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ABSTRACT

Here, we are interested in obtaining a two-dimensional eiting

of face-pose images that preserves their local structyreiczd by
the pair-wise distances among them by using multidimeasiscal-
ing (MDS). The MDS problem is formulated as maximization of a
correntropy criterion, which is solved by half-quadratitimization

in a multiplicative formulation. By doing so, the MDS copestwan
initial dissimilarity matrix contaminated with outlierbecause the
correntropy criterion is closely related to the Welsehestimator.
The proposed algorithm is coined as Multiplicative Half&@tatic
MDS (MHQMDS). Its performance is assessed for potentiatfun
tions associated to variou¥/-estimators have been tested. Three
state-of-the-art MDS techniques, namely the Scaling byokizing

ordinal) data [10-12]. The latter approach has also prowdull
within forensics, such as forensic phychology researchgi®NA
sequence analysis [14]. In the following, we shall confinebelves
to the metric MDS.

Subspace clustering or hybrid linear modeling [15, 16] majo
premise is that the total variance of the data in the aforé¢ioreed
tasks is contained in a small number of principal axes. Ef/émei
measured data are high-dimensional, their intrinsic dsiterality
is usually much lower. Let face images be represented asreduy
using lexicographical ordering. Although face images leam in-
put space of high dimensionality (i.el,= 4096 for images of size
64 x 64), their meaningful structure exhibits much fewer indepen-
dent degrees of freedom. For example, it has been dema@ubtheit

a Complicated Function (SMACOF), the Robust Euclidean Einbe face imaggs actually lie on a three-.dimensional.manifolkiipbvis
ding (REE), and the Robust MDS (RMDS), are implemented unbarameterized by the two pose variables (left-right pogedawn

der the same conditions. The experimental results inditatethe
MHQMDS, outperforms the aforementioned state-of-theearn-
peting techniques.

Index Terms— Multidimensional scaling, robustness\/-
estimators, correntropy, half-quadratic optimizaticsge-pose im-
ages

1. INTRODUCTION

Multidimensional Scaling (MDS) can be treated as a tramséor
tion yielding a geometric model so that the resulting intémpdis-
tances between objects in the new space approximate tta jriir-
wise dissimilarities as closely as possible. MDS algorighwere
firstly inaugurated in psychology [1]. Since then, the speutof
their applications has been expanded to include dimenlgipma-
duction [2], graph drawing [3], phone callers’ social netlweisu-
alization [4], texture mapping on arbitrary surfaces [Sjddocal-
ization of nodes in a wireless sensor network [6]. MDS hasidou
many applications in the forensics and biometrics. For etanit
was applied to Earth Mover's Distance (EMD) data calculdied
tween 60 different writers in order to visualize each wiitéeature
in population, assisting forensic handwriting expertshia process
of writer verification by visualizing the diversity of ovdrahapes
of digit handwritings [7]. The MDS has also been used to igea
the similarities between speaker models or between moddldata
vectors from recordings in two dimensions [8]. Recentlyeman-
tic MDS for open-domain sentiment analysis was developgdf9
addition to the aforementioned applications that deal \thth so-

called metric MDS, the MDS was also applied to non-metric (or

*Supported by the COST Action IC 1106 “Integrating Biomegrand
Forensics for the Digital Age”.

pose) and one lighting direction variable [2]. Here, we atérass-
ing the following problem: Given a dissimilarity matrix amgpface
images whose elements are corrupted by nominal errors dsasvel
outliers how one may accurately visualize these images indiw
mensions by finding a two-dimensional embedding of faceepos

The traditional algorithms for the solution of the MDS preiul,
like the classical MDS [1] and the scaling by majorizing a @tim
cated function (SMACOF) [17], despite their simplicityearot ro-
bust when the initial dissimilarities are contaminatedhvatitliers.
Even a single outlier in the dissimilarity matrix may digteeverely
the solution of the classical MDS [18,19], because the nisipeop-
agated to each element of the distance matrix through thblelou
centering process involved (cf. next section).

The motivation for this paper stems from the insight that iny e
ploying M-estimators in the solution of the MDS problem, robust-
ness to outliers is gained. Particularly, when the dissirityl matrix
is contaminated with outliers the following novel contiiioms are
made: 1) A framework, that is based on half-quadratic (HQ)imi
mization in combination with\/-estimators, is developed in order to
estimate the MDS embedding; 2) An efficient algorithm for fiad
the MDS solution is proposed, based on the multiplicativenfof
the HQ; 3) The Welscl/-estimator, which is closely related to the
maximum correntropy criterion, is thoroughly studied folving the
MDS problem.

