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ABSTRACT
The increasing computational complexity of label propagation-
based facial image annotation when applied on multimedia
data whose cardinality increases over the time (e.g., when
analyzing video or movie content on-line), can be reduced by
using an incremental approach. In this paper, a method for
incremental label propagation on facial images is described.
The similarity matrix is incrementally constructed by employ-
ing the kd-tree nearest neighbor algorithm. Furthermore, the
matrix inversion, which is included in the label propagation
solution, is calculated with a block-wise inversion formula
involving the Woodbury matrix identity. Experiments show
significant computational savings when the incremental ap-
proach is applied on a dataset of three full length movies.
Moreover, the classification accuracy was improved in most
cases.

Index Terms— Incremental label propagation, facial im-
age annotation, incremental similarity matrix construction,
blockwise inversion formulae, Woodbury matrix identity.

1. INTRODUCTION
Annotation of facial images can be done using label prop-
agation techniques with the prior knowledge of some anno-
tated facial images and by spreading the name labels from
the set of labeled images to the unlabeled ones, employing a
diffusion process while maintaining local and global label-
ing consistency [1], [2]. In the field of label propagation,
or, more generally speaking, in graph-based semi-supervised
learning [3], [4], many tasks employ datasets that evolve over
time. Such a task is the annotation (tagging) of facial im-
ages [5] (derived from a face detector and a face tracker that
produce ”trajectories” of facial images, consisting of regions
of interest (ROIs)) with names in a video stream that becomes
available on-line, i.e. it is not known in its entirety. In this
case, classical facial image annotation via label propagation
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till time instance t+ 1 must be done from scratch rather than
using the results of the same operation already performed at
time instance t. However, in such cases, incremental label
propagation techniques can be used in order to avoid the in-
creasing computational complexity of classical label propa-
gation [1].

Various methods implementing incremental label propa-
gation exist in the literature [6–9]. In [6], the proposed dy-
namic label propagation method (DLP) aims at solving semi-
supervised multiclass and multi-label label propagation by
combining the graph similarities and the label correlations in
a dynamic way, while preserving the intrinsic structure of in-
put data. Moreover, propagation of semantic labels in indoor
sequences based on feature matching and incremental model
update, is described in [7]. Furthermore, LabelRankT [8] is
an online distributed algorithm for detecting, incrementally
updating and monitoring, through label propagation, commu-
nities [10] in large-scale dynamic networks whose evolution
generates huge realtime data streams. Finally, label propaga-
tion for detecting community structures in complex networks
in realtime while dealing with the network changes incremen-
tally is described in [9].

In this paper, a novel incremental label propagation ap-
proach is presented, which is based on Multiple-graph Local-
ity Preserving Projections - Cluster-based Label Propagation
(MLPP-CLP) algorithm [1]. The main aim is the speedup of
MLPP-CLP method using the concept of incremental label
propagation. To this end, we split the video time domain in
intervals ntT, nt = 1, . . . , Nt, the total duration being NtT
seconds. We start with the first video interval by performing
face detection/tracking and we manually label an initial num-
ber of facial images (namely 5% of the facial images con-
tained in the time interval). Label propagation is conducted
by spreading the labels from the manually labeled facial im-
ages to the unlabeled ones in the same time interval. Subse-
quently, this process is repeated for consecutive time intervals
and the label inference is conducted in an incremental way
as the additional facial images are being detected/tracked on
line, by: a) updating in every step the respective facial image
similarity matrix W with the additional pairwise facial im-
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age similarities and b) calculating the label propagation solu-
tion with the inversion of the matrix I − aS in an incremen-
tal block-wise manner based on the Woodbury matrix iden-
tity [11]. This approach reduces computational complexity as
these two operations are the most time-consuming ones in the
label propagation process. Incremental facial label propaga-
tion continues till the video stream (or movie) comes to its
end.

