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Abstract. An accurate, computationally e�cient and fully-automated algo-
rithm for the alignment of 2D serially acquired sections forming a 3D volume is
presented. The method accounts for the main shortcomings of 3D image align-
ment: corrupted data (cuts and tears), dissimilarities or discontinuities between
slices, non parallel or missing slices. The approach relies on the optimization
of a global energy function, based on the object shape, measuring the similar-
ity between a slice and its neighborhood in the 3D volume. Slice similarity is
computed using the distance transform measure in both directions. No partic-
ular direction is privileged in the method avoiding global o�sets, biases in the
estimation and error propagation. The method was evaluated on real images
(medical, biological and other CT scanned 3D data) and the experimental re-
sults demonstrated the method's accuracy as reconstuction errors are less than
1 degree in rotation and less than 1 pixel in translation.

Keywords: serially acquired images, misalignment, image registration, regis-
tration error, non-overlapping structures, pixel similarity measure, deterministic
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1 Introduction

Three-dimensional reconstruction of medical images (tissue sections, CT and autora-
diographic slices) is now an integral part of biomedical research. Reconstruction of such
data sets into 3D volumes, via the registrations of 2D sections, has gained an increas-
ing interest. The registration of multiple slices is of utmost importance for the correct
3D visualization and morphometric analysis (e.g. surface and volume representation)
of the structures of interest. Several alignment algorithms have been proposed in that
framework. A review of general medical image registration methods is presented in [1],
[2], [3].

The principal 3D alignment (reconstruction from 2D images) methods may be classi-
�ed in the following categories: �ducial marker-based methods [4], feature-based meth-
ods using contours, crest lines or characteristic points extracted from the images [5], [6],
and gray level-based registration techniques using the intensities of the whole image [7],
[8], [9], [10]. Most of the above mentioned techniques do not simultaneously consider
the two major di�culties involved in medical and CT scanned data registration.

At �rst, consecutive slices may di�er signi�cantly due to distortions, discontinuities
in anatomical structures, cuts and tears. These e�ects are more pronounced when



distant slices are involved in the registration. From this point of view, a registration
method must be robust to missing data or outliers [7], [10].

Besides, registering the slices sequentially (the second with respect to the �rst, the
third with respect to the second, etc.) leads to di�erent types of misregistration. If an
error occurs in the registration of a slice with respect to the preceding slice, this error
will propagate through the whole volume. Also, if the number of slices to be registered
is large, a global o�set of the volume may be observed, due to error accumulation [8].

In this paper, a solution to the above mentioned shortcomings is presented. A
global energy function having as variables the rigid transformation parameters (2D
translation and rotation) of a given slice with respect to a local symmetric neighborhood
is proposed. Global energy functions are a powerful tool in computer vision applications
but they have not yet been considered for the registration of serially acquired slices.

Our approach was inspired by the technique presented in [11], which consists in
minimizing a global energy function with the Iterative Closest Point algorithm [12],
to register multiple, partially overlapping views of a 3D structure. The global energy
function implemented in our approach is associated with a pixel similarity metric based
on the Euclidean distance transform [13].

The remainder of the paper is organized as follows. The global energy function
formulation and the associated registration algorithm is presented in section 2, exper-
imental results are presented in section 3 and conclusions are drawn in section 4.

2 A global energy function formulation

Before presenting the alignment method, the notations used in our formulation are
introduced. A set of 2D serially acquired slices is represented by:

V = fIiji = 1 : : :Ng (1)

where Ii is a slice (a 2D image) and N denotes the total number of slices. A pixel of
a 2D slice is represented by: p = (x; y)T , so that Ii(p) corresponds to the gray level
(intensity) of pixel p of slice i. Nx and Ny designate the number of pixels of each slice
in the horizontal and vertical direction respectively.

Standard two-dimensional rigid alignment consists of estimating the rigid transfor-
mation parameters (translation tx, ty and rotation by angle �) that have to be applied
to the image to be aligned (
oating image) in order to match a reference image.

