
classifier. The same difference holds between the classifiers
that are based on the robust low-rank representation and the
standard low-rank one, e.g., [22].

V. EXPERIMENTAL EVALUATION

A. Datasets and evaluation procedure

The performance of the three proposed classifiers based on
the JSRR, the JSR, and the LRR in music genre classification
is assessed by conducting experiments on 6 manually anno-
tated benchmark datasets for which the audio files are publicly
available. In particular, the GTZAN [13], the ISMIR dataset,
the Ballroom, the Homburg [52], the 1517Artists [12], and the
Unique [12] datasets are employed. These datasets are briefly
described next.
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The GTZAN2 consists of 1000 excerpts, 30 sec long,
equally distributed over 10 genre classes, namely blues, clas-
sical, country, disco, hip-hop, jazz, metal, pop, reggae, and
rock.

The ISMIR3 contains 1458 full music recordings distributed
over 6 genre classes as follows: classical (640), electronic
(229), jazz-blues (52), metal-punk (90), rock-pop (203), world
(244), where the number within parentheses refers to the
number of recordings, which belong to each genre class.
Therefore, the 43.9% of the recordings belong to the classical
genre.

The Ballroom4 dataset consists of 698 music excerpts, 30
sec long, from 8 different dance music styles namely cha-cha
(111), jive (60), quickstep (82), rumba (98), samba (86), tango
(86), viennese waltz (65), and slow waltz (110). Again, the
number within parentheses refers to the number of recordings,
which belong to each dance style.

The Homburg dataset5 contains 1886 music excerpts, 10
sec long, by 1463 different artists. These excerpts are un-
equally distributed over 9 genres, namely alternative, blues,
electronic, folk-country, funk/soul/rnb, jazz, pop, rap/hip-hop,
rock. The largest class is the rap/hip-hop genre, containing
26.72% of the music excerpts, while the funk/soul/rnb is the
smallest one, containing 2.49% of the excerpts.

The 1517Artists6 consists of 3180 full-length music record-
ings from 1517 different artists, downloaded from download.
com. The 190 most popular songs, according to the number of
total listenings, were selected for each of the 19 genres, i.e.,
alternative/punk, blues, children’s, classical, comedy/spoken,
country, easy listening/vocal, electronic, folk, hip-hop, jazz,
latin, new age, rnb/soul, reggae, religious, rock/pop, sound-
tracks, world. In this dataset, the music recordings are dis-
tributed almost uniformly over the genre classes.

The Unique7 consists of 3115 music excerpts of popular and
well-known songs, distributed over 14 genres, namely blues,
classic, country, dance, electronica, hip-hop, jazz, reggae, rock,
schlager (i.e., music hits) soul/rnb/, folk, world, and spoken.
Each excerpt has 30 sec duration. The class distribution
is skewed. That is, the smallest class (i.e., spoken music)
accounts for 0.83% and the largest class (i.e., classic) for
24.59% of the excerpts.

Two music genre classification experiments were conducted.
In the first set of experiments, the performance of the proposed
classifiers is compared with that of the state-of-the-art music
genre classification methods by applying the standard evalua-
tion protocol for each dataset. In particular, following [6], [12],
[13], [16], [52]–[55] stratified 10-fold cross validation was
applied to the GTZAN dataset, the Ballroom, the Homburg,
the 1517Artists, and the Unique datasets. The experiments on
the ISMIR 2004 Genre dataset were conducted according to
the ISMIR2004 Audio Description Contest protocol, which
defines training and evaluation sets, consisting of 729 audio

2http://marsyas.info/download/data sets
3http://ismir2004.ismir.net/ISMIR Contest.html
4http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
5http://www-ai.cs.uni-dortmund.de/audio.html
6http://www.seyerlehner.info/index.php?p=1 3 Download
7http://www.seyerlehner.info/index.php?p=1 3 Download

files each. In content-based music classification, it is well-
known that that recordings from the same artist or the same
album are easily classified correctly, biasing the reported
experimental results. This is attributed to the very specific
artistic style and recording conditions. It is referred to as
artist and album effect, respectively [56]. To prevent any
artist or album effects, artist filtering has been applied to the
Homburg, the 1517-Artists, and the Unique datasets, where
artist information is available.

In practice, the number of annotated music recordings per
genre class is often limited [3]. Therefore, a major challenge
is to train the music genre classifiers for large-scale data sets
from few labeled data [3]. In the second set of experiments,
the performance of the proposed music genre classification
framework is investigated in the just metioned challenge. Only
10% of the available recordings were exploited for training and
the remaining 90% for testing, in all datasets. The experiments
were repeated 10 times.

