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Fluorescent  in  situ  hybridization  (FISH)  is  an  exceptionally  useful  method  in  determining  HER-2/neu  gene
status  in  breast  carcinoma  samples,  which  is  a  valuable  cancer  prognostic  indicator.  Its  visual  evaluation
is a  difficult  task,  which  involves  manual  counting  of  red/green  dots  in  multiple  microscopy  images,
a  procedure  which  is both  time  consuming  and  prone  to human  errors.  A number  of  algorithms  have
recently  been  developed  dealing  with  the (semi)-automated  analysis  of  FISH  images.  Their  performance
is  quite  promising,  but  further  improvement  is  required  in  their  diagnostic  accuracy.  In  addition,  they
ISH
ell nucleus segmentation
pot detection
ER-2/neu
ene amplification

have  to be  evaluated  on large  FISH  image  data  sets.  Here,  we  present  a  novel  method  for  analyzing  FISH
images  based  on  cell  nuclei  and  red/green  spot  modelling  by  radial  basis  functions  (RBFs).  Our  method  was
compared  to  one  of the  most  prominent  methods  reported  in  the  literature  on  a  large  data  set,  comprised
of  246  breast  cancer  cases  (in  total  3412  FISH  images)  and  showed  statistically  significant  diagnostic
accuracy  improvement,  especially  on  HER-2/neu  positive  cases.  The  overall  diagnostic  accuracy  of the
proposed  method  is 95.93%  over  this  data  set.
. Introduction

Fluorescence in situ hybridization is an established diagnostic
ethod for gene status evaluation. It is essential in determining

he status of HER-2/neu gene in breast samples, a valuable cancer
rognostic and diagnostic indicator [1].  The HER-2/neu (c-erbB2)
ncogene encodes the production of the HER-2/neu receptor, which
s a tyrosine kinase receptor that is over-expressed in approxi-

ately 20–30% of high-grade invasive breast carcinomas. Since
ER-2 positive tumors can be more aggressive, knowing that a
ancer is HER-2/neu positive helps in selecting the appropriate
reatment. Overexpression of the protein product of HER-2/neu
ene is usually a consequence of gene amplification, in which mul-
iple copies of the gene appear throughout the genome. Thus, it
s possible to determine the HER-2/neu status, either by analyz-
ng the numbers of gene copies in the nucleus or the amount of
he related protein on the cell membrane. Fluorescence in situ
ybridization (FISH) is a widely used technology to determine
ER-2/neu status that allows a gene copy count. A typical FISH
mage of HER-2/neu is shown in Fig. 1(a). The cell nuclei have blue
olor, while the green and red spots map  the CEP 17 and the HER-
/neu genes, respectively. The ratio of the red/green spot numbers

∗ Corresponding author. Tel.: +30 2310996361; fax: +30 2310998453.
E-mail address: imarras@aiia.csd.auth.gr (I. Marras).
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determines the HER-2/neu status (replication) in each cell nucleus.
Alternatively, the amount of protein expression can be measured
directly via immunohistochemistry (IHC). There are trade-offs in
choosing one of these techniques. Both techniques permit the
study of small amounts of formalin-fixed, paraffin-embedded tis-
sue and the interpretation of the findings on a cell-by-cell basis.
FISH allows selective staining of various DNA sequences with
fluorescent markers and, thereby, the detection, analysis and quan-
tification of specific numerical and structural DNA abnormalities
within the nuclei. It is a direct in situ technique that is relatively
rapid and sensitive. No cell culture is needed in order to apply this
method and results are easier to interpret than karyotype. FISH
offers a more objective scoring system, based on the presence of
the two  HER-2 gene signals (red/green spots) present in all cells
of the specimen. Its disadvantages include the high cost of each
test, the long time needed for slide scoring, the use of a fluores-
cence microscope, the inability to preserve the acquired sample for
long storage and review, and, occasionally the difficulty in iden-
tifying the invasive tumor cells [2].  In [3,4], it has been shown
that this procedure is as accurate as Southern blot analysis, while
allowing the measurement of the fraction of amplified cells and
the intercellular heterogeneity within a given tumor cell popula-

tion. On the other hand, the advantages of IHC testing include its
wide availability, relatively low cost, easy and long preservation of
stained slides, while the use of specific antibodies to stain proteins
in situ allows the identification of several cell types that could be

dx.doi.org/10.1016/j.bspc.2012.05.001
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:imarras@aiia.csd.auth.gr
dx.doi.org/10.1016/j.bspc.2012.05.001
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ig. 1. (a) FISH image, (b) blue channel depicting all nuclei, (c) red channel spots de
For  interpretation of the references to color in this figure legend, the reader is refe

isualized by classical microscopy. The disadvantages of IHC
nclude the impact of pre-analytic issues, including storage, dura-
ion and nature of system control samples and, most importantly,
he difficulties in applying a subjective slide scoring system [2].