In the approach proposed here, the alignment of the 2D sections, within the 3D
volume, is considered globally by minimizing an energy function E(�), which expresses
the similarity between the 2D sections:

E(�) =
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where f(�) is a similarity metric, Ik denotes slice k and T�k
designates a rigid trans-

formation with parameters �k = ftkx; t
k
y; �

kg.
Equation (2) indicates that for a given set of rigid transformation parameters T�i

,
applied to the slice to be aligned Ii, the similarity between the transformed slice



Ii(T�i
(p)) and all of the other already transformed slices Ij(T�j

(p)) in the volume
is accumulated in the energy function.

Assuming that function f(�) is symmetric:
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(p))) (3)

which is the case for the pixel similarity functions considered here, yields the following
global minimization problem:

�̂ = argmin
�
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Without additional constrains, the optimization problem (4) has clearly an in�nite
number of solutions (if the set of rigid transformations fT�̂1 ; T�̂2 ; : : : T�̂N

g is a solution,
the same holds true for fT�̂1 �T�; T�̂2 �T�; : : : T�̂N

�T�g, where T� is an arbitrary 2D
rigid transformation). To remove this ambiguity, the transformation T�̂l

applied to an
arbitrary chosen slice k is constrained to the identity transformation (we have chosen
k = 1 in our implementation). As a result, there are 3(N � 1) parameters to estimate.

It is common sense that distant slices present very little similarity due to anatomy
and it would be more appropriate to measure the energy function only for slices pre-
senting at least some similarities. Therefore, the support region of function f(�) has
been limited to a neighborhood of radius R centered at each slice and set:

f(Ii(T�i
(p)); Ij(T�j

(p))) = 0; 8 ji� jj > R (5)

Thus, the following alignment algorithm is associated with the energy function (4):

{ do until convergence.

� declare all slices unvisited.

� do until all slices are declared visited.

� randomly chose an unvisited slice Ii 2 V .
� update the rigid transformation parameters T�i

bringing into alignment
slice Ii with the other slices in the neighborhood of i, by minimization of
the following local energy function:

Ei(�i)
def
=

NX

i=1

NX

j=1
ji�jj�R
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p=1

f(Ii(T�i
(p)); Ij(T�j

(p))) (6)

� declare slice Ii visited.

� end do

{ end do



The minimization of the local energy function (4) is conducted by a determinis-
tic optimization algorithm, known as Iterated Conditional Modes (ICM) [14]. ICM is
a discrete Gauss Seidel-like optimization technique, accepting only con�gurations de-
creasing the objective function. Let us notice that the parameter �̂i corresponding to
the minimum value of the local energy function Ei(�i) (Equ. 6) also corresponds to a
local minimum value of the global energy function E(�) with respect to �i, keeping
all other parameters �j ; j 6= i �xed. It is thus easy to see that the described algorithm
converges towards a local minimum of the initial energy function (2). This local min-
imum corresponds to a satisfactory registration, since the initial alignment of the 2D
sections is generally close to the desired solution (if this is not the case, a good initial-
ization may be obtained by a standard coarse alignment technique such as principal
axes registration). It is thus not necessary to resort here to greedy global optimization
procedures, such as simulated annealing or genetic algorithms.

Further improvement of the solution is obtained by a gradient decent technique. To
speed the algorithm up a multigrid data processing is also implemented.

The pixel similarity metric associated with the above described global energy func-
tion is based on a distance transform ([13], [15]) (also known as chamfer matching
technique [16]) and it is computed from the 3D object contours [17]. A distance trans-
formation is an operation that converts a binary picture, consisting of feature and
non-feature elements (contours), to a picture where each pixel has a value that approx-
imates its distance to the nearest contour point.

Thus, using the distance transform D(p) of the reference slice the method aligns
the 
oating slice by minimizing the distance between the contours of the images. For
further details of the chamfer matching method the reader may refer to [16].

Considering the slices per triplets, which is very common for standard reconstruc-
tion problems (i.e. setting R=1 in eq. 5), the estimation of the alignment parameters
� involves the non-linear similarity metric:

f(T�i
(p)) = Di�1(T�i�1

(p)) +Di+1(T�i+1
(p)); Ii(T�i

(p)) 6= 0 (7)

where Ii(T�i
(p)) 6= 0 means that only the contour points of Ii are involved.

