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Abstract

Active vision aims to equip computer vision methods with the ability to dynamically
adjust the capturing sensor’s viewpoint, position, or parameters in real time. This dy-
namic capability allows for improving the accuracy of the perception process. How-
ever, training and evaluating an active vision model often requires a large number of
annotated images captured under different sensor and environmental settings, in order
to emulate actions like moving around, approaching, or moving away from a person
and thus effectively model the active perception dynamics. Obviously, collecting and
annotating such datasets is a challenging and expensive task. To overcome these limita-
tions, this paper introduces a synthetic image generation pipeline specifically designed
to support active vision tasks. The pipeline is developed using a highly realistic sim-
ulation framework based on Unity and allows for the generation of images depicting
humans, captured at varying view angles, distances, illumination conditions, and back-
grounds, supporting a wide range of different tasks. Two annotated datasets, namely
ActiveHuman and ActiveFace, are generated using the pipeline and the effectiveness
of the proposed approach is demonstrated by a solid use case that involves training and
evaluating an embedding-based active face recognizer. Furthermore, we demonstrate
how the proposed generation approach enables expanding existing active face recogni-
tion methods by training models that control both the left/right movements, as well as
the distance to a subject, leveraging the additional information provided by ActiveFace
dataset. To facilitate replication and encourage the use of the generated datasets for
training and evaluating other active vision approaches, the associated assets and the
developed dataset generation pipeline is to become publicly available.

1. Introduction

Active vision is a subfield of computer vision that draws inspiration from our abil-
ity to appropriately navigate our environment to gain a better understanding of our
surroundings. Its objective is to enhance the efficiency of traditional computer vision
methods by enabling the capturing sensor(s), positioned on an autonomous system,

∗Corresponding author.
Email addresses: georgicd@csd.auth.gr (Charalampos Georgiadis), passalis@csd.auth.gr

(Nikolaos Passalis), nnik@csd.auth.gr (Nikos Nikolaidis)

Preprint submitted to Elsevier January 2, 2025



such as a robot, to dynamically adjust their viewing position, direction, or parameters
in real-time. This dynamic adaptation allows models to make more informed decisions
regarding the subject of interest. Active vision models find applications in various com-
puter and robotic vision tasks, including face and object recognition/detection (Mahaur
and Mishra, 2023; Luo et al., 2020), human pose estimation (Kumarapu and Mukher-
jee, 2021), and have demonstrated advantages in terms of speed (Passalis and Tefas,
2020), and size of models (Pan et al., 2021), as well as improved accuracy (Passalis
and Tefas, 2020; Pan et al., 2021; Kakaletsis and Nikolaidis, 2023; Murali et al., 2022)
compared to models employing a static approach.

Although there is a wealth of datasets containing a large number of annotated im-
ages for various computer and robotic vision tasks (Geiger et al., 2013; Sikder and
Nahid, 2021), datasets specifically designed for active vision problems are relatively
scarce. Training and evaluating an active vision model often necessitates the use of
a large number of annotated images captured under diverse sensor and environmental
configurations to grasp the dynamics underlying the active perception process. How-
ever, collecting and annotating such datasets is a challenging and expensive task. It
involves not only providing carefully crafted ground truth annotations but also accu-
rately modeling the effect of various actions, e.g., the movement towards or around
a person. Two datasets that support active vision tasks are the ModelNet dataset (Wu
et al., 2015) and the Active Vision dataset (Ammirato et al., 2017), both suitable for ac-
tive object detection and recognition. The ModelNet dataset encompasses over 150,000
3D CAD model images from 161 object categories, captured at various angles. The Ac-
tive Vision Dataset comprises more than 30,000 RGBD real-world images representing
15 different scenes, accompanied by over 70,000 2D bounding box annotations. Re-
garding face detection/recognition tasks, there have been instances where active vision
models were trained using smaller datasets, such as the HPID dataset (Gourier et al.,
2004) (Head Pose Image Database). Nevertheless, existing datasets are relatively lim-
ited in size and they often do not provide adequate data for supporting training active
vision pipelines for different tasks. For instance, the HPID dataset contains only 2,790
facial images, while it does not support training models that can control the distance be-
tween the robot and a subject to be recognized, significantly constraining the practical
use of such models.