ore specifically, in IHC testing, the reader must judge the degree
f color change in the nucleus, against a non-standardized chart.

 recent study [5] considered the accuracy, reproducibility and
vailability of different techniques for the evaluation of HER-2/neu
tatus and recommended patient screening by immunohistochem-
stry, followed by FISH testing in cases with intermediate staining
ntensity (cases scored 2+ according to HercepTest). They suggested
hat the use of automated analysis may  increase testing precision
nd predicted a wider future use of FISH analysis, as a more cost-
ffective technique.

Analyzing FISH images is a difficult task, since manual dot scor-
ng over a large number of nuclei and over different tissue samples
s a time consuming and fatiguing operation. Moreover, it is user-
ependent in a clinical setting, since different doctors may  count
ots in slightly different ways, especially in ambiguities, e.g., in the
ase of dotted red spots or blurred spots. In case there are images
ontaining regions with blurred spots, the pathologists assign to
hose regions a empirical chosen number of spots. In practice, cur-
ent analysis of FISH signals is performed in a semi-automated

ay with the aid of image processing software, which can display

he different color channels of a FISH image, as shown in Fig. 1
nd apply thresholds for nuclei segmentation. One study [6] has
hown strong correlation of the detection results using visual-only
g HER-2/neu gene positions, and (d) green channel dots depicting CEP 17 positions.
 the web version of the article.)

and semi-automated methods for evaluating the status of HER-
2/neu in breast carcinomas samples. However, dot counting in a
semi-automatic manner still remains an impractical procedure for a
pathologist, since it requires user intervention for excluding poorly
segmented, overlapping, clustered or non-relevant cells [6].

Recently, many of techniques have been proposed for analyzing
FISH images targeted to a variety of genes. Most of these consist of a
two-step process, namely, nuclei segmentation and spot detection.
Notable examples are presented in [7],  where histogram-based seg-
mentation was  performed for counting FISH signals, and in [8,9],
where nuclei segmentation was  performed via the ISODATA algo-
rithm [10] and the top-hat transform was  used for spot detection,
followed by thresholding. In [11], nuclei segmentation was  accom-
plished based on the ISODATA algorithm followed by the distance
transform, while spot detection was based on the top-hat trans-
form, followed by the recursive reconstruction algorithm [12]. In
[13], segmentation was carried out via bi-level histogram analy-
sis and morphological operations [14], while spot detection was
performed using a watershed-like technique, called gradual thresh-
olding. In [15,16], nuclei segmentation was performed on the blue
channel, using heuristically derived thresholds and morphologi-
cal operations, while spot detection was  evaluated for a number
of different techniques, varying from Bayesian classifiers to neural

networks. In [17], nuclei segmentation was  based on a variation
of the watershed transform, dubbed “gradient-weighted distance
transform”. In [18], cell nuclei were segmented nuclei via the water-
shed transform, while spot detection was  performed using three
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ifferent techniques, ranging from intensity- to histogram- and
atershed transform-based methods. In [19], a minimum cluster
istance classifier was used to classify the slides into HER-2 cat-
gories, employing IHC microscopy images. In [20], a combined
ethod based on the mathematical morphology, using top-hat and

ottom-hat filters and inverse multifractal analysis is suggested for
etecting and counting fluorescent dots in FISH images. In [21], the
roposed multistage algorithm for the automated classification of
ISH images from breast carcinomas is the state of the art method
n terms of diagnostic accuracy. The algorithm consists mainly of
wo stages for nuclei and dot detection. The dot segmentation is
erformed in the RGB color space and consists of a top-hat filter
reprocessing stage followed by grey level template matching to
eparate real signals from noise. The template matching includes

 2D correlation similarity measure with a suitable spot mask,
hich is derived from a small number of training spots. Nuclei seg-
entation is performed on the blue channel (DAPI) image. After

 non-linearity correction step, global thresholding [22] is used to
dentify candidate regions. A geometric rule is applied to distin-
uish between holes within a nucleus and holes between different
uclei. Finally, the marked watershed transform is used to segment
ell nuclei. Combining the two stages allows the measurement of

 FISH signal ratio per cell nucleus and consequently, the collec-
ive classification of cases, in a manner similar to the clinician’s
valuation.