The rest of this paper is organized as follows. Since the
proposed method is an extension of the MLLP-CLP method
[1], it is briefly described in Section 2. Section 3 describes the
details of the proposed incremental label propagation method.
In Section 4, we present the datasets and the experiments
which have been conducted to measure the facial label propa-
gation accuracy and the reduction in computational complex-
ity. Finally, conclusions are presented in Section 5.

2. MLPP-CLP FACIAL IMAGE LABEL
PROPAGATION

Assume a set of labeled facial imagesXL = {xi, i = 1, . . . ,ml}
which have been assigned labels (actor/person names) from
the label set L = {lj , j = 1, . . . , Q} and a set of unlabeled fa-
cial images XU = {xi, i = 1, . . . ,mu}. Their union is given
by X = {x1, ...,xml ,xml+1, ...,xM},M = ml + mu [2].
The objective of label propagation is to spread the facial im-
age labels from the set of the labeled images XL to the set of
the unlabeled images XU , while maintaining local and global
facial image labeling consistency [2]. The initial information
about the labeled data is described by the M × Q matrix Y,
defined as:

Yij =

{
1, if node i is labeled by label j
0, otherwise. (1)

The algorithm begins with the construction of a symmetric
facial image similarity matrix W which represents the facial
image similarity graph, as label propagation should be per-
formed across similar facial images. The rows/columns of
the matrix correspond to the temporally ordered facial im-
ages. More specifically, the edge in the graph that connects
the nodes (facial images) i and j is assigned with a value Wij

that indicates the similarity between the graph nodes. This
similarity is computed according to the heat kernel equation:

Wij = e−
‖xi−xj‖2

σ (2)

where σ is the mean edge length distance among neighbors.
The construction of such a matrix has computational com-
plexity and memory requirements of the order O(M2), even
if a k nearest neighbor (NN) matrix [1] is constructed.

Then, vectors fi, i = 1, ...,M are calculated that assign a
score for every possible person label to facial image i, defin-
ing the matrix F = [fT1 , ..., f

T
M ]T ∈ RM×Q. More specifi-

cally, F is calculated by minimizing [1]:

Q(F) =
1

2
tr(FTLF) + µtr((F− Y)T (F− Y)), (3)

where L = D−1/2(D − W)D−1/2 is the normalized facial
image similarity graph Laplacian, D is the diagonal degree
matrix having entriesDii =

∑
jWij and µ is a regularization

parameter. This minimization problem leads to the following
solution [1]:

F = (1− a)(I− aS)−1Y, (4)

where a = 1
1+µ and:

S = D−1/2WD−1/2, (5)

The final facial image label (person name) is assigned to facial
image i according to the following decision rule:

yi = argmax
j∈1,...,Q

[f1j , . . . , f
M
j ]. (6)

The regularization framework (3) can be easily extended
to the case of label propagation on multiview (e.g. stereo) fa-
cial images. In this case, multiple graphs are constructed for
the data, one for each one of the K facial image representa-
tions (i.e., views). In this case, the regularization framework
(3) takes the form:

Q(F, τ ) =
1

2

K∑
k=1

τktr(FTLkF) + µtr((F− Y)T (F− Y)),

(7)
subject to the constraint:

K∑
k=1

τk = 1, (8)

that leads to the following optimal solution for F:

F = (1− a)

(
I− a

∑
k

τkSk

)−1
Y. (9)

where τk, k = 1,...,K is the weight that corresponds to the k-th
data representation and Sk = D−1/2WkD−1/2.

A method for computing the weights τk called Multi-
graph Locality Preserving Projections Cluster-based Label
Propagation (MLPP-CLP) was introduced in [1], being a vari-
ant of the Locality Preserving Projections (LPP) method [12].
It performs dimensionality reduction [13] of data with multi-
ple representations by constructing a single projection matrix
A for all data representations, while preserving the data
locality information in all representations and ensuring ad-
ditional pairwise similarity and dissimilarity constraints on
the data [1]. The weight τk of each data representation in
the construction of the projection matrix A is optimal for the
label propagation cost function (7), given that the data feature
extraction was performed according to MLPP. More details
about the method can be found in [1].