Recently, there have been attempts to create frameworks for generating synthetic
annotated datasets in computer and robotic vision tasks, including active vision. Two
examples are BlenderProc (Denninger et al., 2019), an open-source extension of Blender
(Blender Foundation, 2018), and Nvisii (Morrical et al., 2021). BlenderProc provides
a flexible pipeline that can generate realistic synthetic images with annotations. Nvisii,
on the other hand, allows the generation of realistic synthetic images with additional
information like bounding boxes, segmentation masks, and optical flow vectors. How-
ever, it’s worth noting that these frameworks, despite offering visual realism, may
have specific limitations in terms of certain aspects of computer vision or robotics-
related simulation functionalities and realism, as well as physics, when compared to
more advanced frameworks, such as Unity’s Perception package (Unity Technologies,
2020). For example, both BlenderProc and Nvisii do not support domain randomiza-
tion (which is critical for training and testing computer vision or robotics-related meth-
ods), whereas BlenderProc does not generate keypoint annotations. Another effective
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approach for training and testing active vision methods is the use of photorealistic simu-
lators designed for autonomous systems, robots, or embodied AI applications, Habitat-
Sim1 being a notable example. For instance, a real-time active vision humanoid soccer
robot was trained and evaluated in a simulation environment by Khatibi et al. (Khatibi
et al., 2021) using deep reinforcement learning, demonstrating how using a simulation
environment can indeed be very effective in active vision tasks. However, employing
image/video datasets within simulation environments can offer advantages during the
initial stages of algorithm development, as it simplifies the handling of robot motion
and provides a convenient platform for training and testing such algorithms.

The main research question examined in this paper is whether it is possible to
develop realistic synthetic human-centric image generation pipelines specifically de-
signed to support active vision tasks, enabling capabilities that go beyond existing
datasets with minimal data collection and annotation effort. To this end, we intro-
duce a realistic synthetic human-centric image generation pipeline, which is built us-
ing a modified version of Unity’s Perception package (Unity Technologies, 2020), in-
tegrated into a URP project. This allows the generation of images captured around
humans across a wide range of view angles, distances, illumination conditions, and
backgrounds (Fig. 1), enabling training active perception models for different tasks.
To validate the effectiveness of the proposed pipeline we also created two annotated
datasets, ActiveHuman and ActiveFace. Furthermore, we also employed ActiveFace
dataset to apply and considerably enhance an embedding-based active face recognizer
(Passalis and Tefas, 2020), providing a realistic use case that showcases the value of
the generated datasets. Through the proposed extension, we can perform active per-
ception by controlling two axes, i.e., controlling both the left/right movements and the
distance from a subject, surpassing the capabilities of the initial method and attaining
superior results. The datasets, along with the associated assets and dataset generation
pipeline, will be made publicly available2 in order to allow anyone to seamlessly repli-
cate them, as well as use the generated datasets for training and evaluating other active
vision approaches. Therefore, the main contributions of this paper are as follows:

(i) a realistic synthetic human-centric image generation pipeline that enables training
active perception models,

(ii) two human-centric annotated datasets generated using the proposed approach
covering a variety of different scenarios and setups, as well as

(iii) a realistic use case that showcases the value of the generated dataset, i.e., employ-
ing the ActiveFace dataset to considerably enhance an embedding-based active
face recognizer approach.

The rest of the paper is structured as follows. First, the datasets are introduced
in Section 2 along with a detailed description of their generation. Subsequently, the
active vision method used to evaluate the facial image dataset is presented in Section
3, followed by an extensive experimental evaluation provided in Section 4. Finally,
conclusions are drawn in Section 5.

1https://github.com/facebookresearch/habitat-sim
2Public release under preparation, will be available by the time the review process is completed.

