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ABSTRACT

Here, we are interested in obtaining a two-dimensional embedding
of face-pose images that preserves their local structure captured by
the pair-wise distances among them by using multidimensional scal-
ing (MDS). The MDS problem is formulated as maximization of a
correntropy criterion, which is solved by half-quadratic optimization
in a multiplicative formulation. By doing so, the MDS copes with an
initial dissimilarity matrix contaminated with outliers,because the
correntropy criterion is closely related to the WelschM -estimator.
The proposed algorithm is coined as Multiplicative Half-Quadratic
MDS (MHQMDS). Its performance is assessed for potential func-
tions associated to variousM -estimators have been tested. Three
state-of-the-art MDS techniques, namely the Scaling by Majorizing
a Complicated Function (SMACOF), the Robust Euclidean Embed-
ding (REE), and the Robust MDS (RMDS), are implemented un-
der the same conditions. The experimental results indicatethat the
MHQMDS, outperforms the aforementioned state-of-the-artcom-
peting techniques.

Index Terms— Multidimensional scaling, robustness,M -
estimators, correntropy, half-quadratic optimization, face-pose im-
ages

1. INTRODUCTION

Multidimensional Scaling (MDS) can be treated as a transforma-
tion yielding a geometric model so that the resulting interpoint dis-
tances between objects in the new space approximate the initial pair-
wise dissimilarities as closely as possible. MDS algorithms were
firstly inaugurated in psychology [1]. Since then, the spectrum of
their applications has been expanded to include dimensionality re-
duction [2], graph drawing [3], phone callers’ social network visu-
alization [4], texture mapping on arbitrary surfaces [5], and local-
ization of nodes in a wireless sensor network [6]. MDS has found
many applications in the forensics and biometrics. For example, it
was applied to Earth Mover’s Distance (EMD) data calculatedbe-
tween 60 different writers in order to visualize each writer’s feature
in population, assisting forensic handwriting experts in the process
of writer verification by visualizing the diversity of overall shapes
of digit handwritings [7]. The MDS has also been used to visualize
the similarities between speaker models or between models and data
vectors from recordings in two dimensions [8]. Recently, a seman-
tic MDS for open-domain sentiment analysis was developed [9]. In
addition to the aforementioned applications that deal withthe so-
called metric MDS, the MDS was also applied to non-metric (or
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ordinal) data [10–12]. The latter approach has also proved useful
within forensics, such as forensic phychology research [13] or DNA
sequence analysis [14]. In the following, we shall confined ourselves
to the metric MDS.

Subspace clustering or hybrid linear modeling [15, 16] major
premise is that the total variance of the data in the aforementioned
tasks is contained in a small number of principal axes. Even if the
measured data are high-dimensional, their intrinsic dimensionality
is usually much lower. Let face images be represented as vectors by
using lexicographical ordering. Although face images lie on an in-
put space of high dimensionality (i.e.,d = 4096 for images of size
64 × 64), their meaningful structure exhibits much fewer indepen-
dent degrees of freedom. For example, it has been demonstrated that
face images actually lie on a three-dimensional manifold, which is
parameterized by the two pose variables (left-right pose, up-down
pose) and one lighting direction variable [2]. Here, we are address-
ing the following problem: Given a dissimilarity matrix among face
images whose elements are corrupted by nominal errors as well as
outliers how one may accurately visualize these images in two di-
mensions by finding a two-dimensional embedding of face-poses.

The traditional algorithms for the solution of the MDS problem,
like the classical MDS [1] and the scaling by majorizing a compli-
cated function (SMACOF) [17], despite their simplicity, are not ro-
bust when the initial dissimilarities are contaminated with outliers.
Even a single outlier in the dissimilarity matrix may distort severely
the solution of the classical MDS [18,19], because the noiseis prop-
agated to each element of the distance matrix through the double-
centering process involved (cf. next section).