Notation Scalars are denoted by lowercase letters (e\g),
vectors appear as lowercase boldface letters (&)g.and matri-
ces are indicated by uppercase boldface letters ®)g.The (i, 7)
element ofX is represented byX];; or z;;, while ()* denotes
transposition. 1fX is a square matrix, thelX ' denotes its in-
verse andr(X) is its trace. I stands for the identity matrix with
compatible dimensionsliag(x) denotes a square diagonal matrix
with the elements of vector on the main diagonal, whildiag(X)
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yields a column vector formed by the elements of the mainadiag
nal of X. Thei-th row of a matrixX is declared by the row vec-
tor x*, while the j-th column is indicated with the column vector
x;. If || denotes the absolute value operator, thenxfa R"*",
IIx[l, = >or |z:| and||x|l, = /> . «7 are thel; and/; norms
of x, respectively. The Frobenius normXf € R"*" is defined as
HX”F = Zz 1 Z;n 1 xl]

The remainder of this paper is structured as follows: Saecio
is devoted to MDS approaches that reduce the influence aémutl

Special emphasis is given to the Robust MDS (RMDS), propased
[20]. An overview of the correntropy measure is presentegkiction

where[|O|[, =237, _/|oi;|. The solution of (3) at iteration+ 1 is
given in closed form as [20]:

(t+1)
Oij

X (t+1)

S (815 — dig (X))
T L+(O<t+1)7X<“) X(t)

(4)
()

whereS, (z) = sign(z)(|z| — L)+ is the soft-thresholding oper-
ator with (-); = max{-,0}. L is a symmetric matrix with diagonal
elementsL];; = N — 1 and off-diagonal elementd.];; = —1.
SinceL is not full rank, the Moore-Penrose pseudoinverse is used,
which is defined ad.” = N~'J, whereJ = I — N~ 'ee” is

the centering operator anglis the N x 1 vector of ones. In (5),

3. The proposed unified framework, where the MDS is treated ag, +(0,X) is the Laplacian matrix having elements:

maximization of a correntropy criterion, is presented icti®a 4.
Experimental results for face-pose visualization are destrated in
Section 5 and discussed in Section 6. Finally, Section 7lades
the paper and indicates future research directions.

2. ROBUST MDS APPROACHES

Let N denote the number of objects addbe the embedding di-

mension. For visualization purposes,admits the value 2 or 3.
Let A = [§;;] denote the pairwise dissimilarity matrix, whetg,
1,7 = 1,2,..., N refers to the dissimilarity between the objetts

andj. The resulting embedding in thedimensional space is repre-
sented byX = [x1|xz|, ..., |xn]7 € RY*?. That s, thei-th object
is mapped tax; = (i1, Ti2, .., Tij, oo, Zia) . € R, wherea;

is thej-th coordinate ok;. LetD(X) = [di;(X)] € RV *¥ denote
the distance matrix having ag-th element thé> norm betweerx;
andx;, i.e.,d;;(X) = ||x; — x,]|,. It can be shown that

[D(X))* = diag(diag(XX")) E4+E diag(diag(XX"))—2XX"

1)
whereE is a N x N matrix with all its elements equal to one and
[D(X)]? denotes the Hadamard productldfX) with itself.

— (65 — 0i5) di;*(X)

7

[L+(07X)]Z] = 0 (7‘7.7) € T(va)

= sl L (0. X (6,5) € Q(Ofe})()
whereS(0,X) = {(i,j) : @ # j, di;(X) # 0,0i5 > o045},
T(O,X) = {(’L,j) ) ;é 7, ZJ( ) = 0, (5L] > OZ‘J‘} and
Q(0,X) = {(4,4) : ¢ = J, di; > o0i;}. The iterations in (5)

start with a randomly chosen initial configuratidt® and a zero
initial outlier matrixO(®.