Although the results of FISH image analysis are quite satisfac-
ory, further improvement is desirable, especially regarding nuclei
egmentation for overlapping or out-of-focus nuclei and correct
pot detection, in cases with excessive debris staining or high gene
opy number. Therefore, we hereby present a novel algorithm for
ISH image analysis, which provides further improvements to the
tate of the art. The main advantages of the proposed method is
ts simplicity and firm foundation on shape modelling using radial
asis functions (RBFs). RBFs are good candidates for cell nuclei seg-
entation, since they can model well ellipsoidal objects, as is the

ase of both cell nuclei and red/green spots. The proposed method
s compared to the one in [21], with results showing significant
verall diagnostic accuracy improvement, especially on correctly
lassifying positive HER-2/neu cases.

This study presents a large-scale evaluation of the proposed
ethod on a data set comprising 246 breast cancer cases provided

y the cooperating medical team. Such a study is very impor-
ant, since the current status of most previous methods is at a
oint, where large clinical studies are required in order to validate
heir effectiveness. This is especially critical, because most of the

ethods reviewed here report some deviations from the ground
ruth, as determined by the medical experts. The advantages of
hese trials are twofold, providing further hindsight for algorithm
mprovement, as well as bringing in the medical experts as active
articipants of the development process. Furthermore, we  have
erformed a large-scale evaluation and comparison of our method
ith that described in [21] on the 246 breast cancer cases.

. Materials

Formalin fixed-paraffin embedded tissue blocks from 246 cases
ere retrieved from the archives of the Pathology Department of

he Medical School, Aristotle University of Thessaloniki, Greece.
n total, 3412 FISH images were used in our experiments. The

ajority of the cases had been submitted to this Department
or the Quantification of the Amplification of the HER-2/neu

ene via the FISH Method. Hematoxylin–eosin stained slides
ere reviewed, before the performance of FISH and were tested

y immunohistochemistry for the expression of HER-2 protein,
sing the commercial test (HercepTest(r), DakoCytomation).
ssing and Control 8 (2013) 30– 40

Paraffin-embedded tumor sections of 3 �m were stained using the
Labeled Streptavidin Avidin Biotin (LSAB) method, following the
manufacturer recommendations. The process of evaluating the
HER-2/neu status from FISH images involves the manual counting
of signals in interphase nuclei, which become visible as colored
dots. The FDA approved PathVision Her2 FISH kit (Vysis, Downers
Grove, USA) uses DNA probes, which are small segments of actual
DNA material. When applied to a tumor tissue sample, the DNA
probes target the HER-2/neu gene and attach themselves to their
target sequence. This process is called hybridization. The probes
carry special fluorescent markers that emit light, when the probes
bind to the HER-2 genes. The HER-2 probes are visible as orange
stained spots under a fluorescent microscope. We  name them red
spots through out this paper, since they are best visualized in the
red FISH image channel. Similarly, probes for centromere 17 (CEP
17), the chromosome on which the gene HER-2/neu is located, are
visible as green spots. The sections are counterstained with DAPI,
providing a blue background for the cell nucleus body. The conven-
tional analysis involves scoring the ratio r of HER-2/neu over CEP
17 dots within each cell nucleus and, then, averaging the scores
for a number of almost 60 cells. Several FISH images usually need
to be read to reach the desired number of dot-including nuclei. A
ratio of r ≥ 2.0 of HER-2/neu to CEP 17 copy number denotes gene
amplification.

