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ABSTRACT

A scene boundary detection method is presented, which analyzes
both aural and visual information sources and accounts for their
inter-relations and coincidence to semantically identify video sce-
nes. Audio analysis focuses on the segmentation of the audio
source into three types of semantic primitives, i.e. silence, speech
and music. Further processing on speech segments aims at locating
speaker changing points. Video analysis attempts to segment the
video source into shots. Results from single source segmentation
are in some cases suboptimal. Audio-visual interaction achieves to
either enhance single source findings or extract high level seman-
tic information. The aim of this paper is to identify semantically
meaningful video scenes by exploiting the temporal correlations
of both sources based on the observation that semantic changes are
characterized by significant changes in both information sources.
Experimentation has been carried on several TV sequences com-
posed of many different in-content scenes with plenty of commer-
cials in-between.

1. INTRODUCTION

Content-based video parsing, indexing, search, browsing and re-
trieval have recently grown to active research topics due to the
enormous amount of unstructured video data available nowadays,
the spread of its use as a data source in many applications and the
increasing difficulty in its manipulation and retrieval of the ma-
terial of interest. The need for content-based indexing and cod-
ing has been foreseen by ISO/MPEG that has introduced two new
standards, MPEG-4 and MPEG-7; for coding and indexing respec-
tively [1].

In order to efficiently index video data, one must firstly seman-
tically identify video scenes. The term scene refers to one or more
successive shots combined together because they exhibit the same
semantically meaningful concept, e.g. a scene that addresses the
same topic although many shots may be involved. The term shot
denotes a sequence of successive frames that corresponds to a sin-
gle camera start and end session. Scene characterization should
be content- and search-dependent. The task of semantic scene
identification is rather tedious and no automatic approaches have
been reported to date. Usually, low-level processing of the visual
data is initially undertaken. Shot boundary detection, i.e. temporal
segmentation, is performed and analysis of detected shots follows
[2, 3, 4]. Results are enhanced and high level semantic informa-
tion can be extracted when other information sources are analyzed,
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such as aural or textual ones [5, 6, 7, 8]. It is evident that semantic
characterization can only be achieved with annotator intervention
or by imposing user-defined interaction rules and domain knowl-
edge.

A scene change detection method is presented in this paper
which analyzes both aural and visual sources and accounts for their
inter-relations and synergy to semantically identify video scenes.
The audio source is analyzed and segmented into three types of
semantic primitives: silence, speech and music. Further analysis
on speech parts leads to the determination of speaker change in-
stants, without any prior knowledge on the number or the identity
of speakers and without any need for a training process. The video
source is processed by a combination of two shot boundary de-
tection methods based on color frame and color vector histogram
differences in order to efficiently detect shot boundaries even un-
der various edit effects and camera movement. Combination of the
results extracted from single information sources leads to group-
ing a number of successive shots into a scene according to whether
they are in-between two successive speaker change instants or the
same music segment accompanies them, or there are long duration
silence segments before and after them. Such scenes can also be
partially identified as commercials or events or dialogue scenes if,
in the latter case, further speaker alternation detection is attempted.
In Section 2, the tools for low-level audio analysis and segmenta-
tion are summarized, while in Section 3, video segmentation into
shots is reported. In Section 4, partial scene identification is pre-
sented by combining both aural and visual results based on interac-
tion rules. Simulation results on a TV serial sequence of around 15
min duration containing many commercials are reported in Section
5. Finally, conclusions are drawn in Section 6.

2. AUDIO ANALYSIS

Audio analysis aims at segmenting the audio source into three
types of semantic primitives: silence, speech and music. Further
processing on speech segments attempts to locate speaker change
instants. Segmentation and speaker change identification are achie-
ved by low-level processing methods. In the sequel, the term au-
dio frame refers to the shortest in duration audio part that is used
in short-time audio analysis, whereas the term segment refers to a
group of a variable number of successive frames pre-classified to
one of the three predefined audio types.