4

https://github.com/facebookresearch/habitat-sim


2. Datasets Description

The process of generating the first dataset, namely the ActiveHuman dataset, can
be outlined using a nested for-loop structure, illustrated in Algorithm 1. This algorithm
iterates through all possible combinations of environments (E), human models (H),
and lighting conditions (L). By varying the camera angle and distance from the human
subject, the algorithm captures different views. To construct the dataset, we utilized
freely available environmental assets and human models from sources like the Unity
Asset Store, Maximo, Turbosquid, as well as human models created using MakeHu-
man. The setup of the Unity Perception package project enables easy addition of new
environments or human models without requiring modifications to the scripts respon-
sible for altering the environmental or sensor configurations of each captured image
(randomizer).

Algorithm 1 : Dataset generation procedure.

for each environment E in E do
for each human H inH do

for each lighting condition L in L do
for each camera position P from [1m − 4m] in increments of 0.5m do

for each camera angle Θ from [0 − 360] in increments of 10 degrees do
Capture and output images and metadata

end for
end for

end for
end for

end for

We captured 175, 428 images with dimensions 1600 × 900 for every valid combi-
nation of 8 environments, 33 human models, 4 lighting conditions, 7 camera distances
1m − 4m from the subject in increments of 0.5m, and 36 camera angles around the
subject in 10 degrees increments. In each captured image, the human subject is posi-
tioned at the center, as depicted in Fig. 1. The objective was to imitate robot motion in
all feasible and permissible locations surrounding a human, considering various light-
ing conditions that simulate different times of the day within realistic environments.
These environments were designed to resemble typical rooms such as living rooms,
bedrooms, and kitchens, furnished with items like tables, chairs, and beds. However,
due to the presence of furniture, certain locations within a room were inaccessible
to the camera-equipped robot whose motion the dataset imitates. Consequently, the
dataset does not include images from such inaccessible locations that are occupied by
furniture. In more detail, if the camera collided/coincided with an object in the given
environment for a certain position P and angle Θ all combinations that involved E, P
and Θ were deemed invalid. Regarding humans, out of the 33 used in the generation
process, 17 are females (1 infant and 16 adults), while the remaining 16 are males (1
infant and 15 adults).

The generated dataset, apart from the captured RGB images, also contains their
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semantic instance segmentation masks, as shown in Fig. 2, as well as, annotation files
which are comprised of camera parameters, 2D bounding box, 3D bounding box an-
notations of humans and selected objects/entities (chairs, tables, lamps, floor, ceiling,
windows etc) for each captured image. Key points annotations are also included for
humans (Fig. 3). Each object and human in the scene is labeled accordingly with its
ID in order to have access to the 2D and 3D coordinates of every visible entity of each
captured image. The key points annotations describe 18 body parts and their respec-
tive skeleton connections and are generated in the COCO format. In addition, a file
consisting of definitions and color codes (when applicable) for each annotation is also
included. In this way, the generated dataset can support a wide variety of different
(active) perception tasks, ranging from semantic scene segmentation to human pose
estimation. We have also generated a face recognition-oriented version of this dataset,
cropping only the facial images from the generated dataset, aiming to support specifi-
cally active face recognition tasks. Some examples of the synthetic images contained
in the facial dataset are shown in Fig. 4. We call this version of the dataset ActiveFace
to distinguish it from the full high resolution ActiveHuman dataset.

3. Active Face Recognition

In this Section we provide an active perception use case using the proposedActiveFace
dataset, building upon the embedding-based active face recognition method presented
in (Passalis and Tefas, 2020). This method was shown to yield much better recognition
results than the ones achieved when using a static perception approach, since it takes
advantage of a robot’s ability to interact with its environment in order to get a more
informative view of the person’s face. We demonstrate how the rich annotation and va-
riety of data provided by the proposed dataset, enables us to further extend this active
perception approach, further improving its performance, e.g., by allowing to perform
control in additional axes. This is achieved with the use of a trainable controller which,
when given an image x(t) at a time t, dictates the robot to move towards a certain direc-
tion in order to acquire a new image which offers a better frontal view of the person.
The new image is given by:

x(t+1) = v(at, t), (1)

where v(·) denotes the current environment. The trainable controller is represented as:

at = gθc (x
(t)), (2)

where θc denotes a set of trainable action parameters.
The model is comprised of two modules, the feature extractor model fθr (·), which

learns discriminative embeddings of a given face image, thus being able to separate
the representations extracted from images that belong to different persons, and the con-
troller model gθc (·) which is responsible for learning the best possible action that the
robotic system should take next in order to acquire a better view of a person’s face.