The 3 proposed classifiers are compared with another four
well-known classifiers, namely the SRC [20], the LRC [23],
the SVM8 with a linear kernel, and the NN classifier with the
cosine distance metric, by applying the aforementioned proto-
cols. Since the dimensionality of the cortical representations is
much larger than the cardinality of the training set, the sparse
coding in the SRC9 is obtained by the LASSO [57]. The LRC
is a nearest subspace classification method, where a dense
coefficient vector, (i.e., zm) is obtained by minimizing the `2-
norm residual between the test sample ym and Azm. Next, the
class label is assigned in favor of the class with the minimum
reconstruction error. Due to the assumed subspace structure
of the audio features, both the linear SVM, the SRC, and
the NN are appropriate for separating features from various
music recordings that belong to different genres. Furthermore,
the aforementioned baseline classifiers are working in the
same feature space with the proposed classifiers, which makes
the performance comparisons fair. The performance of each
classifier is assessed by reporting the music genre classification
accuracy. In all the experimenters, the parameters (i.e., θ1, θ2)
of the proposed classifiers are set as specified in subsection
IV-B, namely θ1 =

√
r/q and θ2 = 3

7
√
γ·M . In particular, the

rank of the representation matrix is estimated as r = M−γM ,
where γM denotes the number of outliers in the test set. The
level of sparsity of the representation is set as q = 3N . The
only parameter that needs tuning is the portion of outliers in
the test set (i.e., γ). To this end, by employing the method
in [58], (i.e., by excluding from the training set a subset, the
evaluation set, and tuning the parameters in the evaluation set),
it has been found that γ = 0.01 is a reasonable value for all
the datasets.

B. Experimental Results

Table II, summarizes the music genre classification accu-
racies for the 6 datasets. These results have been obtained

8The LIBSVM was used in the experiments (http://www.csie.ntu.edu.tw/
∼cjlin/libsvm/)

9The SPGL1 Matlab solver was used in the implementation of the SRC
(http://www.cs.ubc.ca/∼mpf/spgl1/).
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by applying the standard protocol defined for each dataset.
The numbers within the parentheses indicate the standard
deviations obtained by a stratified 10-fold cross-validation on
all datasets, but the ISMIR. Each classifier is applied to the
auditory cortical representations (cortical features), the 420-
dimensional MFCCs, the 156-dimensional chroma features,
the fusion of cortical features and MFCCs (cm) and the
fusion of all the aforementioned features (cmc). The fusion
of features is obtained by constructing an augmented feature
vector by stacking the cortical features on the top of the
MFCCs and the chroma features. In the last rows of Table II,
the figures of merit for the top performing music classification
methods are included, for comparison purposes.

By inspecting Table II, the best music genre classification
accuracy has been obtained by the proposed classifiers in 5
out of 6 datasets. In particular, the JSLRR-based classifier
achieves the top classification accuracy in 4 out of 6 datasets,
when either the cortical or the fusion of all the features
has been exploited for music representation. Comparable per-
formance has been achieved by fusing the cortical features
and the MFCCs. In the ISMIR dataset, the best classification
accuracy is achieved by the JSR-based classifier, when the
combination of the cortical features and the MFCCs has
been employed. This is not the case for the Unique dataset,
where the SVMs achieve the best classification accuracy, when
fusing the cortical features and the MFCCs. The JSLRR-based
classifier outperforms all the classifiers being compared to
in the GTZAN, the Ballroom, the Homburg, and the 1517-
Artists datasets. When the cortical features as well as their
combination with the MFCCs and the chroma features are
exploited for music representation, the JSR-based classifier
outperforms the SRC in all datasets. This can be attributed
to the noise correction enforced by the JSR-based classifier.
The MFCCs are classified more accurately by the JSR in the
GTZAN, the ISMIR, and the 1517Artists datasets, the LRR-
based classifier in the Homburg dataset, and the linear SVM in
the Ballroom and the Unique datasets. The chroma features are
classified more accurately by the linear SVM in the Ballroom,
the Homburg, the 1517Artists, and the Unique datasets, while
the SRC is proved to be more efficient in the GTZAN and
the ISMIR datasets. It can be observed from Table II that the
LRC performs poor in many cases. This is attributed to the
fact that the training matrix (i.e., A) is often rank-deficient
and thus there are infinitely many solutions to the underlying
least squares problem solved by the LRC.