(5) is still vulnerable to outliers, because of the senisjtiof the
LS loss function to outliers. Ifi/-estimators (i.e., a generalization
of Maximum Likelihood Estimators [23]) replace the LS los®i-
tion with another, which increases less than the squarext, ehe
resulting objective function will be less fragile to outke Accord-
ingly, it is proposed to seek for th&/-estimator ofX passing the
residualLX — L, (O“+Y X®)X® through a functions(-) that
is non-negative and differentiable with respecXa@nd to impose a
regularization term associated to the Frobenius noriX afe.,

X = argmin {¢(LX—L+(0““), XX )4 x, ||X|\%} @)
X

The MDS yields a non-linear optimization problem, where the The optimization problem (7) is solved by HQ minimizatiorSac-

minimization of distance distortions is sought. A leasta®gs (LS)
loss function that represents the goodness of fit betwegmnd

di;(X) is the raw stress defined as:
N A N
o (X)=>" (05 — dij(X)* = (65 — dij(X)*. (2)
i=1 j=i+1 i<j

Being a LS loss function, the raw stress is fragile to ouslieThis
fragility has inspired many researchers to investigateiptes alter-
natives in order to eliminate the influence of gross errors &x-
ample, the cost functiojA* — D?||, was employed in the Robust
Euclidean Embedding (REE) [19] in order to minimize the iafiue
of noise. Other related ideas can be found in [21, 22].

In the RMDS [20], the variable;; is inserted to model any
outlier in d;;.
0i; = di; (X) + 045 + €ij, Wheree;; denotes a zero-mean indepen-
dent random variable modeling the nominal errors. Morealgz to
the sparseness of the outliers, thenorm of theN x N outlier ma-
trix is included in the optimization criterion, suggestitingt a small
amount of them admits non-zero values. Accordingly, thio¥dhg
optimization problem is solved by alternating minimizat{@0]:

N
(0,X) = rgmm Z i — dij(X) — 0i)” + A1 Z|Oij| ©)
i<j 1<j

That is, each dissimilarity element is modeled as\when a finite amount of dat@y;, wi), i = 1,2,.

tion 4 and links are established with the maximum correntrop-
terion, which is related to the Welsd¥f -estimator in Section 3. By
doing so, a unified framework emerges that extends the wq&oin

3. CORRENTROPY

The (cross) correntropy was first introduced as a genethtine-
relation function [24]. It is a nonlinear similarity metribetween
two arbitrary random variabled” andY’, defined ad/,(W,Y) =
E[g,(W —Y)], whereE[] is the expectation operator apd(z) =
\/2LMexp( —(fg) is the Gaussian kernel with kernel size[25].
, N is available,

the sample estimator of correntropy is used i.e.

1 N
Y)=+ > 9o (wi —ya).
i=1

The correntropy measure is symmetric, positive, and badinde
taining a maximum foi’ = Y. Its properties depend on the kernel
size, whose selection is application specific. For two ramdec-
torsW = (wi,wz,... 7wN)T andY = (y1,v2,... 7yN)T, the

(8)



Correntropy Induced Metric (CIM) is defined as [25]

1/2
Zgo i—yz} )

The CIM possesses the properties of symmetry, non-netyasiaid
triangle inequality. In additionC'7M(W,Y) = 0, if and only if
W = Y [25]. The Maximum Correntropy Criterion (MCC) aims
at maximizingV,, (W, Y). Since the CIM is a decreasing function
of correntropy, the maximization of correntropy is equévélto the
minimization of the CIM.

CIM(W,Y) = { 9o

The Gaussian kernel makes the MCC a local criterion [25], re-

stricting the analysis to a local region of the joint spacevaindy.
Indeed, the correntropy is determined by the kernel funcéilong

alsLX — Y for each row. Le(X,p) = argmln{J(X p)}. Due

to the fact that the auxiliary variables depend only on theimizer
functiond(+), the termsy(-) are fixed and can be omitted, when we
minimize w.r.t. X. Thus, a local minimize(X, p) is estimated us-
ing the following alternating minimization:

p{HY = 5<H(Lx<” ~Y) 2) (12)
X+ — argmin{tr((LX ~Y)"PUT(LX - Y))
X
+ )\gtr(XTX)} 13)

the linew = y. On the contrary, the mean squared error (MSE) iswhereP**1) = diag(p**?)) is a diagonal matrix withi-th ele-

a global criterion, where all the sample errors conduceidersbly
to its estimation. For gross errors, the MSE increases qtiadHy,
while the CIM is close to 1, mitigating the effect of outliers

The correntropy is closely related to thé-estimators [25]. By
setting¢(z) = 1 — go(z), the CIM is equivalent to the Welsch

M-estimator. The MCC as a similarity metric has proven to be apAt eac

propriate in non-linear, non Gaussian signal processipticgtions,
such as robust regression [25], pattern recognition [2&]{ure se-
lection [27], and subspace clustering [28, 29].