A large number of interpolations are involved in the alignment process. The accu-
racy of estimation of the rotation and translation parameters is directly related to the
accuracy of the underlying interpolation model. Simple approaches such as the nearest
neighbor interpolation are commonly used because they are fast and simple to imple-
ment, though they produce images with noticeable artifacts. Besides, as the translation
and rotation parameters should compensate for accuracy by having subvoxel values,
this type of interpolation would not be appropriate. More satisfactory results can be
obtained by small-kernel cubic convolution techniques, bilinear, or convolution-based
interpolation. According to sampling theory, optimal results are obtained using sinus
cardinal interpolation, but at the expense of a high computational cost. As a compro-
mise, a bilinear interpolation technique has been used in the optimization steps. At
the end of the algorithm, the alignment parameters are re�ned using a sinus cardial
interpolation that preserves the quality of the image to be aligned. This technique has
proven to be fast and e�cient.
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Fig. 1. Reconstruction of a 3D scanned mechanical part volume of 109 slices. (a) Multiplanar
view of the volume before registration. (b) Three-dimensional view of the volume before regis-
tration. (c) Multiplanar view of the volume after registration. (d) Three-dimensional view of
the volume after registration.

�tx �ty ��

median 0.33 0.31 0.06

maximum 1.07 0.93 0.25

mean � s. dev 0.35 � 0.25 0.38 � 0.25 0.07 � 0.06

Table 1. A set of 109 slices of a 3D CT scanned mechanical part volume were arti�cially
transformed using di�erent rigid transformation parameters. Each slice was randomly trans-
formed using translations varying from -10 to +10 pixels and rotations varying from -20 to
+20 degrees. Statistics on the alignment errors for the rigid transformation parameters are
presented. Translation errors are expressed in pixels and rotation error in degrees.

3 Experimental Results

To evaluate our method, we applied the algorithm to the reconstruction of an arti�cially
misaligned 3D CT scanned mechanical part (�gure 1). The slices of the original 256
� 256 � 109 CT volume were transformed using translations varying from -10 to
+10 pixels and rotations varying from -20 to +20 degrees. The transformations for
each slice were random following a uniform distribution in order not to privilege any
slice (�gures 1(a) and 1(b)). Table 1 presents statistics on the alignment errors. The
algorithm revealed robust in aligning this type of image providing small registration
errors. Figures 1(c) and 1(d) present the reconstructed volume.

Moreover, we have uniformly transformed 100 slices of the same 3D volume (me-
chanical part of an engine) by applying to each slice Ii a translation of tix = ti�1x + 0:2



�tx �ty ��

median 0.19 0.23 0.05

maximum 0.99 0.87 0.32

mean � s. dev 0.29 � 0.26 0.31 � 0.26 0.07 � 0.07

Table 2. A set of 100 slices of a 3D CT scanned mechanical part volume were arti�cially
transformed using di�erent rigid transformation parameters. Each slice was translated by 0.2
pixels in both directions and rotated by 0.4 degrees with respect to its preceding slice. Di�erent
statistics on the errors for the rigid transformation parameters are presented. Translation
errors are expressed in pixels and rotation error in degrees.
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Fig. 2. Reconstruction of a 3D human skull volume of 140 slices. (a) Multiplanar view of the
volume before registration. (b) Three-dimensional view of the volume before registration. (c)
Multiplanar view of the volume after registration. (d) Three-dimensional view of the volume
after registration.

pixels and tiy = ti�1y +0:2 pixels and a rotation of �i = �i�1+0:4 degrees. As the volume
has 100 slices, the last slice is translated by 20 pixels in both directions and rotated
by 40 degrees with respect to its initial position. Table 2 presents the registration er-
rors of the method. It is illustrated that our approach has subvoxel mean, median and
maximum errors.