The motivation for this paper stems from the insight that by em-
ployingM -estimators in the solution of the MDS problem, robust-
ness to outliers is gained. Particularly, when the dissimilarity matrix
is contaminated with outliers the following novel contributions are
made: 1) A framework, that is based on half-quadratic (HQ) mini-
mization in combination withM -estimators, is developed in order to
estimate the MDS embedding; 2) An efficient algorithm for finding
the MDS solution is proposed, based on the multiplicative form of
the HQ; 3) The WelschM -estimator, which is closely related to the
maximum correntropy criterion, is thoroughly studied for solving the
MDS problem.

Notation: Scalars are denoted by lowercase letters (e.g.,λ1),
vectors appear as lowercase boldface letters (e.g.,x), and matri-
ces are indicated by uppercase boldface letters (e.g.,X). The(i, j)
element ofX is represented by[X]ij or xij , while ( )T denotes
transposition. IfX is a square matrix, thenX−1 denotes its in-
verse andtr(X) is its trace. I stands for the identity matrix with
compatible dimensions,diag(x) denotes a square diagonal matrix
with the elements of vectorx on the main diagonal, whilediag(X)
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yields a column vector formed by the elements of the main diago-
nal of X. The i-th row of a matrixX is declared by the row vec-
tor xi, while thej-th column is indicated with the column vector
xj . If |·| denotes the absolute value operator, then, forx ∈ Rn×1,
‖x‖1 =

∑n
i=1|xi| and‖x‖2 =

√
∑n

i x
2
i are theℓ1 andℓ2 norms

of x, respectively. The Frobenius norm ofX ∈ Rn×m is defined as

‖X‖F =
√

∑n
i=1

∑m
j=1 x

2
ij .

The remainder of this paper is structured as follows: Section 2
is devoted to MDS approaches that reduce the influence of outliers.
Special emphasis is given to the Robust MDS (RMDS), proposedin
[20]. An overview of the correntropy measure is presented inSection
3. The proposed unified framework, where the MDS is treated as
maximization of a correntropy criterion, is presented in Section 4.
Experimental results for face-pose visualization are demonstrated in
Section 5 and discussed in Section 6. Finally, Section 7 concludes
the paper and indicates future research directions.

2. ROBUST MDS APPROACHES

Let N denote the number of objects andd be the embedding di-
mension. For visualization purposes,d admits the value 2 or 3.
Let ∆ = [δij ] denote the pairwise dissimilarity matrix, whereδij ,
i, j = 1, 2, . . . , N refers to the dissimilarity between the objectsi
andj. The resulting embedding in thed dimensional space is repre-
sented byX = [x1|x2|, ..., |xN ]T ∈ RN×d. That is, thei-th object
is mapped toxi = (xi1, xi2, ..., xij , ..., xid)

T ∈ Rd×1, wherexij

is thej-th coordinate ofxi. LetD(X) = [dij(X)] ∈ RN×N denote
the distance matrix having asij-th element theℓ2 norm betweenxi

andxj , i.e.,dij(X) = ‖xi − xj‖2. It can be shown that

[D(X)]2 = diag(diag(XX
T ))E+E diag(diag(XX

T ))−2XX
T

(1)
whereE is aN × N matrix with all its elements equal to one and
[D(X)]2 denotes the Hadamard product ofD(X) with itself.

The MDS yields a non-linear optimization problem, where the
minimization of distance distortions is sought. A least squares (LS)
loss function that represents the goodness of fit betweenδij and
dij(X) is the raw stress defined as:

σr(X) =

N
∑

i=1

N
∑

j=i+1

(δij − dij(X))2
△
=

N
∑

i<j

(δij − dij(X))2. (2)

Being a LS loss function, the raw stress is fragile to outliers. This
fragility has inspired many researchers to investigate possible alter-
natives in order to eliminate the influence of gross errors. For ex-
ample, the cost function

∥

∥∆2 −D2
∥

∥

1
was employed in the Robust

Euclidean Embedding (REE) [19] in order to minimize the influence
of noise. Other related ideas can be found in [21,22].