4. AN HQ FRAMEWORK FOR MDS WITH OUTLIERS

In this section, the optimization problem (7) is solved Wit min-
imization [30,31]. There are two forms of the HQ, the additiorm
and the multiplicative one. Here, due to space limitatioms,are
confined to the latter. Let(z) be a potential function that satisfies
the conditions in [30]. Then for fixed, a conjugate (dual) function
() exists, such that [30]:
. 1 o

P(z) = ;gﬂ{ 5P +9(p)} (10)
wherep is an auxiliary variable determined by the minimizer func-
tion §(-) related top(-). Table 1 lists the potential functiop(z) :
R — R for various M-estimators and their minimizer functions
0(x) : R — R for the multiplicative form of the HQ.

Table 1. Potential functions of\/-estimators and their minimizer
functions for the multiplicative form of HQ

M-estimator ~ Potential Function Minimizer Function
2 (z )—m2/2 () =1

£p P(z) =~ —pe (1,2 6(x) = \w\p ’
Fair o) = (T Tog(1 1 ) o(r) = e
Welsch  ¢(r) = S (—exp(-22)  0) = (—%)
Cauchy  o(x) = 4 log(1+ (2)2) 5) = iy

LetY = L, (0“1 X®)X®  The objective function in (7)
is rewritten as:

:zle

i=1

J(X,p)

(LX - Y)’

D+ XI5 (1)

wherep is the vector of the auxiliary variables. It is seen that (11)
depends on the weighted sum of the squdkedorms of the residu-

ment equal tg! ™). Setting the derivative of (13) w.rX equal to
zero, a closed-form solution is obtained, i.e.:

X =@ P L+ )T LT P Y. (19)
h iteration, the auxiliary varlabl@ét“) provide the weight
that regulates the impact §fLX — Y)*||,. The introduction of\/-

estimators reduces the influence of the outliers, sp{:%fél) always
admits a low weight, as is manifested by the presencg-pfin (12)
that is associated to the potential functidof an M -estimator. The
multiplicative form of the HQ optimization is essentially #gerative
reweighted least-squares minimization, that has beeningetust
regression in order to mitigate the outliers influence. Tomglete
procedure for the solution of (7) by the multiplicative foohHQ is
outlined in Algorithm 1. The initial configuratiod(®) is chosen ran-
domly, while the initial outlier matriyO(“) is set to zero. The basic
property.] (X +1, pttH) < (X ptth) < (X, p™) of
the HQ guarantees that the objective function is reducedddt ier-
ation until its convergence [30].

Algorithm 1 Multiplicative form of the HQ minimization for MDS
(MHQMDS)

Input: Initial outlier matrix O‘®) and initial configurationX (©)
Output: Outlier matrixO**+) and coordinate matrix "

1. fort=0,1,2,...do

2:  Find each entry 00"V via (4)

3. Updatep!""" via (12) withL, asin (6)
4:  UpdateX“tY via (14)

5: end for

5. EXPERIMENTAL RESULTS

The data set used to evaluate the performance of the MHQMDS al
gorithm comprises a subset &f = 100 from a total of 698 face im-
ages of siz&4 x 64 with different poses and lighting directions [2].
Although these images lie on a high dimensionality inputsg@ae.,
d = 4096 = 64 x 64), their intrinsic structure exhibits fewer in-
dependent degrees of freedom. More specifically, the imbges
a three-dimensional manifold, which can be parameterizetiibb
pose variables (left-right pose, up-down pose) and onditigtdi-
rection variable [2].

Trying simply to obtain a two-dimensional embedding, pre-
serving the local structure captured by the pair-wise didarities



among the face images, the initidl0 x 100 dissimilarity matrixA roughly the same with that of the raw stress(X). The parameter
was first computed. Let theth face-pose image,= 1,2,...,100 a was set equal t@000, 80, and20 for the Welsch, the Cauchy and

be represented by = (yi1, Yi2, - - -, Yij, - - - » Yira006) " € R96X1 " the FairM-estimator, respectively.
wherey;; is the j-th coordinate ofy;, with j = 1,2,...,4096.