The best classification accuracy obtained by the JSLRR-
based classifier on all, but the Ballroom dataset, ranks high
compared to that obtained by the majority of music genre
classification techniques, listed in last rows of Table II. In
particular, for the Homburg, the 1517-Artists, and the Unique
datasets, the best accuracy is achieved by the JSLRR-based
classifier. Regarding the GTZAN and ISMIR datasets, it is
worth mentioning that the results in [16], have been obtained
by applying feature aggregation on the combination of 4
elaborated audio features. The reported results on the Ballroom
dataset are significantly inferior to those obtained by the
methods in [53], [60], [61]. This is attributed to the fact
that special-purpose rhythmic features have been employed

for dance style discrimination there.

Fig. 3. Classification accuracy of the various classifiers as a function of
feature dimensionality for cortical (a),(d),(g), cm (b),(e),(h), and cmc (c),(f),(i).
First row, results on the GTZAN dataset. Second row, results on the ISMIR
dataset. Third row, results on the Ballroom dataset.

Fig. 4. Classification accuracy of the various classifiers as a function
of feature dimensionality for cortical (a),(d),(g), cm (b),(e),(h), and cmc
(c),(f),(i). First row, results on the Homburg dataset. Second row, results on
the 1517Artists dataset. Third row, resulys on the Unique dataset.

To investigate how the classification accuracy is affected
by the feature vector dimension, dimensionality reduction
of the cortical and the augmented feature vectors via ran-
dom projections [65] is considered. Random projections are
computational inexpensive, providing with high probability a
stable embedding [65]. Roughly speaking, a stable embedding
approximately preserves the Euclidean distances between all
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TABLE II
MUSIC GENRE CLASSIFICATION ACCURACY FOR VARIOUS DATASETS. THE NUMBERS WITHIN THE PARENTHESES INDICATE THE STANDARD DEVIATIONS

OBTAINED BY 10-FOLD CROSS-VALIDATION. THE BEST RESULTS ARE INDICATED IN BOLDFACE.

Classifier Features GTZAN ISMIR Ballroom Homburg 1517Artists Unique
cmc 89.40 (2.87) 80.52 82.37 (3.96) 59.70 (2.07) 61.85 (2.90) 70.36 (1.87)
cm 88.70 (2.79) 79.28 82.22 (4.87) 59.54 (2.11) 61.63 (2.63) 70.33 (2.01)

JSLRR cortical 89.20 (2.48) 81.20 81.93 (4.86) 63.46 (2.49) 60.18 (2.63) 73.57 (0.93)
MFCCs 72.20 (3.35) 63.92 47.27 (5.91) 51.48 (2.34) 35.75 (2.35) 59.26 (1.98)
chroma 29.30 (4.80) 49.93 24.07 (3.93) 35.05 (2.49) 14.77 (1.50) 42.66 (2.20)
cmc 87.10 (3.24) 85.32 79.36 (3.79) 62.08 (2.52) 58.61 (2.30) 73.99 (1.60)
cm 87.00 (3.33) 85.45 79.79 (3.82) 62.08 (2.37) 58.08 (2.40) 73.86 (1.69)

JSR cortical 86.80 (3.01) 84.49 80.36 (3.95) 61.02 (2.90) 57.45 (2.21) 74.28 (1.41)
MFCCs 76.90 (4.45) 79.01 43.27 (4.57) 48.83 (3.67) 42.13 (2.72) 62.47 (2.58)
chroma 34.80 (3.88) 50.89 24.35 (4.91) 24.92 (2.54) 11.63 (0.34) 41.95 (2.67)
cmc 89.10 (3.31) 81.89 81.21 (4.17) 57.31 (2.52) 59.81 (2.85) 70.11 (1.71)
cm 88.90 (3.28) 81.75 81.93 (3.55) 57.36 (2.70) 59.84 (2.96) 69.72 (1.80)

LRR cortical 87.80 (2.82) 81.20 80.93 (3.13) 60.33 (3.67) 57.92 (2.65) 74.05 (1.22)
MFCCs 71.90 (5.21) 62.27 49.28 (4.97) 52.75 (2.26) 37.45 (2.61) 57.56 (1.04)
chroma 30.80 (4.51) 49.93 24.64 (3.66) 32.82 (1.43) 14.77 (1.29) 45.07 (2.47)
cmc 87.00 (3.12) 84.49 77.22 (4.29) 60.17 (3.43) 53.67 (2.26) 73.57 (1.88)
cm 87.20 (2.97) 84.77 76.93 (4.04) 60.70 (3.25) 53.49 (2.32) 73.38 (2.03)