2.1. FISH for HER-2/neu gene amplification

The copy number of Her/neu gene locus at 17q11.2–q12 and
alpha satellite DNA located at band region 17p11.1–q11.1 (CEP 17)
was  estimated by FISH in interphase cells on paraffin TMA  sec-
tions (3.5 �m),  directly labeled with the PathVysionTM HER-2 DNA
probe (Vysis) according to the manufacturer instructions. Briefly,
the sections were de-paraffinized by overnight heating at 60 ◦C and
by two xylene washes for 5 min  each time, followed by dehydra-
tion in 100% ethanol for 5 min  twice. The slides were air dried and
immersed in pretreatment solution (NaSCN) at 80 ◦C for 30 min.
Proteolysis of neoplastic cells was performed by immersing the
slides in protease solution at 37 ◦C for 12 min. Denaturation of tissue
sections mounted on the slides was performed by a solution of for-
mamide in 70%, pH 7.5, at 72 ◦C for 5 min. Hybridization was carried
out by adding to the tissue sections 10 L of LSI HER-2/CEP 17 DNA
probe for overnight incubation at 37 ◦C in a moist chamber. Next
day the slides were washed with post-hybridization buffer (2×  SSC
and 0.3% NP-40) at 72 ◦C for 5 min. Hybridization signals were enu-
merated in a Zeiss microscope (Axioskop 2 plus HBO 100) equipped
with a high quality ×100 oil immersion objective, an appropriate
filters set (EX BP360/51 for DAPI, EX BP485/17 for FITC/spectrum
green, EX BP560/18 for rhodamine/spectrum orange) and a com-
puterized imaging system. Sixty nuclei were selected randomly
and scored for each tumor specimen. HER-2/neu probe is labeled in
spectrum orange and the CEP 17 probe in spectrum green. The FISH
images were captured with a computer-controlled digital camera
and were pre-processed with the FISH Imager (METASYSTEMS)
image processing/acquisition software. An example of a typical
FISH image is shown in Fig. 1(a). Its blue, red and green channels are
shown in Fig. 1(b–d), respectively, where the cell nuclei, red spots
and green spots are easily discernible.

3. Proposed method
FISH image analysis comprises two  major tasks, namely nuclei
segmentation and spot detection. Here, we  describe a novel radial
basis function (RBF) approach for both these steps. The structure of
overall approach is visualized in Fig. 2.



C. Sagonas et al. / Biomedical Signal Processing and Control 8 (2013) 30– 40 33

d met

3

i
t
N
i
t
a
i
y
o

t

Fig. 2. Flow chart of propose

.1. Nuclei segmentation

Initially, the blue channel is extracted from the original RGB
mage and the image is subjected to adaptive histogram equaliza-
ion with default input parameters, as implemented in Matlab®.
ext, the image is thresholded and morphological opening/closing

s applied with disk-shaped structural elements [23]. In order for
he method to perform faster, without affecting its final diagnostic
ccuracy in a negative way, the last pre-processing step includes
mage sub-sampling by a suitably chosen factor along both x and
 image dimensions that results in images of 150 × 150 pixels in
rder to reduce the computational load of subsequent steps.

For nuclei segmentation, a large constant number N of ini-
ial nuclei cluster centers Cj, j=1, . . ., N are positioned at uniform x, y
hod for FISH image analysis.

intervals throughout the image, while the covariance matrix ˙j of
each cluster Cj is initialized to 0. A cluster corresponds to a hidden
unit in our RBF network [24]. Ideally, one cluster should correspond
to and model one cell nucleus (colored in blue). In general, each
hidden unit implements a Gaussian function:

�j(X) = exp[−(�j − X)T ˙j
−1(�j − X)], j = 1, . . . , N, (1)

where �j is the mean vector and ˙j is the covariance matrix. Geo-
metrically, �j represents the center and ˙j the shape of the jth basis

function. A hidden unit function can be represented as a ellipsoid in
the 2-dimensional space. A reasonable number of cell nuclei in FISH
images of breast cancer is N = 100, according to medical experts.
This initial number of cluster centers is deemed to be large enough
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ig. 3. FISH image segmentation: (a) effect of skipping cluster splitting, (b) effect of s

o cover the vast majority of the encountered cases. An iterative
ethod is followed for all nuclei segmentation.
In the classical statistics approach, the estimation of the mean

nd of the covariance matrix for a given population of data samples
s given respectively by:

C [�j] =
∑nj

i=1Xi

nj
, (2)

C [ ˆ̇
j] =

∑nj

i=1(Xi − �j)
T (Xi − �j)

nj − 1
, (3)

here Xi is the coordinate vector of the introduced pixel and nj is
he number of data samples from the given data population [25].