Initially, silence detection is performed to identify silence pe-
riods of the audio source and discard them from subsequent anal-
ysis. Silence frames are audio frames having only background
noise with a relatively low energy level and high zero crossing



rate (ZCR) compared to other audio signal types. In order to dis-
tinguish silence from other audio signal types, the average magni-
tudeMt and zero crossing rateZt functions of anM -sample audio
frame xt(n), n = 0; : : : ;M � 1, are exploited [9]:

Mt =
1

M

M�1X
k=0

jxt(k)j (1)

Zt =
1

2M

MX
k=1

jsgn(xt(k))� sgn(xt(k � 1))j (2)

t = 0; ::; N � 1, where N is the total number of audio frames.
Non-overlapping audio frames of 10msec duration are employed.
A convenient approach to robust speech-silence discrimination is
end point detection [9], which determines the beginning and end
of words, phrases or sentences so that subsequent processing is ap-
plied only on these segments. Average magnitude and ZCR thresh-
olds are chosen relative to the background noise characteristics of
an apriori known audio interval, its average magnitude and ZCR
functions being Mt;n and Zt;n respectively. The average magni-
tude thresholds used by endpoint detection are set equal to:

Mthr;up = E[Mt]

Mthr;low = max(Mt;n) (3)

The ZCR threshold is set equal to: Zthr = max(Zt;n). Such a
threshold selection proves to be robust and the endpoint detection
is satisfactorily performed. Boundaries of words, phrases or entire
sentences are well estimated, a useful outcome that is subsequently
exploited for audio segmentation and characterization.

Music detection is further performed to discriminate speech
from music. Music segments are audio parts having significant
high frequency content, high ZCR, different periodicity, compared
to speech segments (voiced parts), and usually long duration. The
latter is attributed to the fact that music does not usually exhibit si-
lence periods between different successive parts leading to a long
audio segment. Thus, in order to distinguish speech from music,
four criteria are used: an energy measure, the ZCR, a correlation
measure in the frequency domain that attempts to detect period-
icity, and, finally, the segment duration. Energy Mt and ZCR Zt
values are evaluated by equations (1) and (2), respectively, on au-
dio frames of 10 msec duration located inside the current segment
Si, i = 1; : : : ; NS , where NS is the total number of detected seg-
ments other than silence ones. Subsequently, segment-based mean
values and variances of Mt and Zt are estimated, i.e.:

�MSi
= E[Mtjt 2 Si] �ZSi = E[Ztjt 2 Si]

�2MSi
= E[(Mt � �MSi

)2] �2ZSi
= E[(Zt � �ZSi )

2]
(4)

Their quotient is considered more discriminative for music/speech
classification:

QMSi =
�MSi

�2MSi

(5)

QZSi =
�ZSi
�2ZSi

(6)

because both long-term (segment-based) energy and ZCR mean
values are higher for music than speech. Besides, due to the ex-
istence of voiced and unvoiced parts in speech, long-term vari-
ance values of speech segments are expected to be higher than

the musical ones. In order to take advantage of the long dura-
tion periodicity of music, a frequency-based correlation metric
Ct is defined between the magnitude spectra of successive non-
overlapping 30msec audio frames located in segment Si:

Ct =
1

M

M�1X
k=0

jF(xt(k))j � jF(xt�1(k))j (7)

where F(:) denotes the Fourier transform operator. If the signal
is periodic, xt and xt�1 will have almost identical spectra, thus
leading to a high correlation value Ct. Correlation is performed in
frequency due to the fact that the Fourier transform remains unaf-
fected by time shifts. In the case of music, Ct is expected to attain
continuously great values within Si. On the other hand, speech,
characterized by both periodic (voiced) and aperiodic (unvoiced)
parts, will have alternating high and low values of Ct within Si.
Thus, segment-based mean values of Ct, �CSi = E[Ctjt 2 Si]
are considered to be adequately discriminative for detecting mu-
sic. �CSi is expected to be higher for music segments than speech
ones. Finally, the segment duration dSi , i = 1; : : : ; NS , is also
employed. Each of the metrics QMSi , QZSi , �CSi and dSi are
individually good discriminators of music. Global thresholding
with thresholds:

TM = E[QMSi ] +
max(QMSi)�min(QMSi)

2
(8)

TZ =
7

8
E[QZSi ] (9)

TC = 2E[�CSi ] (10)

Td = 5sec (11)

respectively, leads to individual but suboptimal detection of music
segments. Combination of these results in order to enhance music
detection is based on the validity of the expression:

((QMSi > TM ) OR (dSi > Td)) (12)

OR

((QZSi > TZ) AND (�CSi > TC))

If equation (12) is true for a segment Si, then this segment is con-
sidered to be a music segment. Otherwise, it is declared as a speech
segment. It is noted that audio segments, that may contain both
speech and music, are expected to be classified according to the
most dominant modality.

