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Abstract| An accurate, computationally eÆcient and
fully-automated algorithm for the alignment of 2D seri-
ally acquired sections forming a 3D volume is presented.
The method accounts for the main shortcomings of 3D im-
age alignment: corrupted data (cuts and tears), dissimilar-
ities or discontinuities between slices, non parallel or miss-
ing slices. The approach relies on the optimization of a
global energy function, based on the object shape, measur-
ing the similarity between a slice and its neighborhood in
the 3D volume. Slice similarity is computed using the dis-
tance transform measure in both directions. No particular
direction is privileged in the method avoiding global o�-
sets, biases in the estimation and error propagation. The
method was evaluated on real images (medical and biologi-
cal 3D data) and the experimental results demonstrated the
method's accuracy as reconstuction errors are less than 1
degree in rotation and less than 1 pixel in translation.

Keywords: serially acquired images, misalignment, image
registration, registration error, non-overlapping structures,
pixel similarity measure, deterministic optimization.

I. Introduction

Three-dimensional reconstruction of medical images (tis-
sue sections, CT and autoradiographic slices) is now an in-
tegral part of biomedical research. Reconstruction of such
data sets into 3D volumes, via the registrations of 2D sec-
tions, has gained an increasing interest. The registration
of multiple slices is of utmost importance for the correct
3D visualization and morphometric analysis (e.g. surface
and volume representation) of the structures of interest.
Several alignment algorithms have been proposed in that
framework. A review of general medical image registration
methods is presented in [1], [2], [3].
The principal 3D alignment (reconstruction from 2D im-

ages) methods may be classi�ed in the following categories:
�ducial marker-based methods [4], feature-based methods
using contours, crest lines or characteristic points extracted
from the images [5], [6], and gray level-based registration
techniques using the intensities of the whole image [7], [8],
[9], [10]. Most of the above mentioned techniques do not
simultaneously consider the two major diÆculties involved
in medical and CT scanned data registration.
At �rst, consecutive slices may di�er signi�cantly due to

distortions, discontinuities in anatomical structures, cuts
and tears. These e�ects are more pronounced when distant
slices are involved in the registration. From this point of
view, a registration method must be robust to missing data

or outliers [7], [10].
Besides, registering the slices sequentially (the second

with respect to the �rst, the third with respect to the sec-
ond, etc.) leads to di�erent types of misregistration. If an
error occurs in the registration of a slice with respect to
the preceding slice, this error will propagate through the
whole volume. Also, if the number of slices to be registered
is large, a global o�set of the volume may be observed, due
to error accumulation [8].
In this paper, a solution to the above mentioned short-

comings is presented. A global energy function having as
variables the rigid transformation parameters (2D transla-
tion and rotation) of a given slice with respect to a local
symmetric neighborhood is proposed. Global energy func-
tions are a powerful tool in computer vision applications
but they have not yet been considered for the registration
of serially acquired slices.
Our approach was inspired by the technique presented in

[11], which consists in minimizing a global energy function
with the Iterative Closest Point algorithm [12], to regis-
ter multiple, partially overlapping views of a 3D structure.
The global energy function implemented in our approach
is associated with a pixel similarity metric based on the
Euclidean distance transform [13].
The remainder of the paper is organized as follows. The

global energy function formulation and the associated reg-
istration algorithm is presented in section II, experimen-
tal results are presented in section III and conclusions are
drawn in section IV.

II. A global energy function formulation

Before presenting the alignment method, the notations
used in our formulation are introduced. A set of 2D serially
acquired slices is represented by:

V = fIiji = 1 : : :Ng (1)

where Ii is a slice (a 2D image) and N denotes the total
number of slices. A pixel of a 2D slice is represented by:
p = (x; y)T , so that Ii(p) corresponds to the gray level
(intensity) of pixel p of slice i. Nx and Ny designate the
number of pixels of each slice in the horizontal and vertical
direction respectively.
Standard two-dimensional rigid alignment consists of es-

timating the rigid transformation parameters (translation
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tx, ty and rotation by angle �) that have to be applied to
the image to be aligned (oating image) in order to match
a reference image.
In the approach proposed here, the alignment of the 2D

sections, within the 3D volume, is considered globally by
minimizing an energy function E(�), which expresses the
similarity between the 2D sections:

E(�) =

NX

i=1

NX

j=1

Nx�NyX

p=1

f(Ii(T�i
(p)); Ij(T�j

(p))) (2)

where f(�) is a similarity metric, Ik denotes slice k and T�k

designates a rigid transformation with parameters �k =
ftkx; t

k
y ; �

kg.
Equation (2) indicates that for a given set of rigid trans-

formation parameters T�i
, applied to the slice to be aligned

Ii, the similarity between the transformed slice Ii(T�i
(p))

and all of the other already transformed slices Ij(T�j
(p))

in the volume is accumulated in the energy function.
Assuming that function f(�) is symmetric:

f(Ii(T�i
(p)); Ij(T�j

(p))) = f(Ij(T�j
(p)); Ii(T�i

(p))) (3)

which is the case for the pixel similarity functions consid-
ered here, yields the following global minimization prob-
lem:

�̂ = argmin
�

NX

i=1

NX

j=1
j<i

Nx�NyX

p=1

f(Ii(T�i
(p)); Ij(T�j

(p))) (4)

Without additional constrains, the optimization problem
(4) has clearly an in�nite number of solutions (if the set of
rigid transformations fT

�̂1
, T

�̂2
; : : : T

�̂N
g is a solution, the

same holds true for fT
�̂1
ÆT�; T�̂2

ÆT�; : : : T�̂N
ÆT�g, where

T� is an arbitrary 2D rigid transformation). To remove this
ambiguity, the transformation T

�̂l
applied to an arbitrary

chosen slice k is constrained to the identity transformation
(we have chosen k = 1 in our implementation). As a result,
there are 3(N � 1) parameters to estimate.
It is common sense that distant slices present very little

similarity due to anatomy and it would be more appropri-
ate to measure the energy function only for slices presenting
at least some similarities. Therefore, the support region of
function f(�) has been limited to a neighborhood of radius
R centered at each slice and set:

f(Ii(T�i
(p)); Ij(T�j

(p))) = 0; 8 ji� jj > R (5)

Thus, the following alignment algorithm is associated
with the energy function (4):

� do until convergence.
{ declare all slices unvisited.
{ do until all slices are declared visited.
� randomly chose an unvisited slice Ii 2 V .
� update the rigid transformation parameters T�i

bringing into alignment slice Ii with the other

slices in the neighborhood of i, by minimization
of the following local energy function (eq. 6).

� declare slice Ii visited.
{ end do

� end do

Ei(�i)
def
=

NX

i=1

NX

j=1
ji�jj�R

Nx�NyX

p=1

f(Ii(T�i
(p)); Ij(T�j

(p))) (6)

The minimization of the local energy function (4) is con-
ducted by a deterministic optimization algorithm, known
as Iterated Conditional Modes (ICM) [14]. ICM is a dis-
crete Gauss Seidel-like optimization technique, accepting
only con�gurations decreasing the objective function. Let
us notice that the parameter �̂i corresponding to the min-
imum value of the local energy function Ei(�i) (Equ. 6)
also corresponds to a local minimum value of the global
energy function E(�) with respect to �i, keeping all other
parameters �j ; j 6= i �xed. It is thus easy to see that the
described algorithm converges towards a local minimum of
the initial energy function (2). This local minimum corre-
sponds to a satisfactory registration, since the initial align-
ment of the 2D sections is generally close to the desired
solution (if this is not the case, a good initialization may
be obtained by a standard coarse alignment technique such
as principal axes registration). It is thus not necessary to
resort here to greedy global optimization procedures, such
as simulated annealing or genetic algorithms.
Further improvement of the solution is obtained by a

gradient decent technique. To speed the algorithm up a
multigrid data processing is also implemented.
The pixel similarity metric associated with the above de-

scribed global energy function is based on a distance trans-
form ([13], [15]) (also known as chamfer matching technique
[16]) and it is computed from the 3D object contours ([17]).
A distance transformation is an operation that converts a
binary picture, consisting of feature and non-feature ele-
ments (contours), to a picture where each pixel has a value
that approximates its distance to the nearest contour point.
Thus, using the distance transform D(p) of the reference

slice the method aligns the oating slice by minimizing the
distance between the contours of the images. For further
details of the chamfer matching method the reader may
refer to [16].
Considering the slices per triplets, which is very common

for standard reconstruction problems (i.e. setting R=1 in
eq. 5), the estimation of the alignment parameters � in-
volves the non-linear similarity metric:

f(T�i
(p)) = Di�1(T�i�1

(p)) +Di+1(T�i+1
(p));

Ii(T�i
(p)) 6= 0

where Ii(T�i
(p)) 6= 0 means that only the contour points

of Ii are involved.
A large number of interpolations are involved in the

alignment process. The accuracy of estimation of the ro-
tation and translation parameters is directly related to the
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accuracy of the underlying interpolation model. Simple
approaches such as the nearest neighbor interpolation are
commonly used because they are fast and simple to im-
plement, though they produce images with noticeable arti-
facts. Besides, as the translation and rotation parameters
should compensate for accuracy by having subvoxel values,
this type of interpolation would not be appropriate. More
satisfactory results can be obtained by small-kernel cubic
convolution techniques, bilinear, or convolution-based in-
terpolation. According to sampling theory, optimal results
are obtained using sinus cardinal interpolation, but at the
expense of a high computational cost. As a compromise, a
bilinear interpolation technique has been used in the opti-
mization steps. At the end of the algorithm, the alignment
parameters are re�ned using a sinus cardial interpolation
that preserves the quality of the image to be aligned. This
technique has proven to be fast and eÆcient.