When an unseen image is given as input during the evaluation process and the
controller has given the appropriate control commands to the robotic system, the id
of the person is obtained using the 1-nearest neighbor approach on a database that
contains frontal and nearly frontal facial images for every person.
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Instead of using reinforcement learning when training the controller, the model
executes all possible control actions at the same time and calculates the recognition
accuracy of each of the obtained images, improving learning efficiency (Passalis and
Tefas, 2020). The action that led to the lowest distance between the representation of
the current face and the correct face is retained and used to train the controller. The
optimal action when given an image xi and a correct image xp is given by:

d(a)
i = arg min

k∈0,1,2,...,n
|| f (xik) − f (xp)||2, (3)

where n is the total number of possible actions that the controller can choose.
The loss function that the controller aims to minimize is given by:

Lg =

N∑
i=1

Lx(gθc (xi), d
(a)
i ), (4)

where Lx represents the cross-entropy loss function. The feature extractor, on the other
hand, aims to minimize the following loss function:

L f =

N∑
i=1

N∑
j=1, j ̸=i

Le( fθr (xi), fθr (x j), di j), (5)

where the the binary variable di j ∈ {0, 1} denotes whether the i-th face image belongs to
the same person as the one depicted in the j-th face image and Le is a loss that encour-
ages the separability of different face embeddings. In this work we use the contrastive
loss, as suggested in (Passalis and Tefas, 2020), which is minimized when embeddings
that belong to the same identity are as close as possible, while the representations of
face images that do not belong to the same person maintain at least a distance of

√
m:

Le(yi, y j, di j) = di j||yi − y j||
2
2+(1 − di j) max(0,m − ||yi − y j||

2
2), (6)

where yi = fθr (xi) is the representation extracted from the face recognition model and
||·||2 refers to the l2 norm of a vector. The final loss of the model is given by the sum of
(4) and (5):

L = Lg + L f (7)

The model uses the Adam optimization algorithm with initial learning rates ηr = ηc =

10−3 for the feature extractor and controller, respectively.
We also appropriately modified the aforementioned approach to allow for an extra

Front (i.e., towards the subject) movement/action of 0.5m per move in order to take
advantage of the range of camera-subject distances provided by the dataset generated
in this work. The Left and Right actions dictate the controller to move by 10 degrees
either to the left or to the right, respectively, on a circle centered at the human subject.
Since the classes involved in (4) are not balanced, different weights were used for
different classes. More specifically, the Stay action was given a action weight of 0.01,
while both the Left and Right ones were given a weight of 1 and the Front was
weighted by 1.2.
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Since the dataset does not contain, due to the existence of furniture, images from
every camera/robot position, it was observed that the model was not always able to
find an existing image for every available action. As each environment had missing
images at different camera distances and angles (i.e., for the locations occupied by the
furniture) and the model could learn to avoid collisions for environments that do not
require such actions, it was decided to not train the model for any image where any
of the left, right or front images are missing. During inference, the controller chooses
the best action that leads to an image that exists. If for a given image there are no left,
right or front images the controller dictates the robotic system to stay in place. In a
real-world scenario, the controller would output different actions, from most optimal
to less optimal, until the robotic system could move towards the best available spot.

4. Experimental Evaluation

Details for the experimental evaluation are provided in this Section. First, the ex-
perimental setup that was used for training each model upon the ActiveFace dataset is
presented. Then, both the static (i.e. the approach that decides on the person’s iden-
tity using the initial image) and the extended active vision methods are evaluated using
various configurations and the experimental results are discussed.