SRC cortical 86.50 (2.46) 84.36 77.65 (3.44) 59.06 (2.81) 50.72 (2.61) 67.48 (1.14)
MFCCs 75.50 (4.22) 74.75 44.26 (7.58) 49.68 (3.33) 41.19 (2.59) 63.69 (1.76)
chroma 41.60 (3.77) 56.37 28.95 (3.75) 36.05 (2.83) 21.69 (1.31) 49.08 (2.72)
cmc 87.90 (3.14) 63.23 72.20 (4.93) 34.09 (2.23) 56.16 (2.27) 48.15 (0.60)
cm 87.90 (3.07) 63.37 72.78 (5.29) 33.40 (1.74) 55.50 (2.43) 48.08 (0.56)

LRC cortical 87.30 (3.05) 60.76 71.91 (4.64) 32.18 (1.74) 53.11 (2.65) 47.89 (0.35)
MFCCs 70.00 (5.77) 43.89 36.25 (3.85) 22.16 (3.57) 22.76 (2.98) 24.75 (2.70)
chroma 11.90 (1.85) 29.35 16.03 (3.30) 16.43 (3.59) 8.17 (1.00) 18.58 (2.14)
cmc 86.30 (2.35) 82.99 81.66 (5.75) 62.88 (2.52) 54.24 (3.52) 74.89 (1.84)
cm 86.60 (2.59) 83.26 81.95 (5.75) 62.77 (2.34) 54.43 (3.68) 75.05 (2.02)

SVM cortical 86.10 (2.42) 82.44 80.65 (5.40) 62.40 (3.19) 53.71 (3.18) 68.89 (2.22)
MFCCs 74.00 (2.40) 74.89 51.71 (4.67) 50.90 (3.53) 38.86 (1.99) 67.15 (2.26)
chroma 37.20 (4.84) 52.53 29.35 (4.31) 37.43 (2.54) 18.23 (2.27) 49.34 (3.17)
cmc 82.50 (3.74) 79.69 66.18 (5.89) 50.68 (4.54) 46.22 (2.85) 65.52 (2.46)
cm 82.10 (3.28) 78.87 66.90 (5.62) 50.57 (4.45) 46.41 (2.49) 65.23 (2.31)

NN cortical 81.30 (2.79) 78.60 67.90 (3.91) 49.94 (4.27) 44.84 (2.55) 64.43 (2.57)
MFCCs 66.80 (4.56) 70.64 34.67 (5.97) 29.79 (3.13) 33.45 (2.00) 55.24 (2.43)
chroma 37.90 (4.60) 51.30 24.07 (3.81) 27.73 (2.06) 15.09 (1.80) 38.07 (3.33)

[16] 90.60 [16] 86.83 [53] 96.00 [59] 62.40 [59] 54.91 [59] 72.90
[59] 87.00 [10] 83.50 [60] 90.40 [61] 61.20 [61] 41.10 [12] 72.00
[6] 84.30 [6] 83.15 [61] 90.00 [62] 57.81 [63] 35.00
[61] 82.00 [59] 82.99 [54] 67.60 [63] 55.30
[55] 77.20 [64] 82.30 [53] 50.00 [52] 53.23

samples of the original space in the space of reduced dimen-
sions. Thus, the subspace structures of the original data space
are also maintained into the space of reduced dimensions. It
is clear from subsection IV-B that such a property is crucial
for the proposed classifiers. The feature vectors of reduced
dimensions are obtained by applying a random projection
matrix, drawn from a zero-mean normal distribution, onto
the original feature vectors. The dimensionality of the low-
dimensional feature space is equal to 1/16, 1/8, 1/4, 1/3, and
1/2 of the original feature space. In Figs. 3 and 4 classification
accuracies obtained by various classifiers as a function of the
dimensionality of cortical, cm, and cmc features is plotted for
the 6 datasets. From the inspection of Figs. 3 and 4, it is
seen that the dimensionally reduction via random projections
degrades slightly the classification accuracy of all classifiers
under study in all, but the Ballroom dataset.

Apart from classification accuracy, the computational cost
is also of concern in practice. In Table III, the average running
time of each classifier needed for training and classification per
music recording is listed. These times have been computed by
averaging the needed time for training and classification in all
datasets and then by dividing the average time with the total

number of test recordings. The JSLRR, the JSR, the LRR,
and the LRC were implemented in Matlab version 2009b. For
the experiments, a desktop PC with Intel Core Duo at 3.16
GHz CPU and 4 GB of RAM has been employed. The LRR-
based classifier is obviously the fastest among the proposed
classifiers. The JSR-based classifier is less time consuming
than the JSLRR. Since in the implementation of the SRC
or the SVM, C code has been employed (i.e., .mex files),
their running times cannot be compared fairly with that of
the proposed classifiers. It is worth mentioning that all the
classifiers run significantly faster, when features of reduced
dimensions are fed into them.