The same evaluation procedure was performed on a 3D human skull volume with
140 slices (�gure 2). The algorithm aligned the arti�cially (randomly and uniformly)
misaligned slices of the volume and the errors are drawn in Tables 3 and 4. Human
skull presents discontinuities, and consecutive slices may di�er signi�cantly due to
anatomy but the global energy function is robust to these shortcomings. As it can
be seen, median and mean translation and rotation errors are less than 1 pixel and 1



�tx �ty ��

median 2.10 0.33 0.07

maximum 1.45 2.02 2.42

mean � s. dev 0.37 � 0.28 0.38 � 0.30 0.19 � 0.35

Table 3. A set of 140 slices of a 3D CT human skull volume were arti�cially transformed
using di�erent rigid transformation parameters. Each slice was randomly transformed using
translations varying from -10 to +10 pixels and rotations varying from -20 to +20 degrees.
Di�erent statistics on the errors for the rigid transformation parameters are presented. Trans-
lation errors are expressed in pixels and rotation error in degrees.

Alignment error statistics
�tx �ty ��

median 0.23 0.21 0.26

maximum 1.95 1.94 1.64

mean � s. dev 0.33 � 0.32 0.34 � 0.33 0.25 � 0.25

Table 4. A set of 140 slices of a 3D CT human skull volume were arti�cially transformed
using di�erent rigid transformation parameters. Each slice was translated by 0.15 pixels in
both directions and rotated by 0.3 degrees with respect to its preceding slice. Di�erent statistics
on the errors for the rigid transformation parameters are presented. Translation errors are
expressed in pixels and rotation error in degrees.

degree respectively. Also maximum errors are slightly superior to 1 pixel and 1 degree
respectively showing the robustness of the technique.

Furthermore, the algorithm was applied to the reconstruction of volumes (tooth
germs, biological tissues) with unknown ground truth. The method's performance was
compared with the manual alignment accomplished by an expert physician. Figure 3
shows the reconstruction of a tooth germ by an expert dentist (�g. 3(a) and 3(b)) and
by our method (�g. 3(c) and 3(d)). It is illustrated that human intervention fails to
correctly align the slices, whilst our method is e�cient and can achieve alignment with
high accuracy. The same stands for the example presented in �gure 4 where another
tooth reconstruction is presented.

Also, Figure 5 depicts a 3D tissue containing a large number of vessels. Figures 5(a)
and 5(b) show the volume aligned by an expert biologist and Figures 5(c) and 5(d) the
tissue after alignment by our method. This volume presents cuts and discontinuities
and the tissues had been stretched during the cut procedure. Despite these drawbacks,
according to the expert biologist, the algorithm aligned correctly the slices.

Finally, let us notice that the algorithm has a computational complexity O(NxNyN)
and requires approximately 10 min. to reconstruct a 256 � 256 � 140 volume on a
Pentium III (800 MHz) workstation.
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Fig. 3. Reconstruction of a 3D tooth volume of 265 slices. (a) Multiplanar view of the vol-
ume after alignment by an expert dentist. (b) Three-dimensional view of the volume after
alignment by an expert dentist. (c) Multiplanar view of the volume after registration. (d)
Three-dimensional view of the volume after registration.
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Fig. 4. Reconstruction of a 3D tooth volume of 194 slices. (a) Multiplanar view of the vol-
ume after alignment by an expert dentist. (b) Three-dimensional view of the volume after
alignment by an expert dentist. (c) Multiplanar view of the volume after registration. (d)
Three-dimensional view of the volume after registration.

4 Conclusion

The alignment method described in this paper is akin to the global energy function
formulation proposed in [11] to register multiple views of a 3D surface in computer
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Fig. 5. Reconstruction of a 3D tissue volume of 237 slices. (a) Multiplanar view of the vol-
ume after alignment by an expert biologist. (b) Three-dimensional view of the volume after
alignment by an expert biologist. (c) Multiplanar view of the volume after registration. (d)
Three-dimensional view of the volume after registration.

vision applications. The main contribution of the approach is to consider the align-
ment problem globally on the 3D volume, by minimizing a global objective function
expressing the similarity between neighboring slices. The approach does not privilege
any particular direction in the registration process. By these means, the major prob-
lems set by the registration of serially acquired slices are addressed. With the global
(isotropic) formulation of the registration problem (rather than a standard step by
step, sequential formulation), no global o�set nor error propagations are observed in
the �nal alignment. The approach seems promising and its association to more sophis-
ticated but time consuming pixel similarity metrics (mutual information [18], robust
estimation-based measures [19]) may improve its accuracy and is a perspective of this
work.