In the RMDS [20], the variableoij is inserted to model any
outlier in δij . That is, each dissimilarity element is modeled as
δij = dij(X) + oij + ǫij , whereǫij denotes a zero-mean indepen-
dent random variable modeling the nominal errors. Moreover, due to
the sparseness of the outliers, theℓ1 norm of theN ×N outlier ma-
trix is included in the optimization criterion, suggestingthat a small
amount of them admits non-zero values. Accordingly, the following
optimization problem is solved by alternating minimization [20]:

(Ô, X̂) = argmin
O,X

N
∑

i<j

(δij − dij(X)− oij)
2 + λ1

N
∑

i<j

|oij | (3)

where‖O‖1 = 2
∑

i<j |oij |. The solution of (3) at iterationt+1 is
given in closed form as [20]:

o
(t+1)
ij = Sλ1(δij − dij(X

(t))) (4)

X
(t+1) = L

†
L+(O

(t+1),X(t))X(t) (5)

whereSλ1(x) = sign(x)(|x| − λ1
2
)+ is the soft-thresholding oper-

ator with(·)+ = max{·, 0}. L is a symmetric matrix with diagonal
elements[L]ii = N − 1 and off-diagonal elements[L]ij = −1.
SinceL is not full rank, the Moore-Penrose pseudoinverse is used,
which is defined asL† = N−1J, whereJ = I − N−1 e eT is
the centering operator ande is theN × 1 vector of ones. In (5),
L+(O,X) is the Laplacian matrix having elements:

[L+(O,X)]ij =







−(δij − oij) d
−1
ij (X) (i, j) ∈ S(O,X)

0 (i, j) ∈ T(O,X)

−
∑N

k=1,k 6=i[L+(O,X)]ik (i, j) ∈ Q(O,X)
(6)

whereS(O,X) = {(i, j) : i 6= j, dij(X) 6= 0, δij > oij},
T(O,X) = {(i, j) : i 6= j, dij(X) = 0, δij > oij} and
Q(O,X) = {(i, j) : i = j, δij > oij}. The iterations in (5)
start with a randomly chosen initial configurationX(0) and a zero
initial outlier matrixO(0).

(5) is still vulnerable to outliers, because of the sensitivity of the
LS loss function to outliers. IfM -estimators (i.e., a generalization
of Maximum Likelihood Estimators [23]) replace the LS loss func-
tion with another, which increases less than the squared error, the
resulting objective function will be less fragile to outliers. Accord-
ingly, it is proposed to seek for theM -estimator ofX passing the
residualLX − L+(O

(t+1),X(t))X(t) through a functionφ(·) that
is non-negative and differentiable with respect toX and to impose a
regularization term associated to the Frobenius norm ofX, i.e.,

X̂ = argmin
X

{

φ(LX−L+(O
(t+1),X(t))X(t))+λ2 ‖X‖2F

}

(7)

The optimization problem (7) is solved by HQ minimization inSec-
tion 4 and links are established with the maximum correntropy cri-
terion, which is related to the WelschM -estimator in Section 3. By
doing so, a unified framework emerges that extends the work in[20].

3. CORRENTROPY

The (cross) correntropy was first introduced as a generalized cor-
relation function [24]. It is a nonlinear similarity metric, between
two arbitrary random variablesW andY , defined asVσ(W,Y ) =
E[gσ(W −Y )], whereE[·] is the expectation operator andgσ(x) =

1√
2πσ

exp(− x2

2σ2 ) is the Gaussian kernel with kernel sizeσ [25].
When a finite amount of data(yi, wi), i = 1, 2, . . . , N is available,
the sample estimator of correntropy is used, i.e.:

V̂σ(W,Y ) =
1

N

N
∑

i=1

gσ(wi − yi). (8)