Pixels of the thresholded sub-sampled image are introduced
equentially to the clustering algorithm and are then assigned to
he closest nuclei cluster. In order to assign each introduced pixel
o the closest nuclei cluster according to Learning Vector Quanti-
ation (LVQ) algorithm [26], the Euclidean distance is computed
etween this pixel and each cluster center:

f ||Xi − �j ||2 =
N

min
k=1

||Xi − �k||2 then Xi ∈ Cj (4)
here Cj is the winner cluster. The LVQ algorithm is derived from
2), when the patterns are assigned to an activation region accord-
ng to (4).  In the original LVQ algorithm, used for RBF training, only
g cluster merging, and (c) final result of the overall split-merge nuclei segmentation.

one center vector is updated, at the iteration t + 1 according to the
rule:

�j(t + 1) = �j(t) + �j[Xi − �j(t)], (5)

where �j is the learning rate and �j(t) is the nuclei cluster center
vector estimated at the iteration t. Various decaying rules for the
learning rate were tested for the LVQ algorithm [27]. The learning
rate, which achieves the minimum output variance [28], is updated
according to [26]:

�j = 1
nj

, (6)

where nj is the cardinality of nuclei cluster j. For the covariance
matrix calculation we use the extension of the LVQ algorithm for
second-order statistics [29,30]:

ˆ̇
j(t + 1) = nj − 2

nj − 1
ˆ̇

j(t) + [Xi − �j]
T [Xi − �j]

nj − 1
, (7)

where ˆ̇
j(t) is the covariance matrix estimate of nuclei cluster j at
iteration t. We  can observe that the formulas (5) and (7) are the
adaptive versions of (2) and (3).

After each new pixel is introduced, a statistical test for cluster
splitting is performed, as described in [26]. More specifically, the
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ig. 4. Intermediate results in cell nuclei segmentation: (a) initial FISH image, (b) b
f  cell nuclei cluster update/split, (e) final result of cell nuclei cluster update/split, 

mage  borders. (For interpretation of the references to color in this figure legend, th

um of squared errors of each cluster (measuring cluster dispersion)
s defined as:

1
j =

∑
X∈Cj

||X − �j ||2. (8)

f the cluster is split, the sum of squared errors is defined as:

2
j =

∑
X∈Cj1

||X − �j1||2 +
∑
X∈Cj2

||X − �j2||2, (9)

here Cj, Cj1 and Cj2 are the original jth cluster and the two  clus-
ers resulting from its split, respectively. The split cluster centers
re calculated as the center of gravity (arithmetic mean) of the cor-
esponding pixel coordinates. The pixels assigned to each resulting
luster Cj1, Cj2 are found depending on the sign of the following
uantity eT

j
(X − �j) where ej is the principal normalized eigenvec-

or of the cluster Cj. If the previous quantity is positive, the pixel
s assigned to cluster Cj1, while, if negative, the pixel is assigned to
luster Cj2. Finally, the splitting of the original cluster is accepted
f:
E2
j

E1
j

< 1 − 2
p�

− ˛

√
2(1 − 8

p�2 )

pnj
, (10)
annel thresholding, (c) cell nuclei cluster initialization (red spots), (d) first iteration
e filing, (g) cell nuclei cluster merging, and (h) deletion of the nuclei that touching
er is referred to the web version of the article.)

where p = 2 is the dimensionality of the input data set and the con-
stant value  ̨ is the upper value corresponding to the 95% percentile
of the standard normal distribution [26].

The center and covariance matrix of each nuclei cluster are
updated by calculating the mean and covariance matrix of its mem-
ber pixels, respectively. Then, clusters without any pixel members
are deleted and the mean change of the cluster center is estimated
since the last iteration are calculated. If the mean change is less
than 1 pixel, no more iterations are performed. If these conditions
are not met, another iteration is performed, up to a maximum num-
ber of iterations that was  determined experimentally to be around
10 iterations. The cluster centers at iteration i are retained and the
number of pixel members and the covariance matrix of each cluster
are both reset to 0, respectively.