Acknowledgments

This work has been supported by the research project 99ED 599 (PENED 1999)funded
by the Greek General Secretariat of Research and Technology (GSRT) and the Euro-
pean Social Fund.

References

1. L. Gottesfeld-Brown. A survey of image registration techniques. ACM Computing Surveys,
24(4):325{376, 1992.

2. J. B. A. Maintz and M. A. Viergever. A survey of medical image registration techniques.
Medical Image Analysis, 2(1):1{36, 1998.



3. P. Van den Elsen, E. J. D. Paul, and M. A. Viergever. Medical image matching - a review
with classi�cation. IEEE engineering in Medicine and Biology, 12(1):26{39, 1993.

4. A. F. Goldszal, O. J. Tretiak, P. J. Hand, S. Bhasin, and D. L. Mac Eachron. Three-
dimensional reconstruction of activated columns from 2-[14c] deoxy-d-glucose data. Neu-
roImage, 2:9{20, 1995.

5. L. Hibbard and R. Hawkins. Objective image alignment for three-dimensional reconstruc-
tion of digital autoradiographs. Journal of Neuroscience Methods, 26:55{75, 1988.

6. A. Rangarajan, H. Chui, E. Mjolsness, S. Pappu, L. Davachi, P. Goldman-Rakic, and
J. Duncan. A robust point-matching algorithm for autoradiograph alignment. Medical
Image Analysis, 1(4):379{398, 1997.

7. W. Zhao, T. Young, and M. Ginsberg. Registration and three-dimensional reconstruction
of autorediographic images by the disparity analysis method. IEEE Transactions on
Medical Imaging, 12(4):782{791, 1993.

8. A. Andreasen, A. M. Drewes, J.E. Assentoft, and N. E. Larsen. Computer-assisted align-
ment of standard serial sections without use of arti�cial landmarks. a practical approach to
the utilization of incomplete information of 3d reconstruction of the hippocampal region.
Journal of Neuroscience Methods, 45:199{207, 1992.

9. B. kim, J. Boes, K. Frey, and C. Meyer. Mutual information for automated unwarping of
rat brain autorediographs. NeuroImage, 5:31{40, 1997.

10. S. Ourselin, A. Roche, G. Subsol, X. Pennec, and C. Sattonnet. Automatic alignment of
histological sections for 3d reconstruction and analysis. Sophia Anipolis, France, 1998.

11. R. Ben-Jemaa and F. Schmitt. A solution for the registration of multiple 3d points sets
using unit quaternions. In Notes in Computer science. Proceedings of the 5th European
Conference on Computer Vision (ECCV'98), volume 2, pages 34{50, Freiburg, Germany,
June 1998.

12. M. J. Besl and N. McKay. A method for the registration of 3d shapes. IEEE transactions
of Pattern Analysis and Machine Intelligence, 14(2):239{256, 1992.

13. G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision, Graph-
ics, and Image Processing, 27:321{345, 1984.

14. J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical
Society, 48(3):259{302, 1986.

15. Per-Erik Danielsson. Euclidean distance transform. Computer Graphics and Image Pro-
cessing, 14:227{28, 1980.

16. G. Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm.
IEEE transactions of Pattern Analysis and Machine Intelligence, 10:849{965, November
1988.

17. J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 679{698, 1986.

18. W. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multimodal volume
registration by maximization of mutual information. Medical Image Analysis, 1(1):33{51,
1996.

19. C. Nikou, J. P. Armspach, F. Heitz, I. J. Namer, and D. Grucker. Mr/mr and mr/spect
registration of brain images by fast stochastic optimization of robust voxel similarity
measures. NeuroImage, 8(1):30{43, 1998.