The ij-th element of the matriA refers to the dissimilarity be- - | Nmber ofoutiers versus),
tween the face imagesand j, namely the/s norm betweeny;

andy;. The distinct pairwise dissimilarities of this matrix are ol | T e

N-D — 4950. The dissimilarity matrixA was artificially Cmeps

520+

contaminated byo = 500/4950 = 10.101% outliers, which were
drawn from a uniform distribution ifd, 3 max{d;; }]. The indices of
the outliers were chosen randomly. The param&tein the RMDS

515

Number of outliers

algorithm was set t@4.15 in order to identifyS = 500 outliers. si0l
The same value of; was used in the MHQMDS algorithm.
In order to evaluate and benchmark the MHQMDS, three well sos|
known MDS techniques were implemented in the same envirahme —
(Matlab) and tested on the same dissimilarity matrix. Thes- S0 % ym - o a
niques were: a) the popular SMACOF algorithm [17], b) the-sub *

gradient version of the REE algorithm [19], and c) the RMDS al
gorithm [20]. In all techniques, the authors’ recommera@iwere  Fig. 1: Estimated number of outliet$ of the MHQMDS algorithm.
strictly followed, while the implementation was intendedachieve
the best possible performance.
The embedding quality for each algorithm was evaluated with 10 Raw stress versus
respect to three figures of merit: a) the normalized oufliee-stress ‘
S AV | XeqBij—di (X))?
o(X,0) = Xapee i Lo}
the set of outlier-free dissimilarities (i.e., wh@®];; = 0), b) the ‘ g
number of outliersS as in [20], c) the raw stress,(X) between the a1 3
distances of the final embedding and the initial non-contateid
(clean) dissimilarities. For fixed configurations, the Pustean
goodness-of-fip can also be used as a figure of merit, standardized 130 welsch
by a measure of the scale f&*. LT
In order to assess the implemented methods, 100 Monte Carlo = B =RUDS
simulations were run using a different random initial confafion 127 - - - -
X© on each run. The reported figures of merit refer to the run, %
where the RMDS algorithm has exhibited the minimum valueim r

stresso(X), namely when the final embedding was closer to the Fig. 2. Raw stress,. (X) of the MHQMDS algorithm.
initial configuration. The algorithms RMDS and MHQMDS termi
nated wherHX‘t“) -X®| HX““) H was less thai0 = or It is obvious that thes@/-estimators, when they are employed
when the number of iteratiogs reachﬁd)ofw in the muItipIicative.form of the HQ, outperfprm the statejtbé.art
approaches for a wide range of values admitted by the regatam
. o . ) ~ parameter\,. The normalized outlier-free stres¢X, O) and the
Table 2 Figures of merit judging the embedding quality obtained ray stresss, (X) for the Welsch, Cauchy and FalZ-estimators

by the SMACOF, the REE, and the RMDS algorithms applied to theyre |ess than the corresponding values of the RMDS algoritim
face images subset whose 10.101% of elements have beepteorru ), ¢ [1,100]. The performance of, M-estimator forp = 1.999

, as in [20], where denotes bl

Raw stress

141

100

by outliers. was comparable to that of the Welsth-estimator.
w = 40% SMACOF REE RMDS The embeddings delivered by the SMACOF and MHQMDS al-
Normalized outlier-free stresgX, O)  0.5854 0.6796  0.2544  gorithms are demonstrated in Figure 3. The MHQMDS embedding
Estimated outlierssy - - 500 was obtained by the Welsch/-estimator forAo = 100. In this
Raw Stress, (X) 4.2210°  3.3810° 1.4410°  case, the raw stress.(X) of the MHQMDS algorithm was equal

to 1.41 10°. The SMACOF embedding was being matched to that
Table 2 gathers the figures of merit related to the embedding’ the MHQMDS algorithm via Procrustes’ analysis. It is séieat

quality delivered by the SMACOF, the REE and the RMDS algo- ere is a great differgntiation, which is also validateo!tlmg Iarge
rithms. The normalized outlier free stres¢X, O) and the raw value of the standardized Procrustean goodness-ef-fitvhich is

stresso,(X), after the implementation of the SMACOF algorithm 3iﬁg%hg::ms?sﬁf;ntwggas (1:'?1?3 tl)?eMdDrgm;r:] (5) ht:gﬁgg :rr:_bed-

on the non-contaminated (clean) data, were equal.2615 and beddings are approximately the same, as illustrated inr&igLeven

1.3088 10°, respectively. The figures of merit of the MHQMDS al- . o A
gorithm, for various values of. € [1,100], are plotted in Figures though the.MHQMI?S algorithm eAXh'Ab'ts lower raw stresg(X)
and normalized outlier-free stres$X, O) than the RMDS.