The next step consists of hole filling, where connected com-
ponent analysis is performed on the inverted thresholded image
and holes with pixel count greater than max(nj) are filled up. For
connected-component analysis, 4-connectivity is used. This is fol-
lowed by cell nuclei merging, where we  examine the neighbors of
each cluster for possible merging. The neighbor clusters are defined

as those meeting the following criterion:

||�i − �j || < ˛(vi + vj), (11)
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ig. 5. FISH image spot detection: (a) original red channel, (b) effect of skipping clust
nd  merging. (For interpretation of the references to color in this figure legend, the

here �i and �j are the centers and vi and vj the principal eigen-
alues of clusters Ci and Cj respectively. Next, we calculate the black
ixel fraction (BPF), i.e., the fraction of pixels of the cluster Ci

⋃
Cj

hat are below a threshold T, i.e., the “black” pixels, as defined by
tsu [22]. The merging of clusters Ci and Cj is decided if:

PFi,j < ˇ, (12)

here  ̌ is the 50% percentile of the exponential distribution, with
 being equal to the mean of the black pixel fraction of all initial
uclei clusters before merging. The exponential distribution was
sed, because it was experimentally found to fit better the BPF dis-
ribution across all cell nuclei clusters. The cluster resulting from

erging two clusters cannot be merged again during the same iter-
tion. This procedure iterates until no more clusters can be merged.
ext, we remove outlier clusters containing too many black pixels

hat satisfy:

PFi,j > �, (13)

here BPF is the black pixel fraction, � is the 95% percentile of the
xponential distribution with � being equal to the mean of the
PF of all nuclei after merging. Finally, nuclei clusters touching the

mage border are also deleted. According to (1),  each cell nucleus

luster Cj is spatially modeled by an ellipse, whose region of support
an be found by including all pixels Xi satisfying:

Xi − �j]
T ˙j

−1[Xi − �j] < ˛. (14)
itting, (c) effect of skipping cluster merging, and (d) final result with cluster splitting
r is referred to the web version of the article.)

In Fig. 3, we  show the impact of the above described split-merge
nuclei segmentation method. More specifically, Fig. 3(a) shows
nuclei segmentation of the original FISH image shown in Fig. 1(b),
without cluster splitting. We  notice that some nuclei are merged
together in one cluster. Fig. 3(b) shows the impact of avoiding
cluster merging. Nuclei segmentation is observed. Finally, Fig. 3(c)
shows the final cell nuclei segmentation by employing all the
previously mentioned steps in nuclei segmentation. By combin-
ing the information taken from the hole filing procedure with
the result from (14) the true cell boundaries can be defined. For
a tested FISH image, the resulting images corresponding to the
proposed method sub-steps, as shown in Fig. 2, are depicted in
Fig. 4.

3.2. Red/green spot detection

Spot detection for the HER-2/neu and CEP 17 probes is per-
formed on the red and green channel separately. Each channel is
pre-processed with a succession of steps, commencing with top-
hat transform with a disk-shaped structural element of radius 4
[23], followed by thresholding, where the threshold is determined
as described in [21]. HER-2/neu and CEP 17 probes appear in both
the red and green channels, with HER-2 having higher intensity

in the red channel and CEP 17 in the green channel. For this rea-
son, when detecting red spots, we retain only the pixels, whose
red channel intensity is at least 10% higher than that of the green
channel. For green spot detection we retain only the green channel
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ig. 6. (a) An example of a tested FISH image and its final cell nuclei segmentation
ethod.

ixels having intensity at least 10% greater than that of the red chan-
el. The resulting images are called segmented red/green images.
he last pre-processing step includes morphological opening with a
isk-shaped structural element [23]. Since both red and green spots
ave circular shape, they can be modeled very well by RBFs of small
ariance. Therefore, each red or green spot is assumed to be rep-
esented by a pixel cluster described by an RBF on the red/green
egmented images, respectively. The previously described pro-
edure for cell nuclei segmentation is adapted for red/green
pot detection. It is applied on the segmented red/green images
ndependently.