The correntropy measure is symmetric, positive, and bounded, at-
taining a maximum forW = Y . Its properties depend on the kernel
size, whose selection is application specific. For two random vec-
torsW = (w1, w2, . . . , wN)T andY = (y1, y2, . . . , yN)T , the



Correntropy Induced Metric (CIM) is defined as [25]

CIM(W,Y) =

[

gσ(0) −
1

N

N
∑

i=1

gσ(wi − yi)

]1/2

. (9)

The CIM possesses the properties of symmetry, non-negativity and
triangle inequality. In addition,CIM(W,Y) = 0, if and only if
W = Y [25]. The Maximum Correntropy Criterion (MCC) aims
at maximizingV̂σ(W,Y ). Since the CIM is a decreasing function
of correntropy, the maximization of correntropy is equivalent to the
minimization of the CIM.

The Gaussian kernel makes the MCC a local criterion [25], re-
stricting the analysis to a local region of the joint space ofw andy.
Indeed, the correntropy is determined by the kernel function along
the linew = y. On the contrary, the mean squared error (MSE) is
a global criterion, where all the sample errors conduce considerably
to its estimation. For gross errors, the MSE increases quadratically,
while the CIM is close to 1, mitigating the effect of outliers.

The correntropy is closely related to theM -estimators [25]. By
settingφ(x) = 1 − gσ(x), the CIM is equivalent to the Welsch
M -estimator. The MCC as a similarity metric has proven to be ap-
propriate in non-linear, non Gaussian signal processing applications,
such as robust regression [25], pattern recognition [26], feature se-
lection [27], and subspace clustering [28,29].

4. AN HQ FRAMEWORK FOR MDS WITH OUTLIERS

In this section, the optimization problem (7) is solved withHQ min-
imization [30,31]. There are two forms of the HQ, the additive form
and the multiplicative one. Here, due to space limitations,we are
confined to the latter. Letφ(x) be a potential function that satisfies
the conditions in [30]. Then for fixedx, a conjugate (dual) function
ψ(·) exists, such that [30]:

φ(x) = inf
p∈R

{
1

2
px2 + ψ(p)} (10)

wherep is an auxiliary variable determined by the minimizer func-
tion δ(·) related toφ(·). Table 1 lists the potential functionφ(x) :
R → R for variousM -estimators and their minimizer functions
δ(x) : R → R for the multiplicative form of the HQ.

Table 1: Potential functions ofM -estimators and their minimizer
functions for the multiplicative form of HQ

M-estimator Potential Function Minimizer Function
ℓ2 φ(x) = x2/2 δ(x) = 1

ℓp φ(x) =
|x|p
p

p ∈ (1, 2] δ(x) = |x|p−2

Fair φ(x) = a2( |x|
a

−log(1 + |x|
a
)) δ(x) = 1

1+
|x|
a

Welsch φ(x) = a2

2
(1− exp(−x2

a2 )) δ(x) = exp(−x2

a2 )

Cauchy φ(x) = a2

2
log(1 + (x

a
)2) δ(x) = 1

1+( x
a
)2

Let Y = L+(O(t+1),X(t))X(t). The objective function in (7)
is rewritten as:

J(X,p) =

N
∑

i=1

1

2
pi

∥

∥

∥(LX −Y)i
∥

∥

∥

2

2
+

N
∑

i=1

ψ(pi)+λ2 ‖X‖2F (11)

wherep is the vector of the auxiliary variables. It is seen that (11)
depends on the weighted sum of the squaredℓ2 norms of the residu-

alsLX − Y for each row. Let(X̂, p̂) = argmin
X,p

{J(X,p)}. Due

to the fact that the auxiliary variables depend only on the minimizer
functionδ(·), the termsψ(·) are fixed and can be omitted, when we
minimize w.r.t.X. Thus, a local minimizer(X,p) is estimated us-
ing the following alternating minimization:

p
(t+1)
i = δ

(

∥

∥

∥(LX
(t) −Y)i

∥

∥

∥

2

)