4.1. Experimental Setup

The active vision model was evaluated on both the entire ActiveFace face image
dataset (Set 1) and on a subset (Set 2) of the dataset containing only facial images with
a pan range of −90◦ to 90◦ (0◦ corresponds to frontal view). In both cases, the training
set consisted of 22 subjects, while the remaining 11 were used to evaluate the trained
model. For those 11 subjects, all the frontal and nearly frontal (−10◦ to 10◦) images
at 1m distance away from the human, for every environment and lighting condition,
were added to the recogniser database, while the remaining ones were used for testing
the trained model, i.e., they were used as images captured at the starting location of
the robot. All images were resized to 96 × 96 and all experiments were conducted
5 times using different random seeds and the mean and standard deviation of their
accuracy scores was recorded. For each of Sets 1 and 2 both a static and an active
vision model were trained in order to evaluate the increase in accuracy when using the
latter method. It is expected that the network will perform worse on the entire dataset
(Set 1) compared to its accuracy score on the −90◦ to 90◦ subset (Set 2), since the model
may not even detect a face for extreme pan values and large distances. The active model
was first pretrained without the control branch and then trained simultaneously on both
the feature extractor and the control branch.

The static vision model was trained for 5, 10, 20 and 30 epochs for both Set 1 and
Set 2. The active model was trained for 10 (5 for the feature extractor and 5 for both
branches), 20 (10 for the feature extractor and 10 for both branches) and 30 (15 for
the feature extractor and 15 for both branches) epochs for both subsets. Moreover, the
active vision model was evaluated for 30 control steps, which would essentially allow
the robotic system to move to any location in an environment. This way, the recognition
accuracy ceiling of the model for both Sets 1 and 2 will be reached.
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Finally, the active model was also trained and evaluated without the addition of the
extra Front action in order to demonstrate how allowing the robotic system to move
towards the subject can result in an increase in inference performance. Note that we
use the DL networks and follow the hyper-parameters proposed in (Passalis and Tefas,
2020), unless otherwise stated.

4.2. Evaluation Results

In this subsection, we provide the empirical evaluation of the proposed method.
First, we provide results for training both static and active perception models. We also
report results on different points of the training curve (10, 20, and 30 epochs) in order
to provide a more complete evaluation. Then, we provide experimental results where
we evaluate the impact of the number of active perception control steps on the accuracy
of the models. Finally, we conclude this section by evaluating the impact of the size of
the training set on the accuracy of the models.

First, we compare the proposed method to both a static model with the same archi-
tecture (“Static”), as well as to a more powerful model (Inception-ResNet (v1) (Szegedy
et al., 2017)) (abbreviated as “Static (Inception-ResNet)”). As a reminder, Set 1 rep-
resents the full ActiveFace dataset, while Set 2 denotes the dataset with the reduced
pan range. The experimental results are reported in Table 1. Using the more power-
ful static model leads to better results than the baseline architecture. However, active
perception leads to improved accuracy in both setups. The proposed active perception
agent (“Active (Proposed)”), which can control the distance between the subject and
the camera, leads to overall best results, outperforming both the static perception ap-
proaches as well as the simpler method proposed in the literature (Passalis and Tefas,
2020) (“Active (1 axis)”). .

Table 1: Comparison between static perception and active perception models. Face recognition accuracy
mean and standard deviation are reported in both Set 1 and Set 2. All models were trained for 20 epochs.

Model Set 1 Set 2

Static 44.9 ± 2.4% 57.9 ± 2.9%
Static (Inception-ResNet) 46.4 ± 3.4% 65.1 ± 2.9%
Active (1 axis) 55.5 ± 1.9% 66.6 ± 6.8%
Active (Proposed) 69.2 ± 7.6% 79.1 ± 1.7%

Table 2: Static vision model evaluation at various points of the training process: accuracy mean and standard
deviation.