For spot detection in the sub-sampled input images, an adequate
arge constant number M = 900 of initial cluster centers (equal on
ach segmented red/green image) are initialized at uniform x, y
ntervals throughout the segmented red/green images, with the
luster covariance matrices initialized to 0. The initial number of
luster centers is deemed to be large enough to cover the vast
ajority of encountered spot numbers. The segmented red/green

mage pixels are introduced sequentially to the spot detection algo-
ithm and the corresponding red/green spot clusters are updated
ccording to (5) and (7),  while the red/green spot clusters without
ny members are deleted. After the introduction of each new pixel,

ed/green spot cluster splitting is considered based on (10). The
teration continues until the mean red/green spot cluster center
stimate change is less than 1 pixel or a total number of itera-
ions is reached (it was determined experimentally to be around
t regarding the abnormal cells based on (b) method [21] and (c) the proposed RBF

10 iterations). Finally, neighbor red/green spot cluster merging is
performed if:

||�i − �j || < �max(vi, vj), (15)

where � is the upper value corresponding to the 99% percentile of
the standard normal distribution, while vi and vj are the principal
eigenvalues of clusters i and j, respectively.

Finally, the pixels in a neighborhood around the spot are exam-
ined and, if the average intensity of the red channel is not greater
than the average intensity of the green channel, when detecting
red spots, and vice versa, then the spot is deleted. In addition, spots
comprising a very small or very big number of pixels are removed.
In Fig. 5, we  show the impact of cluster splitting and merging on
red spot detection. More specifically, Fig. 5(a) shows the original red
channel, while Fig. 5(c and d) shows the resulting red spots, where
no splitting, no merging and both splitting and merging are imple-
mented, respectively. It is observed that, without splitting, too few
spots are detected, while without merging, some of the detected

spots actually correspond to a single spot with slightly larger area.
The combination of both splitting and merging enables the more
accurate identification of the correct number of red spots. We  get
similar results for green spot detection.
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F  result regarding the abnormal cells based on (b) method [21] and (c) the proposed RBF
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Table 1
FISH image classification accuracy.

Overall
accuracy

Accuracy in
positive FISH
cases

Accuracy in
negative FISH
cases

tion of positive FISH cases has high impact on the cancer treatment
plan. Table 2 shows the red/green spot ratio estimation error,
R = (1/N)

∑N
i=1||rd,i − ri|| where rd,i, ri represent the doctor and the

algorithmic average spot ratio for case i, respectively. The ratio

Table 2
Red/green spot ratio estimation error R.
ig. 7. (a) An example of a tested FISH image and its final cell nuclei segmentation
ethod.

. Experimental results in FISH image analysis

As already mentioned, the determination of HER-2/neu gene
mplification status involves the calculation of the average
ed/green spot number ratio in every cell nucleus and the averaging
f this ratio over a subset of ‘valid’ nuclei, i.e. nuclei with at least
ne red spot. This is typically done over 60 valid nuclei. First we
erform cell nuclei segmentation. Then we perform red/green spot
etection. In order to calculate the average spot ratio, we use only
he ratios corresponding to all valid nuclei. For classification, we
lassify a breast cancer case as FISH positive or negative, depend-
ng on whether the average HER-2/CEP 17 (red/green spot) ratio is
reater than or less than 2, respectively.

The FISH image test set provided by the Department Pathology,
chool of Medicine, Aristotle University of Thessaloniki comprises
46 cases of breast cancer carcinoma. From the total of 246 cases,

 subset of 212 ones were classified by the medical experts as
egative, while the remaining 34 as positive ones. In total, 3412
ISH images were used in our experiments. Typically, in clinical
ractice, positive patient cases are far less than the negative ones.
ur algorithm was compared to that of [21], which has state of

he art performance. Out of the 246 cases analyzed by the algo-
ithm [21], 23 were found positive and 223 negative, while out

f 246 cases analyzed by the proposed algorithm, 38 were found
ositive and 208 negative. Figs. 6 and 7 show the results obtained
y method [21] and the proposed RBF method. It is clearly seen
hat the proposed method out performs that of [21] both in terms
Method in [21] 94.72% 64.71% 99.53%
Proposed RBF method 95.93% 91.18% 96.7%

of cell nuclei segmentation and red/green spot detection. Table 1
shows the diagnostic accuracy of the two  compared algorithms
on all the FISH cases, as well as the positive and negative ones.
The proposed method had higher overall diagnostic accuracy than
that of [21]. In particular, the proposed method had much better
overall diagnostic accuracy on the positive FISH cases (91.18% vs.
64.7%). This is extremely important, since the correct identifica-
R for negative
FISH cases

R for positive
FISH cases

Method in [21] 0.3045 2.22
Proposed RBF method 0.2583 2.16
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Table  3
Cohen’s Kappa statistical measure and F-score as measures of performance of the
test  [32].