(12)

X
(t+1) = argmin

X

{

tr((LX−Y)TP(t+1)(LX−Y))

+ λ2tr(X
T
X)

}

(13)

whereP(t+1) = diag(p(t+1)) is a diagonal matrix withii-th ele-
ment equal top(t+1)

i . Setting the derivative of (13) w.r.t.X equal to
zero, a closed-form solution is obtained, i.e.:

X
(t+1) = (LT

P
(t+1)

L+ λ2I)
−1

L
T
P

(t+1)
Y. (14)

At each iteration, the auxiliary variablesp(t+1)
i provide the weight

that regulates the impact of
∥

∥(LX − Y)i
∥

∥

2
. The introduction ofM -

estimators reduces the influence of the outliers, sincep
(t+1)
i always

admits a low weight, as is manifested by the presence ofδ(·) in (12)
that is associated to the potential functionφ of anM -estimator. The
multiplicative form of the HQ optimization is essentially an iterative
reweighted least-squares minimization, that has been usedin robust
regression in order to mitigate the outliers influence. The complete
procedure for the solution of (7) by the multiplicative formof HQ is
outlined in Algorithm 1. The initial configurationX(0) is chosen ran-
domly, while the initial outlier matrixO(0) is set to zero. The basic
propertyJ(X(t+1),p(t+1)) ≤ J(X(t),p(t+1)) ≤ J(X(t),p(t)) of
the HQ guarantees that the objective function is reduced at each iter-
ation until its convergence [30].

Algorithm 1 Multiplicative form of the HQ minimization for MDS
(MHQMDS)

Input: Initial outlier matrixO(0) and initial configurationX(0)

Output: Outlier matrixO(t+1) and coordinate matrixX(t+1)

1: for t = 0, 1, 2, . . . do
2: Find each entry ofO(t+1) via (4)
3: Updatep(t+1)

i via (12) withL+ as in (6)
4: UpdateX(t+1) via (14)
5: end for

5. EXPERIMENTAL RESULTS

The data set used to evaluate the performance of the MHQMDS al-
gorithm comprises a subset ofN = 100 from a total of 698 face im-
ages of size64× 64 with different poses and lighting directions [2].
Although these images lie on a high dimensionality input space (i.e.,
d = 4096 = 64 × 64), their intrinsic structure exhibits fewer in-
dependent degrees of freedom. More specifically, the imageslie on
a three-dimensional manifold, which can be parameterized by two
pose variables (left-right pose, up-down pose) and one lighting di-
rection variable [2].

Trying simply to obtain a two-dimensional embedding, pre-
serving the local structure captured by the pair-wise dissimilarities



among the face images, the initial100× 100 dissimilarity matrix∆
was first computed. Let thei-th face-pose image,i = 1, 2, . . . , 100
be represented byyi = (yi1, yi2, . . . , yij , . . . , yi,4096)

T ∈ R4096×1 ,
whereyij is the j-th coordinate ofyi, with j = 1, 2, . . . , 4096.
The ij-th element of the matrix∆ refers to the dissimilarity be-
tween the face imagesi and j, namely theℓ2 norm betweenyi

and yj . The distinct pairwise dissimilarities of this matrix are
N(N−1)

2
= 4950. The dissimilarity matrix∆ was artificially

contaminated by̟ = 500/4950 = 10.101% outliers, which were
drawn from a uniform distribution in[0, 3max{δij}]. The indices of
the outliers were chosen randomly. The parameterλ1 in the RMDS
algorithm was set to24.15 in order to identifyŜ = 500 outliers.
The same value ofλ1 was used in the MHQMDS algorithm.

In order to evaluate and benchmark the MHQMDS, three well
known MDS techniques were implemented in the same environment
(Matlab) and tested on the same dissimilarity matrix. Thesetech-
niques were: a) the popular SMACOF algorithm [17], b) the sub-
gradient version of the REE algorithm [19], and c) the RMDS al-
gorithm [20]. In all techniques, the authors’ recommendations were
strictly followed, while the implementation was intended to achieve
the best possible performance.