Speech segments are further analyzed in an attempt to locate
speaker change instants. In order to do that, low-level feature vec-
tors are firstly extracted from voiced pre-classified frames only [9],
located inside a speech segment. Voiced-unvoiced discrimination
is based on the fact that unvoiced speech sounds exhibit signifi-
cant high frequency content in contrast to voiced ones. Thus, the
energy distribution of the frame signal is evaluated in the lower
and upper frequency bands (the boundary is set at 2kHz with a
sampling rate of 11kHz). High to low energy ratio values greater
than 0.25 imply unvoiced sounds, that are not processed further.
For audio feature extraction in voiced frames, the speech signal
is initially pre-emphasized by an FIR filter with transfer function
H(z) = 1 � 0:95z�1 . Speech frames are used of 30msec dura-
tion each with an overlap of 20msec with each other. Each frame
is windowed by a Hamming window of size M . Finally, the mel-
frequency cepstrum coefficients (MFCC), c = fck; k 2 [1; p]g,
are extracted per audio frame [10]. p is the dimension of the audio



feature vector. The aim now is to locate speaker changing instants
used later on for enhancing scene boundary detection. In order to
do that, firstly feature vectors of successive K speech segments
SK0

; : : : ; SK0+K�1, are grouped together to form sequences of
feature vectors of the form [11]:

X = fc1; : : : ; cLSK0| {z }
SK0

; c1; : : : ; cLSK1| {z }
SK0+1

; : : : ; c1; : : : ; cLSK0+K�1| {z }
SK0+K�1

g

(13)
Grouping is performed on the basis of the total duration of the
grouped speech segments. This is expected to be greater than 2sec,
when assuming that only one speaker is talking. Consecutive se-
quences X and Y of feature vectors of the form (13), with Y com-
posed of K0 speech segments (K0 evaluated again based on the
total duration restriction) and defined by:

Y = fc1; : : : ; cLSK0+K| {z }
SK0+K

; : : : ; c1; : : : ; cLS
K0+K+K

0
�1| {z }

SK0+K+K
0
�1

g (14)

are considered, having a common boundary at the end of SK0+K�1

and the beginning of SK0+K . The similarity of these two se-
quences is investigated by firstly evaluating their mean vectors,
�X , �Y , and their covariance matrices, �X , �Y , and then defin-
ing the following distance metric:

Dt(X;Y ) = (�X � �Y )�
�1
X (�X � �Y )

T + (15)

+(�Y � �X)��1
Y (�Y � �X )T

Dt is evaluated for the next pairs of sequences X , Y , until all
speech segments have been used. The immediate next pair is con-
structed by shifting the X sequence by one segment, i.e. start-
ing at SK0+1, and re-evaluating numbers K and K0, so that the
constraint on total duration is met. This approach is based on the
observation that a speaker can be sufficiently modeled by the co-
variance matrix of feature vectors extracted from his utterances.
Furthermore, the covariance matrices evaluated on feature vectors
coming from utterances of the same speaker are expected to be
identical. Adaptive thresholding follows to locate speaker change
instants. Local mean values on a 1d temporal window W of size
NW are obtained, without considering the value of Dt at the cur-
rent location t0:

Dm = E[Dtjt2W;t 6=t0 ] (16)

Dt0 is examined to specify whether it is the maximum value of
those ones inside the temporal window (possibility of a speaker
change instant at t0). If this is the case and Dt0=Dm � �, where
� is a constant controlling the strictness of thresholding, a speaker
change instant is detected at t0. Speaker change instants are a clue
for shot or even scene breaks. The method may be further investi-
gated to identify speaker alternation and identify dialog shots/sce-
nes.