3. INCREMENTAL FACIAL IMAGES LABEL
PROPAGATION

The proposed Incremental Facial Images Label Propagation
(ILP) is a variant of the MLPP-CLP method [1] described in
Section 2, with incremental calculation of similarity matrix
W(nt) and incremental matrix I − aS(nt) inversion by em-
ploying a block-wise matrix inversion formula.

Assume that we start with M initial facial images in
the set XM = {x1, . . . ,xM} corresponding to time in-
terval [0, ntT ]. We obtain m new labeled and unlabeled
facial images samples Xin = {xM+1, . . . ,xM+m} that are
derived by on-line face detection and tracking (and man-
ual annotation of a small number of images) over the pe-
riod [ntT, (nt + 1)T ], resulting in a new image data set
XM+m = {x1,x2, . . . ,xml , . . . ,xM ,xM+1, . . . ,xM+m}.
For every facial image xi ∈ Xin, we then search the k-nearest
samples xp ∈ N(xi) using the kd-tree algorithm [14], calcu-
late the incremental facial image similarity matrix W(nt+1),
update the matrix S(nt+1) and invert matrix I − aS(nt+1) in
order to conduct label inference. The objective is to spread
the facial labels in the unlabeled facial images of the new
facial image set Xin using the the manually labeled images
of Xin as well as those in XM . Note however that labels
assigned to images in XM can also change, i.e., the approach
is equivalent to performing label propagation in XM+m in a
non-incremental way. Including a small set of labelled im-
ages in each new time interval ensures that appearances of
new persons, not present so far in the video, will be correctly
handled. If all persons to be labelled appear in the first in-
terval, manual labeling in each new interval can be omitted.

3.1. Incremental Similarity Matrix Calculation
Assume that W(nt) ∈ <M×M is the similarity matrix for the
time interval [0, ntT ] that represents the similarities among
M facial images. Then, the facial image similarity matrix
W(nt+1) ∈ <(M+m)×(M+m) for the time interval [0, (nt +
1)T ] is given by:

W(nt+1) =

[
W(nt) W′

W′T Wm

]
, (10)

where Wm ∈ <m×m is the matrix with the pairwise facial
image similarities between the new facial image entries in
Xin (detected/tracked in the time interval [ntT, (nt + 1)T ]).
W′ ∈ <M×m is the matrix with the pairwise facial image
similarities between the new/additional m facial image entries
and (previous) M facial image entries, which had already been
used in the similarity matrix W(nt). It should be noted that
W′, is found using the nearest image neighbors according to
a kd-tree algorithm [14].

3.2. Incremental Inversion of the Matrix I-aS
Assume that D

′

(nt)
, D

′

m are the diagonal degree matri-

ces having entries D′
ii
(nt) =

∑
jW

(nt)
ij +

∑
jW

′
ij =

Dii
(nt)

+
∑
jW

′
ij and D′

ii
m =

∑
jWmij +

∑
iW
′
ij , re-

spectively. The diagonal degree matrix D(nt+1) for the time
interval [0, (nt + 1)T ] is given by:

D(nt+1) =

[
D
′

(nt)
0

0 D
′

m

]
(11)

Thus, the matrix S(nt+1) is given by the following equation:

S(nt+1) = D−1/2(nt+1)W
(nt+1)D−1/2(nt+1) =

=

[
D
′−1/2
(nt)

W(nt)D
′−1/2
(nt)

D
′−1/2
(nt)

W′D
′−1/2
m

D
′−1/2
m W′TD

′−1/2
(nt)

D
′−1/2
m WmD

′−1/2
m

]

=

[
S
′(nt) S

′

S
′T S

′

m

]
, (12)

The matrix I− aS(nt+1) which appears in the solution (4) or
(9) is computed as:

P(nt+1) = I− aS(nt+1) =

[
V B
C D

]
, (13)

where V = I− aS
′(nt),B = −aS′,C = BT = −aS′T ,D =

I − aS
′

m are matrix sub-blocks of size M × M , M × m,
m ×M and m × m, respectively and I the identity matrix.
The inversion of the matrix P(nt+1) is computed according
to a block-wise inversion formula using the Woodbury matrix
identity [11]:

(P(nt+1))−1 = (I− aS(nt+1))−1 =

[
V B
C D

]−1
= (14)

=

[
V−1 +V−1BZ−1CV−1 −V−1BZ−1

−Z−1CV−1 Z−1

]
,

where Z = (D −CV−1B). V is a square matrix, therefore
it can be inverted. Furthermore, V and Z are nonsingular
matrices [15].

3.3. Computational complexity study
In non-incremental label propagation using (4), the creation
of the matrix S according to (5) has complexity O((M +
m)2) ' O(M2) form�M , due to multiplication of the full
matrix W with diagonal matrices D−1/2. Moreover, the non-
incremental construction of the similarity matrix has compu-
tational complexity and memory requirements of the order
O((M +m)2) ' O(M2) even if an k nearest neighbor (NN)
matrix is constructed. Finally, the label propagation solution
(4) using MLPP-CLP and employing matrix I− aS inversion
has complexity O((M +m)3) ' O(M3) [16, 17] and multi-
plication with the matrix Y has complexityO((M+m)2Q) '
O(M2Q). As a result, the non-incremental approach has time
complexity O(2M2 +M3 +M2Q) ' O(M3).
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Fig. 1: Execution time for similarity matrix calculation of
MLPP-CLP and proposed ILP method versus the number of
processed facial images k ·m for a) m = 250, b) m = 500,
c) m = 1000, respectively and the three movies.
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Fig. 2: Execution time for label propagation solution of the
MLPP-CLP method and proposed ILP technique (excluding
similarity matrix calculation) versus the number of processed
facial images k ·m for a) Movie 1, b) Movie 2, c) Movie 3,
respectively and various values of m.



However, the construction of the incremental similarity
matrix of the ILP method has time complexity O(m2) +
O(2Mm) ' O(Mm) for m � M . Furthermore, the cre-
ation of the incremental matrix S(nt+1) according to (12) has
complexity O(m2) + O(2Mm) ' O(Mm). Finally, it can
be shown that the algorithm using blockwise inversion for
inverting a matrix (M +m) × (M +m) runs with the same
time complexity as the matrix multiplication that is used in
(14) [18]. As there are matrix multiplication algorithms with
a complexity of O(M2.3727) this will also be the complexity
of the block-wise matrix inversion (14). Thus, the proposed
iterative label propagation method (4) has time complexity
O((M + m)2.3727) ' O(M2.3727) due to incremental in-
version of the matrix I − aS(nt+1) plus O((M + m)2Q) '
O(M2Q) due to multiplication with matrix Y in (4). As a
result, the incremental label propagation has time complexity
O(2Mm+M2.3727 +M2Q) ' O(M2.3727 +M2Q) which
is much less than that of the MLPP-CLP time complexity of
O(M3).

4. EXPERIMENTAL EVALUATION
Experiments on incremental facial image label propagation
(ILP) have been conducted on three full length stereoscopic
movies having a total duration of more than 6 hours (528348
frames). The facial images contained in these movies were
derived by applying face detection [19] and tracking [20].
Due to the fact that the number of detected/tracked frames
is very large, only 5.85% of them have been used for annota-
tion with incremental label propagation (namely 5398, 3498,
4954 in every movie respectively).

Every facial image ROI is of size 41 × 31 pixels. In an
approach slightly different from what it has been described
before, each movie is segmented into unequal time intervals,
each containing the same number of facial images m, m =
250, 500, 1000. For every segment, manual labeling of 0.05m
(i.e. 5%) of the facial images in the segment was performed.

The computational complexity experiments focused on:
a) incremental similarity matrix W construction b) incremen-
tal label propagation (4), (9), which contains a block-wise
matrix I − aS inversion. These experiments measured the
execution time of MATLAB code running on a PC equipped
with an Intel Xeon CPU at 2.40 GHz with 72GB RAM and
64-bit Windows Operating System.