The embedding quality for each algorithm was evaluated with
respect to three figures of merit: a) the normalized outlier-free stress

σ(X̂, Ô) =

√∑
(i,j)∈Q(δij−dij(X))2

∑
(i,j)∈Q δ2

ij

, as in [20], whereQ denotes

the set of outlier-free dissimilarities (i.e., when[O]ij = 0), b) the
number of outlierŝS as in [20], c) the raw stressσr(X̂) between the
distances of the final embedding and the initial non-contaminated
(clean) dissimilarities. For fixed configurations, the Procrustean
goodness-of-fit̺ can also be used as a figure of merit, standardized
by a measure of the scale forX1.

In order to assess the implemented methods, 100 Monte Carlo
simulations were run using a different random initial configuration
X(0) on each run. The reported figures of merit refer to the run,
where the RMDS algorithm has exhibited the minimum value in raw
stressσr(X̂), namely when the final embedding was closer to the
initial configuration. The algorithms RMDS and MHQMDS termi-

nated when
∥

∥

∥
X(t+1) −X(t)

∥

∥

∥

F
/
∥

∥

∥
X(t+1)

∥

∥

∥

F
was less than10−6 or

when the number of iterations reached5000.

Table 2: Figures of merit judging the embedding quality obtained
by the SMACOF, the REE, and the RMDS algorithms applied to the
face images subset whose 10.101% of elements have been corrupted
by outliers.
̟ = 40% SMACOF REE RMDS
Normalized outlier-free stressσ(X̂, Ô) 0.5854 0.6796 0.2544
Estimated outlierŝS - - 500
Raw Stressσr(X̂) 4.22 105 3.38 105 1.44 105

Table 2 gathers the figures of merit related to the embedding
quality delivered by the SMACOF, the REE and the RMDS algo-
rithms. The normalized outlier free stressσ(X̂, Ô) and the raw
stressσr(X̂), after the implementation of the SMACOF algorithm
on the non-contaminated (clean) data, were equal to0.2515 and
1.3088 105, respectively. The figures of merit of the MHQMDS al-
gorithm, for various values ofλ2 ∈ [1, 100], are plotted in Figures
1 and 2. The plot of the normalized outlier-free stressσ(X̂, Ô) is

1In Matlab, the measure of the scale for X is given by
sum(sum((X-repmat(mean(X,1),size(X,1),1)).ˆ2,1)) .

roughly the same with that of the raw stressσr(X̂). The parameter
a was set equal to1000, 80, and20 for the Welsch, the Cauchy and
the FairM -estimator, respectively.
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Fig. 1: Estimated number of outlierŝS of the MHQMDS algorithm.
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Fig. 2: Raw stressσr(X̂) of the MHQMDS algorithm.

It is obvious that theseM -estimators, when they are employed
in the multiplicative form of the HQ, outperform the state ofthe art
approaches for a wide range of values admitted by the regularization
parameterλ2. The normalized outlier-free stressσ(X̂, Ô) and the
raw stressσr(X̂) for the Welsch, Cauchy and FairM -estimators
are less than the corresponding values of the RMDS algorithmfor
λ2 ∈ [1, 100]. The performance ofℓp M -estimator forp = 1.999
was comparable to that of the WelschM -estimator.