1 and 2. The plot of the normalized outlier-free stre$X, O) is The SMACOF embedding of the face-pose images subset on the
1n Matlab, the measure of the scale for X is given by clean data, where a sample of the real input images is supesidl,
sum(sum((X-repmat(mean(X,1),size(X,1),1))."2,1)) . is depicted in Figure 5. The SMACOF embedding on the cleaa dat
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Fig. 3: SMACOF and MHQMDS embeddings on the face-pose im-
ages subset whose 10.101% of elements have been corruppett by
liers.
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MHQMDS on the corrupted subset preserves the embedding- stru
ture obtained by the SMACOF algorithm on the non-contaneithat
subset. This is also validated by the low value of the statided
Procrustean goodness-ofit, which is0.0149. The corresponding
value of the RMDS algorithm i8.0155, which demonstrates again
the better performance of the MHQMDS than that of the RMDS.

» _J ® MHQMDS on corvupled dala x SMACOF on clean data
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Fig. 6: Embeddings provided by the SMACOF on the clean data and
the MHQMDS on the corrupted data.

6. DISCUSSION

The efficiency of the MHQMDS algorithm relies heavily on therk
nel sizea of the Welsch potential function. Whenis large, the
performance of the Welsch/-estimator approximates that of the
¢> M-estimator, while a choice of a small kernel sizéeads to a

Fig. 4 RMDS and MHQMDS embeddings on the face-pose imagesmaller; value, where the raw stress (X) attains its minimum,

subset whose 10.101% of elements have been corrupted fgrsutl

.ddh
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Fig. 5: SMACOF embedding on the clean subset of face-pose im
ages with the real images superimposed on the embedding.

accelerating the finding of the optimal approximation ofttiue con-
figuration. It is worth noting that if a smaller value of therpae-
ter \; was used (i.e.A1 = 10 instead of24.15), the MHQMDS
would still deliver the top performance. In such a case, tog¢sp
of 0(X, 0), 0,(X) and S would roughly be the same and would
approximate the curves illustrated in Figure 2. The contjrial
complexity of the MHQMDS algorithm, which involves altetirey
updates 0, p andX, is proven to beD(N?) at each iteration.

If the initial dissimilarity matrix is not available, the noalized
outlier free stress (X, O) and the number of outlier$ can only be
used as figures of merit. Under these circumstances, the MBI®M
algorithm is implemented for a plausible range of valuesXgrse-
lecting a small value of the parametgr, and then the embedding
with the minimum value of thé is selected. Extensive experimen-
tal results have proven that this embedding is close to theedm
ding where the MHQMDS algorithm obtains its minimum raw stre
or(X), which indicates that the true configuration is approximate
to a great extent. It has also been proven that, by selectamyadi
value of the parameter;, the merito (X, Q) may not provide valu-
able information about the embedding quality, since a hightie
of this metric may correspond to a smaller valuerpfX).

7. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

and the MHQMDS embedding on the corrupted data are contraste
in Figure 6. The latter was matched to the SMACOF embeddingA new efficient HQ framework, using the multiplicative formas

via Procrustes’ analysis. It is apparent that the proposgatithm

been introduced for solving the MDS problem in an environimen



contaminated by outliers. In two-dimensional embeddindacg-
poses, the experimental findings have demonstrated thatrtie
posed algorithm performs substantially better than thiesifithe-
art. For any given configuration contaminated with outligtss

possible to find ad/-estimator so that the proposed MHQMDS out-

performs the state-of-the-art MDS approaches. Futurareksevill
address techniques for handling missing data and estigténker-
nel size of the potential function within the MHQMDS. For tager

|ILX-Y|2 . .
problem, one may use= \/ —=x,—= at each iteration [28].
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