4.1. Classification Accuracy Performance
As facial label propagation essentially performs face classi-
fication, Table 1 illustrates the classification accuracy of the
proposed ILP method and the respective MLPP-CLP [1] re-
sults. The classification accuracy of ILP is evaluated in the
final time interval, thus it refers to the whole facial image
dataset, i.e. when the label propagation is completed. ILP
method outperforms MLPP-CLP in most cases. More pre-
cisely, the classification accuracy gains of 2.5% (on average)
that were observed for the various m, could be attributed to
the difference in the calculation of the similarity matrix in

ILP and MLPP-CLP. In MLPP-CLP, the k nearest neighbors
of the facial images are evaluated from within the entire set of
facial images available at a certain time instance. In the case
of ILP however, as can be seen in (10) W(nt+1) is essentially
an approximation of the ”full” similarity matrix involved in
MLPP-CLP. For example, evaluation of sub-matrix Wm in-
volves finding the nearest neighbors only between the new m
facial images. This approximation seems to improve the clas-
sification accuracy.

Although the proposed method aimed at improving
MLPP-CLP that operates on multi-view (stereoscopic in
our case) data, it can be easily applied on monocular videos
as well. Table 2 presents the recognition accuracy of ILP
and MLPP-CLP when applied on monocular videos. Similar
gains can be observed.
Table 1: ILP Recognition Accuracy Performance (stereo-
scopic movies)

m ILP MLPP-CLP
Movie1 1000 0.846 0.8189

500 0.8315 0.8326
250 0.8351 0.8121

Movie2 1000 0.7288 0.7094
500 0.7365 0.7090
250 0.7381 0.6990

Movie3 1000 0.7242 0.6942
500 0.7156 0.6797
250 0.7053 0.6841

Table 2: ILP Recognition Accuracy Performance (monocular
movies)

m ILP MLPP-CLP
Movie1 1000 0.8239 0.8147

500 0.8287 0.8292
250 0.8200 0.8248

Movie2 1000 0.6736 0.6531
500 0.7088 0.6527
250 0.7107 0.6635

Movie3 1000 0.7043 0.6767
500 0.6951 0.6863
250 0.6962 0.6853

4.2. Execution Time
Figure 1 shows the similarity matrix construction time for
both methods, namely MLPP-CLP [1] and the proposed
ILP technique for each stereoscopic movie and for m =
250, 500, 1000. The horizontal axis shows the total num-
ber of facial images k · m, (k = 1, 2, ...) at a certain time
instance. We observe a speedup by a factor of 2.5 to 5.58
for m = 1000, 2.35 to 5.7 for m = 500 and 3.2 to 5.98
for m = 250, respectively, when we performed facial label
propagation for the entire movie (last point in each curve).



The differences in speedup between the 3 movies are due to
the different number of faces in each movie. The bigger the
number of images, the larger the speed up. Figure 2 shows la-
bel propagation solution execution time (excluding similarity
matrix calculation) for the MLPP-CLP and the ILP methods
for the three stereoscopic movies separately. We observe a
speedup of 2.55 in Movie 1, 2.95 in Movie 2 and 1.66 in
Movie 3 respectively for the m = 250, 500, 1000, when we
perform label propagation for the entire movie.

5. CONCLUSION
In this paper, a novel incremental method for propagating per-
son identity labels on facial images extracted from stereo or
monocular videos was introduced. The main aim was the re-
duction of the computational complexity of the state of the art
MLPP-CLP [1] method, by performing the similarity matrix
construction W and matrix I-aS inversion in an incremental
way. Experiments on a data set consisting of facial images ex-
tracted from three monocular and stereoscopic movies show
that a significant speedup is obtained by using incremental
label propagation. Moreover, the classification accuracy was
improved in most cases. It should be noted that the proposed
approach can be also used for speeding up label propagation
in other applications where data to be labelled are evolving
over time.
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