III. Experimental Results

To evaluate our method, we applied the algorithm to the
reconstruction of an arti�cially misaligned 3D human skull
volume (�gure 1). The slices of the original 256 � 256 �
140 CT volume were transformed using translations vary-
ing from -10 to +10 pixels and rotations varying from -20
to +20 degrees. The transformations for each slice were
random following a uniform distribution in order not to
privilege any slice (�gures 1(a) and 1(b)). Table I presents
statistics on the alignment errors. The algorithm revealed
robust in aligning this type of image providing small reg-
istration errors. Figures 1(c) and 1(d) present the recon-
structed volume.

Alignment error statistics
�tx �ty ��

median 2.10 0.33 0.07
maximum 1.45 2.02 2.42
mean�s.dev 0.37�0.28 0.38�0.30 0.19�0.35

TABLE I

A set of 140 slices of a 3D CT human skull volume were arti�cially

transformed using di�erent rigid transformation parameters. Each

slice was randomly transformed using translations varying from -10

to +10 pixels and rotations varying from -20 to +20 degrees.

Di�erent statistics on the errors for the rigid transformation

parameters are presented. Translation errors are expressed in pixels

and rotation error in degrees.

Moreover, we have uniformly transformed 140 slices of
the same 3D volume by applying to each slice Ii a transla-
tion of tix = ti�1x + 0:15 pixels and tiy = ti�1y + 0:15 pixels

and a rotation of �i = �i�1 + 0:3 degrees. As the volume
has 140 slices, the last slice is translated by 21 pixels in
both directions and rotated by 42 degrees with respect to
its initial position. Table II presents the registration er-
rors of the method. It is illustrated that our approach has
subpixel mean and median errors. Also maximum errors
are slightly superior to 1 pixel and 1 degree respectively
showing the robustness of the technique.

a b

c d

Fig. 1. Reconstruction of a 3D human skull volume of 140 slices. (a)
Multiplanar view of the volume before registration. (b) Three-
dimensional view of the volume before registration. (c) Multipla-
nar view of the volume after registration. (d) Three-dimensional
view of the volume after registration.

Alignment error statistics
�tx �ty ��

median 0.23 0.21 0.26
maximum 1.95 1.94 1.64
mean�s.dev 0.33�0.32 0.34�0.33 0.25�0.25

TABLE II

A set of 140 slices of a 3D CT human skull volume were arti�cially

transformed using di�erent rigid transformation parameters. Each

slice was translated by 0.15 pixels in both directions and rotated by

0.3 degrees with respect to its preceding slice. Di�erent statistics on

the errors for the rigid transformation parameters are presented.

Translation errors are expressed in pixels and rotation error in

degrees.

Furthermore, the algorithm was applied to the recon-
struction of volumes (tooth germs, biological tissues) with
unknown ground truth. The method's performance was
compared with the manual alignment accomplished by an
expert physician. Figure 2 shows the reconstruction of a
tooth germ by an expert dentist (�g. 2(a) and 2(b)) and
by our method (�g. 2(c) and 2(d)). It is illustrated that
human intervention fails to correctly align the slices, whilst
our method is eÆcient and can achieve alignment with high
accuracy.
Also, Figure 3 depicts a 3D tissue containing a large

number of vessels. Figures 3(a) and 3(b) show the vol-
ume aligned by an expert biologist and Figures 3(c) and
3(d) the tissue after alignment by our method. This vol-
ume presents cuts and discontinuities and the tissues had
been stretched during the cut procedure. Despite these
drawbacks, according to the expert biologist, the algorithm
aligned correctly the slices.
Finally, let us notice that the algorithm has a computa-
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a b

c d

Fig. 2. Reconstruction of a 3D tooth volume of 265 slices. (a) Mul-
tiplanar view of the volume after alignment by an expert dentist.
(b) Three-dimensional view of the volume after alignment by an
expert dentist. (c) Multiplanar view of the volume after registra-
tion. (d) Three-dimensional view of the volume after registra-
tion.

a b

c d

Fig. 3. Reconstruction of a 3D tissue volume of 237 slices. (a) Mul-
tiplanar view of the volume after alignment by an expert biolo-
gist. (b) Three-dimensional view of the volume after alignment
by an expert biologist. (c) Multiplanar view of the volume af-
ter registration. (d) Three-dimensional view of the volume after
registration.

tional complexity O(NxNyN) and requires approximately
10 min. to reconstruct a 256 � 256 � 140 volume on a
Pentium III (800 MHz) workstation.

IV. Conclusion

The alignment method described in this paper is akin to
the global energy function formulation proposed in [11] to
register multiple views of a 3D surface in computer vision
applications. The main contribution of the approach is to
consider the alignment problem globally on the 3D volume,
by minimizing a global objective function expressing the
similarity between neighboring slices. The approach does
not privilege any particular direction in the registration

process. By these means, the major problems set by the
registration of serially acquired slices are addressed. With
the global (isotropic) formulation of the registration prob-
lem (rather than a standard step by step, sequential formu-
lation), no global o�set nor error propagations are observed
in the �nal alignment. The approach seems promising and
its association to more sophisticated but time consuming
pixel similarity metrics (mutual information [18], robust
estimation-based measures [19]) may improve its accuracy
and is a perspective of this work.
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