The embeddings delivered by the SMACOF and MHQMDS al-
gorithms are demonstrated in Figure 3. The MHQMDS embedding
was obtained by the WelschM -estimator forλ2 = 100. In this
case, the raw stressσr(X̂) of the MHQMDS algorithm was equal
to 1.41 105. The SMACOF embedding was being matched to that
of the MHQMDS algorithm via Procrustes’ analysis. It is seenthat
there is a great differentiation, which is also validated bythe large
value of the standardized Procrustean goodness-of-fit̺1, which is
0.4027. The same conclusions can be drawn by the REE embed-
ding, whose̺ 1 is equal to0.8296. The RMDS and MHQMDS em-
beddings are approximately the same, as illustrated in Figure 4, even
though the MHQMDS algorithm exhibits lower raw stressσr(X̂)

and normalized outlier-free stressσ(X̂, Ô) than the RMDS.
The SMACOF embedding of the face-pose images subset on the

clean data, where a sample of the real input images is superimposed,
is depicted in Figure 5. The SMACOF embedding on the clean data
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Fig. 3: SMACOF and MHQMDS embeddings on the face-pose im-
ages subset whose 10.101% of elements have been corrupted byout-
liers.
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Fig. 4: RMDS and MHQMDS embeddings on the face-pose images
subset whose 10.101% of elements have been corrupted by outliers.
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Fig. 5: SMACOF embedding on the clean subset of face-pose im-
ages with the real images superimposed on the embedding.

and the MHQMDS embedding on the corrupted data are contrasted
in Figure 6. The latter was matched to the SMACOF embedding
via Procrustes’ analysis. It is apparent that the proposed algorithm

MHQMDS on the corrupted subset preserves the embedding struc-
ture obtained by the SMACOF algorithm on the non-contaminated
subset. This is also validated by the low value of the standardized
Procrustean goodness-of-fit̺1, which is0.0149. The corresponding
value of the RMDS algorithm is0.0155, which demonstrates again
the better performance of the MHQMDS than that of the RMDS.
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Fig. 6: Embeddings provided by the SMACOF on the clean data and
the MHQMDS on the corrupted data.

6. DISCUSSION

The efficiency of the MHQMDS algorithm relies heavily on the ker-
nel sizea of the Welsch potential function. Whena is large, the
performance of the WelschM -estimator approximates that of the
ℓ2 M -estimator, while a choice of a small kernel sizea leads to a
smallerλ2 value, where the raw stressσr(X) attains its minimum,
accelerating the finding of the optimal approximation of thetrue con-
figuration. It is worth noting that if a smaller value of the parame-
ter λ1 was used (i.e.,λ1 = 10 instead of24.15), the MHQMDS
would still deliver the top performance. In such a case, the plots
of σ(X̂, Ô), σr(X̂) and Ŝ would roughly be the same and would
approximate the curves illustrated in Figure 2. The computational
complexity of the MHQMDS algorithm, which involves alternating
updates ofO, p andX, is proven to beO(N3) at each iteration.

If the initial dissimilarity matrix is not available, the normalized
outlier free stressσ(X̂, Ô) and the number of outlierŝS can only be
used as figures of merit. Under these circumstances, the MHQMDS
algorithm is implemented for a plausible range of values forλ2, se-
lecting a small value of the parameterλ1, and then the embedding
with the minimum value of thêS is selected. Extensive experimen-
tal results have proven that this embedding is close to the embed-
ding where the MHQMDS algorithm obtains its minimum raw stress
σr(X̂), which indicates that the true configuration is approximated
to a great extent. It has also been proven that, by selecting asmall
value of the parameterλ1, the meritσ(X̂, Ô) may not provide valu-
able information about the embedding quality, since a higher value
of this metric may correspond to a smaller value ofσr(X̂).

7. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

A new efficient HQ framework, using the multiplicative form,has
been introduced for solving the MDS problem in an environment



contaminated by outliers. In two-dimensional embedding offace-
poses, the experimental findings have demonstrated that thepro-
posed algorithm performs substantially better than the state-of-the-
art. For any given configuration contaminated with outliers, it is
possible to find anM -estimator so that the proposed MHQMDS out-
performs the state-of-the-art MDS approaches. Future research will
address techniques for handling missing data and estimating the ker-
nel size of the potential function within the MHQMDS. For thelatter

problem, one may usea =

√

‖LX−Y‖2
F

2Nd
at each iteration [28].
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