Model Set 1 Set 2

Static (5 epochs) 51.1 ± 4.2% 60.3 ± 1.5%
Static (10 epochs) 47.9 ± 4.2% 58.1 ± 3.5%
Static (20 epochs) 44.9 ± 2.4% 57.9 ± 2.9%
Static (30 epochs) 44.3 ± 2.2% 58.5 ± 2.8%
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Table 3: Active vision model evaluation with the additional Front movement/action at various points of the
training process: accuracy mean and standard deviation.

Model Set 1 Set 2

Active (10 epochs) 67.9 ± 6.8% 76.9 ± 6.5%
Active (20 epochs) 69.2 ± 7.6% 79.1 ± 1.7%
Active (30 epochs) 67.4 ± 8.6% 78.3 ± 6.8%

Table 4: Active vision model evaluation without the additional Front movement/action at various points of
the training process: accuracy mean and standard deviation.

Model Set 1 Set 2

Active (10 epochs) 60.3 ± 6.4% 66.4 ± 7.3%
Active (20 epochs) 55.5 ± 1.9% 66.6 ± 6.8%
Active (30 epochs) 59.1 ± 4.4% 72.1 ± 3.2%

The evaluation results for different number of epochs are shown in Tables 2, 3
and 4. Evaluation results for the static model are presented in Table 2. Clearly, the
models perform best when trained for 5 epochs, reaching accuracy scores of ∼51.1%
and ∼60.3% for Set 1 and Set 2, respectively. Increasing the number of epochs seems
to cause an overfit of the model on the training data.

Again, once the active approach is employed, a substantial increase in prediction
accuracy can be observed for both datasets by a maximum of ∼18.1% and ∼18.8%,
respectively, as seen in Table 3. Since we introduce more parameters, the models can
be trained for more epochs and seem to overfit when the number of epochs is set to 30
(15 for the feature extractor and 15 for both branches). Evidently, the ability to train
the robotic system to move within its environment in order to get a more informative
view of the subject, namely a view which is closer to the frontal or nearly frontal
views that the system has learned to recognize, yields much better face recognition
results. Furthermore, once the controller’s Front movement is removed (Table 4) the
model is ∼8.9% and ∼7% less accurate than the one with the additional Front action,
when comparing the highest recorded prediction accuracy scores of each respective
conducted experiment.

This clearly demonstrates that allowing the model to move in more directions, i.e.,
not only around but also towards the subject, can further increase its ability to recognize
faces.

Figure 5 depicts an example of how the control branch has learned to change its
viewpoint in order to get a better (more closer and towards a frontal position) view of
the person depicted in the original image, that is, the one obtained from the initial robot
location. The original image is obtained from point a (starting position for the robot)
and then the robot moves along the depicted path until it reaches a frontal view of the
subject’s face at a distance of 1m (point h). We can observe that, generally, at larger
distances the controller prefers to make a Front movement in order to move closer to
the subject and, thus, increase the captured facial image resolution. Once the image is
clear enough, it then makes either Left or Right movements in order to move in front
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of the subject.
Furthermore, we evaluated the prediction accuracy of each trained model as the

number of allowed steps increased from 1 to 20 steps. Our hypothesis was that a
well-trained model, neither underfitted nor overfitted, would reach a point where its
performance stagnates. This suggests that the model does not need to take additional
steps to obtain a better view of the subject’s face. Fig 6a illustrates the average pre-
diction accuracy of the model trained on Set 2 for 20 epochs, incorporating the Front
movement command per maximum allowed number of steps. We can observe that the
accuracy increases as the number of steps increases until reaching a plateau at n = 12.
This indicates that the active perception process converges and consistently produces
better results with a higher number of steps up to a point, where the best view has been
obtained.

Additionally, we recorded the average number of images that required a certain
number of steps (n = 1, 2, ..., 20) before the active perception process stopped. Fig. 6b
represents the percentage of images that needed a specific number of steps to make a
prediction for the same model. Most images required 5 steps, but the proportion of im-
ages requiring additional steps decreased gradually. Notably, at 20 steps, the recorded
percentage appears to increase. We identified that this occurs in some cases where the
controller reaches a frontal view of the subject’s face but continues moving towards the
left or right without stopping. This suggests that the agent may not be robust enough
to consistently choose the Stay command when the robotic system achieves a frontal
view of the subject.