3. VIDEO ANALYSIS

Video analysis involves the temporal segmentation of the video
source into shots. Shot boundary detection is performed by com-
bining distance metrics produced by two different shot boundary
detection methods. Such a dual mode approach is expected to lead
to enhanced shot boundary detection results even under significant

camera or in-shot movement or camera effects, thus overcoming
the drawbacks of the single modalities in some cases.

The first method estimates color frame differences between
successive frames. Color differences, FD(t), are defined by:

FDt =
1

3NX �NY

X
x

jjI(x; t)� I(x; t� 1)jj1 (17)

where I(x; t) = [Ir(x; t)Ig(x; t)Ib(x; t)]
T represents the vector-

valued pixel intensity function composed of the three color com-
ponents: Ir(x; t), Ig(x; t) and Ib(x; t). By jj:jj1 the L1-vector
norm metric is denoted. x = (x; y) denotes the spatial dimen-
sion of the sequence (each frame is of size NX � NY ) whereas
t denotes its temporal one. Frame differencing is computation-
ally intensive. In order to detect possible shot breaks, the adaptive
thresholding approach used for detecting speaker change instants
in Section 2 is adopted. Such window-based thresholding offers
the means of adaptive thresholding according to local content and
proves flexible and efficient in gradual camera movements, signif-
icantly abrupt in-shot or camera movements, and simple edit ef-
fects as zoom-ins and outs (no false positives, over-segmentation
is avoided). Abrupt changes are directly recognized.

The second method evaluates color vector-bin histograms of
successive frames and computes their bin-wise differences. Sum-
mation over all bins leads to the metric that is used for shot break
detection. Histogram-based methods are robust to camera as well
as to in-shot motion. Furthermore, color histograms are invariant
under translation and rotation about the view axis and change only
slowly under change of view angle, change in scale, and occlu-
sion. However, histograms are very sensitive to shot illumination
changes. To overcome this problem and make the method more
robust, our approach operates in the HLS color space and discards
the luminance information. Thus, instead of using HLS vector-bin
histograms (3-valued vector-bin histograms), the method uses HS
vector-bin ones (2-valued vector-bin histograms). Luminance con-
veys information only about illumination intensity changes, while
all color information is found in the hue and saturation domain.
Usually, hue contains most of the color information. Saturation
is examined and used to determine which regions of the image
are achromatic. In order to evaluate HS vector-bin histograms,
the hue range [0o; 360o] is divided in 32 equally-spaced bins hi,
i = 1; : : : ; 32, and the saturation range [0; 1] in 8 equally-spaced
bins sj , j = 1; : : : ; 8. Vector bins are constructed by consider-
ing all possible pairs of the scalar hue and saturation bins, lead-
ing thus to a total number of 256 vector bins hsk = (hi; sj),
k = 1; : : : ; 256. Such an approach translates to a 256 uniform
color quantization for each frame. The color vector bin-wise his-
togram H(hsk; t) for frame t is computed by counting all pixels
having hue and saturation values lying inside the considered vec-
tor bin hsk and dividing by the total number of frame pixels. The
histogram differences, HDt, are then computed for every frame
pair (t� 1; t), by:

HDt =
1

NX �NY

256X
k=1

ln(jjH(hsk; t)�H(hsk; t� 1)jj1)

(18)
where k is the vector bin index. By jj � jj1, the L1-vector norm
metric is denoted. Each frame is of size of NX � NY and t is a
temporal dimension of the sequence. Color vector-bin histogram
evaluation is also computationally intensive. In order to detect pos-
sible shot breaks, our approach firstly examines the validity of the



expression:

2 �E[HDt] �
max(HDt)�min(HDt)

2
(19)

If it is true, then the sequence is composed of a unique shot with-
out any shot breaks. In the opposite case, the adaptive thresholding
technique introduced for detecting speaker change instants is also
employed here, leading to efficient shot break detection. Abrupt
changes are directly recognized. The method behaves also satis-
factorily with smooth changes between different shots.