In Table IV, music genre classification results in the small
sample size setting are summarized. These results have been
obtained by employing the fusion of the cortical features,
the MFCC and, the chroma features. The best classification
results are obtained by the LRR-based classifier in 3 out
of 6 datasets. In the GTZAN and the Homburg dataset the
performance of the JSLRR-based classifier is slightly inferior
to that of the LRR-based classifier. The best classification
results in the ISMIR, the Ballroom, and the Unique datasets
have been achieved by the linear SVM. It is worth noting the
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TABLE III
AVERAGE RUNNING TIME IN CPU SECONDS PER RECORDING OF

COMPETING CLASSIFIERS IN MUSIC GENRE CLASSIFICATION. CPU TIME IS
SPLIT INTO 2 CELLS. THE TIME IN THE LEFT CELL IS OBTAINED BY

EMPLOYING FEATURES WITHOUT DIMENSIONALITY REDUCTION, WHILE
THE TIME IN THE RIGHT CELL IS OBTAINED BY EMPLOYING FEATURES

WHOSE DIMENSIONALITY HAS BEEN REDUCED BY A FACTOR OF 1/2 VIA
RANDOM PROJECTIONS.

Features JSLRR JSR LRR
cmc 2.783 1.8662 2.4729 1.4775 1.6408 1.0304
cm 2.7916 1.8758 2.5154 1.4819 1.596 1.0202

cortical 2.7787 1.869 2.4843 1.4717 1.5731 1.0196
MFCCS 0.33088 0.06786 0.10764
chroma 0.34195 0.075816 0.10748

SRC LRC SVM
cmc 0.78172 0.51995 1.9483 1.6482 0.074568 0.037752
cm 0.76877 0.51855 1.8747 1.6154 0.077064 0.033384

cortical 0.7733 0.51808 1.8995 1.6354 0.11747 0.033696
MFCCS 0.021372 0.00546 0.00078
chroma 0.019968 0.002028 0.000468

LRR-based classifier and the linear SVM perform equally well
in the Ballroom dataset. Given the relatively small number
of training music recordings, the results in Table IV are
acceptable, indicating that the LRR- and the JSLRR-based
classifiers can be exploited for music genre classification in
real world conditions.

TABLE IV
MUSIC GENRE CLASSIFICATION ACCURACY ON VARIOUS DATASETS BY

EMPLOYING A FEW LABELED MUSIC RECORDINGS. THE NUMBERS WITHIN
THE PARENTHESES INDICATE THE STANDARD DEVIATIONS.

Classifier GTZAN ISMIR Ballroom
JSLRR 71.77 (1.92) 71.78 (1.34) 61.50 (2.18)
JSR 65.48 (2.21) 72.65 (1.34) 56.16 (2.66)
LRR 73.52 (1.35) 71.91 (1.85) 62.49 (2.75)
SRC 71.00 (2.25) 74.37 (1.45) 59.04 (3.64)
LRC 72.72 (1.28) 69.47 (1.10) 59.29 (3.23)
SVM 72.03 (1.54) 76.19 (1.25) 62.52 (3.42)
NN 63.38 (3.60) 71.49 (1.48) 50.79 (4.74)
Classifier Homburg 1517Artists Unique
JSLRR 56.03 (0.72) 37.11 (0.77) 67.48 (0.77)
JSR 54.18 (1.10) 32.92 (1.65) 67.69 (0.71)
LRR 56.10 (0.64) 42.86 (1.08) 68.87 (0.49)
SRC 54.50 (0.74) 37.02 (0.90) 68.63 (1.05)
LRC 52.68 (1.13) 38.58 (0.78) 58.82 (0.66)
SVM 56.06 (0.73) 38.35 (1.06) 70.04 (0.72)
NN 45.96 (1.39) 30.48 (1.16) 60.58 (1.45)

VI. CONCLUSIONS

The JSLRR has been proposed as an alternative to the sparse
representation and the low-rank one in order to correct the
noise and identify the subspace structures in data contaminated
by outliers. Three general purpose classifiers, robust to noise,
have been developed thanks to the JSLRR and tested for
music genre classification. The experimental results indicate
the strengths of the JSLRR in music genre classification and
validate that the cortical representations are more discrimi-
nating features compared to the conventional audio features
(MFCCs or chroma) for music genre classification.
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