To highlight the importance of generating additional data for active perception al-
gorithms, we conducted additional experiments to evaluate the impact of the volume
of data used for training on the accuracy of the final model. To this end, we performed
experiments using 5 persons (about 23% of the original training set), 10 persons (about
45% of the original training set), 15 persons (about 68% of the original training set) and
20 persons(about 91% of the original training set) in the training set using both a static
perception setup, as well as the proposed active perception setup. For all the conducted
experiments we used the second set, in order to better demonstrate the impact of the
additional data included in the training set.

The experimental results are shown in Table 5. Several interesting results can be
drawn from these results. First, using more training data increases face recognition
accuracy in both the static perception and active perception setups. Furthermore, these
results also demonstrate that using smaller training sets can have a more profound neg-
ative effect on active perception models since the initial accuracy for active perception
is smaller (about 36% for static perception and about 34% for active perception when
using 23% of the training dataset). However, larger increases are observed in the ac-
curacy of the active perception model when additional training data are included, also
validating the value of the generated data when training active perception models.

5. Conclusions

This paper introduced a publicly available synthetic and realistic data generation
pipeline using Unity’s Perception package for training and evaluating active vision
methods. Two public datasets were generated using this pipeline, comprising of high
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Table 5: Evaluating the impact of the size of the training dataset to the accuracy of the resulting models.
“Static Perception“ refers to the regular static face recognition setup, while “Active Perception” refers to the
proposed active perception approach that supports front movements.

% training data Static Perception Active Perception

23% (5 persons) 36.4 ± 2.8% 34.4 ± 1.2%
45% (10 persons) 43.5 ± 5.2% 47.5 ± 1.5%
68% (15 persons) 56.9 ± 1.8% 75.1 ± 3.1%
91% (20 persons) 57.7 ± 2.9% 78.5 ± 6.2%
100% (all persons) 57.9 ± 2.9% 79.1 ± 1.7%

resolution annotated images (instance segmentation masks, 2D and 3D bounding boxes,
human body keypoints) depicting humans in various environments, as well as cropped
facial images extracted from the originally captured 1600 × 900 images. These facial
images were then utilized to train and evaluate both static and active vision embedding-
based face recognizers, showcasing the significant improvement in prediction accuracy
achieved through the active approach compared to the static model. Experimental
results demonstrated a substantial increase in recognition performance, with a maxi-
mum improvement of approximately 18.8%. Moreover, we illustrated that enabling
the robotic system to move towards the subject, rather than being limited to left or
right movements on a circle as in (Passalis and Tefas, 2020), led to better recognition
accuracy, with a maximum observed difference of around 8.9%.
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Figure 1: Examples of generated RGB images.
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Figure 2: Examples of segmentation masks generated along with the dataset.

Figure 3: Examples of 2D and 3D bounding boxes (top) as well as human body key points (bottom).
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Figure 4: Examples of images included in the ActiveFace datasset. Note that lower resolution images corre-
spond to larger distances between the person and the camera.
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Figure 5: Example of control branch movements. Images from left to right correspond to the robot locations
depicted on the diagram: (a) distance 3m, angle 180◦; (b) distance 3m, angle 160◦; (c) distance 2.5m, angle
160◦; (d) distance 2m, angle 140◦; (e) distance 2m, angle 90◦; (f) distance 2m, angle 10◦; (g) distance 1.5m,
angle 10◦; (h) distance 1m, angle 0◦.

(a) Average accuracy score when increasing maximum al-
lowed control branch steps

(b) Average number of images that required n steps, where
n = 1, 2, ..., 20, before making a prediction.

Figure 6: Evaluating the impact of number of control steps on average accuracy score (Fig. 6a), as well as
showing the distribution of control steps needed in order to acquire the best possible view (Fig. 6b).
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