However, both frame difference and color vector-bin histogram
based methods, employed separately, exhibit limited performance,
than when combined together. Thus, fusion of single case results
is proposed. Specifically, the difference metrics (17) and (18) are
multiplied to lead to an overall metric:

ODt = FDt �HDt (20)

that is adaptively thresholded later on in order to detect shot cuts.
Despite its simplicity, such multiplication amplifies peaks of the
single case metrics, possibly corresponding to shot cuts, while
it lowers significantly the remaining values. The same adaptive
thresholding method is employed here as well, leading to enhanced
detection compared to the single case approaches. Strong in-shot
motion or significant camera movement, camera effects, like zoom
ins-outs, and in some cases dissolves (dominant in commercials)
are dealt with. Over-segmentation never occurs.

4. AUDIO-VISUAL INTERACTION: SCENE BOUNDARY
DETECTION AND PARTIAL SCENE IDENTIFICATION

Our aim is to group successive shots together into semantically
meaningful scenes based on both visual and aural clues and using
interaction rules. Multimodal interaction can serve two purposes:
(a) enhance the “content findings” of one source by using similar
content knowledge extracted from the other source(s), (b) offer a
more detailed content description about the same video instances
by combining the content descriptors (semantic primitives) of all
data sources based on interaction rules and coincidence concepts.
Temporal coincidence due to the temporal nature of video data is
a very convenient tool for multimodal interaction.

The combination of the results extracted from the single in-
formation sources leads to the grouping of a number of successive
shots into a scene according to a number of imposed constraints
and interaction rules. It is noted here that given the results of
the presented aural and visual segmentation algorithms only scene
boundaries are determined, while scene characterization, e.g., dia-
logue scene, can only be partially performed in some cases. Fur-
ther analysis on those and on additional rules may lead to over-
all scene characterization. Shot grouping into scenes and scene
boundary determination is performed in our case when the same
audio type (e.g. music or speaker) characterizes successive shots.
Partial scene identification is done according to the following con-
cepts:

� commercials are identified by their background music and
the many, short in duration, shots that they are composed
of.

� dialogue scenes can be identified by the high speaker alter-
nation rate exhibited inside the scene.

5. SIMULATION RESULTS

Experimentation has been carried on several TV sequences hav-
ing many commercials in-between, containing many shots, char-
acterized by significant camera effects like zoom-ins/outs and dis-
solves, abrupt camera movement and significant motion inside sin-
gle shots. We shall present here a representative case of a video
sequence of approximately 12 min duration that has been digitized
with a frame rate of 25fps at QCIF resolution. The audio track is
a mixture of silence, speech, music and, in some cases, miscella-
neous sounds. The audio signal has been sampled at 11kHz and
each sample is a 16bit signed integer. In the sequel, firstly the per-
formance of the various aural and visual analysis tools presented
in Sections 2 and 3 will be investigated. Then, scene change de-
tection will be examined and partial scene characterization will be
attempted.

In order to evaluate the performance of the audio segmenta-
tion techniques, the following performance measures have been
defined:

� Detection ratio: the % ratio of the total duration of correctly
detected instances versus that of the actual ones,

� False alarm ratio: the % ratio of the total duration of falsely
detected instances versus that of the actual ones,

� False rejection ratio: the % ratio of the total duration of
missed detections versus that of the actual ones,

Focusing initially on the performance of the aural analysis tools,
silence detection exhibits a remarkable performance of 100% de-
tection ratio and 0% false rejection ratio, achieving to locate entire
words, phrases or sentences. Rare occasions of unvoiced speech
frames being classified as silence frames have only been observed
leading to a false alarm ratio of 3.57%. There was no case of si-
lence being classified as any other audio type searched for. Music
detection exhibits 96.9% detection ratio, 3.1% false rejection ratio,
because some music segments of short duration are being confused
as speech. It has 7.11% false alarm ratio, because it confuses some
speech segments as music ones. On the other hand, speech detec-
tion is characterized by 86.2% detection ratio, 13.8% false rejec-
tion ratio and 2.4% false alarm ratio due to mistaking music seg-
ments as speech. Finally, speaker change instant detection attains
a suboptimal performance mainly attributed to the fact that covari-
ance matrices and their inverse ones are insufficiently evaluated
given a limited number of feature vectors extracted from 2sec du-
ration segments. However, the use of bigger audio segments would
imply that the same speaker is speaking for a longer period, which
would be a wrong assumption in many cases. Speaker change in-
stants are evaluated with a detection accuracy of 62.8%, we have
30.23% false detections, while missed detections are of a percent-
age of 34.89%. Enhancement of this method may be achieved by
simultaneously considering other similarity measures as well, as
shown in [11]. Despite, however, of the suboptimal performance
of speaker change instants, their use during audio-visual interac-
tion for scene boundary detection leads to a satisfactory outcome
in combination with the other segmentation results.