Positive cases Negative cases Number of
total cases

Method proposed in [21]
Positive cases 22 12 34
Negative cases 1 211 212
Number of cases 23 223 246
Results from F-score measure
F  = 77.2%, mis-classification rate: 5.3%
Results from Cohen’s Kappa statistical measure
Kappa = 0.743, 95% confidence interval on Kappa is [0.607, 0.879]

Proposed RBF method
Positive cases 31 3 34
Negative cases 7 205 212
Number of cases 38 208 246
Results from F-score measure
F  = 86.1%, mis-classification rate: 4.1%
Results from Cohen’s Kappa statistical measure

e
[
F
t
m
d
2
a
t
e
m
F

i
o
w
s
o
(
b
t
t
a
m
i
K
l
t
m
w
c
t

5

b
r
m
a
T
d
t
(

[

[

[

[

[
[

[

[

[
et  al., Telomere length assessment in tissue sections by quantitative fish: image
Kappa = 0.837, 95% confidence interval on Kappa is [0.739, 0.936]

stimation error of the proposed algorithm is smaller than that of
21]. Both methods have larger estimation errors in the positive
ISH cases than in negative ones, since they cannot count well clot-
ed red spots or defocused red/green spots. However, this is not a

ajor diagnostic problem for the proposed method, since the only
iagnostic criterion is whether the red/green spot ratio is above
. In this respect, the proposed method has very good diagnostic
ccuracy (91.18%). In general, the proposed RBF technique is faster
han the technique proposed in [21]. The execution time for the
xample depicted in Fig. 6 for method [21] and the proposed RBF
ethod was 6.005 and 4.518 s, while for the example depicted in

ig. 7 the execution time was 8.813 and 3.916 s, respectively.
In order to prove that the improvement of the proposed method

s statistically significant, the Cohen’s Kappa statistical measure
f interrater reliability [31], as well as the F-score, which is the
eighted harmonic mean of precision and recall, as a single mea-

ure of performance of the tests [32] were calculated on the
btained results. Kappa coefficient ranges generally in [0, . . .,  1]
although negative numbers are possible). Large measure means
etter reliability. Measure values near or less than zero suggest
hat improvement is attributable to chance alone. Table 3 shows
he results of this statistical measure for both methods, as well
s the results from the F-score measure. The Kappa coefficient of
ethod [21] is 0.743 and the 95% confidence interval on Kappa lies

n the range [0.607, 0.879], while, for the proposed RBF method,
appa coefficient is 0.837 and the 95% confidence interval on Kappa

ies in the range [0.739, 0.936], indicating that the improvement of
he proposed method is statistically significant. The F-score for the

ethod proposed in [21] is 77.2% with mis-classification rate 5.3%,
hile, for the proposed RBF method, the F-score is 86.1% with mis-

lassification rate equal to 4.1% indicating that the improvement of
he proposed method is statistically significant.

. Conclusion

We have presented a novel method for analyzing FISH images
ased on the cell nuclei and spot shape modeling properties of
adial basis functions. Our method was compared to a previous
ethod [21] and the comparison showed a significant diagnostic

ccuracy improvement particularly on HER-2/neu positive cases.
he accuracy measurements were performed on a much larger FISH

ata set than [21]. Furthermore, the experimental results showed
hat the overall accuracy of the proposed method is very good
95.93%).

[
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Although our method presents a significant improvement vs.
the state of art, it is still not perfect and requires supervision by
experts, especially at borderline cases, where the ratio is very close
to 2. However, a pathologist requires about 30 min  to evaluate the
HER-2/neu status of a beast carcinoma case, while the proposed
method can produce results in less than 5 min. This time is bound
to decrease even further, as computer technology advances. It is
envisioned that breast carcinoma cases can be initially screened by
our algorithm. A second screening by a pathologist was  measured
to require only 5 min, since the doctor typically only surveys the
results of the automated algorithm and makes some minor changes
to nuclei segmentation and/or spot counting. This combined semi-
automatic approach involving doctor supervision results to an
increase in overall FISH diagnosis speed by a factor of at least
three. As a conclusion, the presented method shows great promise
in aiding routine FISH diagnosis for numerous breast carcinoma
patients.
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