In order to evaluate the performance of the visual segmenta-
tion methods, that is, the shot boundary detection methods pre-
sented in Section 3, the following performance criteria are used
[2]:

Recall =
relevant correctly retrieved shots

all relevant shots = Nc
Nc+Nm

(21)

Precision =
relevant correctly retrieved shots

all retrieved shots = Nc
Nc+Nf

(22)



where Nc denotes the number of correctly detected shots, Nm is
the number of missed ones and Nf is the number of falsely de-
tected ones. For comparison purposes and to illustrate the strength
of combining different methods and fusing results, the above cri-
teria are also measured for the single shot detection methods pre-
sented in Section 3. Results for the single cases as well as the
combined one are presented in Table 1. Adaptive thresholding that
leads to the decision about shot boundaries is performed using two
different lengths for the employed windows: W = 3 and W = 5.
It can be observed that the combined method attains the best results

Table 1: Recall and Precision values achieved by the Shot Bound-
ary Detection methods.

Method W = 3 W = 5
Recall Precision Recall Precision

Frame Diff. 0.7047 0.5866 0.8456 0.7975
Vector Hist. Diff. 0.3356 0.2155 0.5705 0.4271
Combined 0.9329 0.9858 0.9396 1.0

for W = 5. No false detections are made and the missed ones are
rather few even under dissolve camera effects. The color vector-
bin histogram difference method is inferior in performance com-
pared to the color frame difference method because histograms do
not account for spatial color localization. However, the histogram
approach is better under illumination changes.

Finally, the performance of the method according to scene
boundary determination is investigated. The sequence under study
contains 18 different scenes being either dialogue ones, or action
ones, or commercials or the serial logo display. During boundary
detection, those shots that exhibit the same speaker speaking or the
same music part are combined together into a scene. The bound-
aries of the scenes are further extended according to shot bound-
aries. For example, if the same speaker is found to be speaking
during frames 100 and 200, while shot boundaries have been de-
tected to exist to frames 85 and 223, then scene boundaries are
further extended to those, based on the enhanced performance of
our shot boundary detection. Cases have been observed that extent
scene boundaries to even a different speaker or music segment.
Thus, dialogues may be identified if the speaker changing points
in a scene are rather high. Results show that 13 out of 18 scenes are
correctly detected, 12 are false detections (an actual scene is rec-
ognized as more than one due to the non-overlapping of speaker
boundaries, music boundaries and shot boundaries), while 5 scene
boundaries are missed. The performance is good considering that
simple rules are imposed for scene boundary detection. Further
investigation for scene characterization as well as incorporation
of other analysis tools to define more semantic primitives and en-
hancement of presented tools that attain a suboptimal performance
will be undertaken.

6. CONCLUSIONS

Content analysis and indexing systems offer a flexible and effi-
cient tool for further video retrieval and browsing, especially now
that distributed digital multimedia libraries have become essen-
tial. When such tasks combine semantic information from differ-
ent data sources (aural, visual, textual) through multimodal inter-

action concepts, enhanced scene cut detection and identification
is possible. In this paper, a scene boundary detection method has
been presented that attains a promising performance. Both aural
and visual sources are analyzed and segmented. The audio types
searched for are speech, silence and music. Video segmentation
into shots is performed by a remarkably efficient method that com-
bines results obtained by two distinct approaches. Interaction of
segmentation results leads to determination of scene boundaries
and partial scene characterization.
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