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Skeleton-based human action recognition is crucial for many practical applications. However, 
existing methods often rely on a single skeleton sequence representation, which may not fully 
capture the complex features of actions. To tackle this issue, we propose IMDAR (Invariant Multi-

Descriptors for Action Recognition): A framework that uses multiple spatio-temporal invariant 
representations to improve action feature learning. These representations capture the evolution 
of skeleton poses, considering the motion of joints and limbs. We transform each skeleton in 
the sequence into a graph representation, and the sequence of graph features is structured into a 
spatio-temporal matrix. To capture the motion dynamics, we design three spatio-temporal distance 
matrices that represent the variation in inter-joint distances, inter-frame joint distances, and 
inter-limb angles across the sequence. The matrices are then transformed into image descriptors, 
which are used for training action prediction models. A Voting and Priority Score Selection 
(VPSS) algorithm is proposed to determine the correct class from multiple descriptor predictions. 
Experiments on benchmark datasets demonstrate the invariance capability of IMDAR, and show 
2.4%, 1.3%, 1.8% and 2.8% improvement in accuracy on NTU-RGB + D 60, NTU-RGB + D 120, N-

UCLA and UTD-MHAD datasets, respectively. Code and models are made available on the Github 
repository1.

1. Introduction

Human action recognition is essential for various applications, such as human-computer interaction, video surveillance, robotics, 
healthcare, and virtual reality [11,42,5,29]. This topic has been investigated using different types of data, including RGB videos, 
depth videos, and body skeleton joints. Skeleton-based action recognition has gained significant attention because it is not affected 
by background, clothing, or lighting, and it provides precise body pose information in the form of 3D coordinates of the body joints. 
In the past, motion capture systems used wearable sensors, multiple cameras, or infrared sensors to capture accurate body pose data 
in a controlled environment.

Advancements in machine learning, deep learning, and artificial intelligence algorithms have profoundly transformed numerous 
fields, including healthcare, finance, forecasting, and computer vision [17–19,49,43]. In particular, deep learning models have ad-

vanced the ability to automatically extract hierarchical features from images and recognize complex patterns without manual feature 
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engineering. This capability has led to significant progress in tasks like image classification, object detection, and segmentation, 
achieving human-level performance in many applications. As a result, these advancements have also made it easier to extract human 
body skeleton data from videos using deep learning methods, without relying on additional sensors [44].

Extracting distinctive features for each action from the skeleton sequence during the learning process is crucial for effective 
skeleton-based action recognition. Early hand-crafted methods extract features by converting the skeleton sequence into a simplified 
representation, which is then passed to a classifier, such as K-Nearest Neighbors, Random Forest, or a Hidden Markov Model [13,14]. 
With the advancements in deep learning for sequential data modeling, various network architectures have been proposed to predict 
actions from skeleton sequences, including Recurrent Neural Networks (RNNs) [12] and Long Short-Term Memory (LSTM) [25], 
which capture the relational features between skeleton joints over the sequence using attention mechanisms. Although, the skeleton 
data is often represented as 1D vector, a few methods have explored converting the input sequence into a 2D temporal representation, 
and then exploit the 2D feature extraction capability of Convolutional Neural Network (CNN) to learn action representations for class 
prediction [2].

Skeletons can be considered as graphs, where the vertices correspond to the skeleton joints and the edges represent the connections 
between joints. After the introduction of Graph Convolutional Networks (GCNs) [21], many recent methods use GCN baseline to 
capture spatio-temporal skeleton features in different ways [7,6]. The remarkable success of the Transformer [41] for modeling 
sequential data through the self-attention mechanism has inspired numerous studies to adopt the self-attention for skeleton action 
recognition. Transformer-based methods assign attention weights to different joints and frames, which allow the model to focus on 
the most representative spatial and temporal parts in each sequence [1,28]. In certain cases, attention-based methods are combined 
with Graph Convolutional Networks (GCNs) to achieve robust action representation [34,28].

A major drawback of existing methods is their dependence on a single representation that implicitly attempts to capture complex 
patterns. This approach can be challenging to control, as the feature extraction process becomes fixed once the model is trained, 
making it difficult to ensure that the model effectively captures all the action-specific features. This limitation becomes evident 
when actions that exhibit high similarity with other actions are misclassified. Although recent GCN and attention based methods 
have achieved state-of-the-art performance in skeleton-based human action recognition, they still have the following shortcomings: 
i) GCNs can only capture the feature dependencies between joints but overlook the motion of the joints. Moreover, as with over-

smoothing issue [4], the relational representation between the joints (vertices) of different classes becomes more indistinguishable 
as the network deepens; ii) Although the attention mechanism can identify which parts of the sequence to focus on, it is sometimes 
biased and hard to control due to action diversity. iii) These methods seldom consider action invariance constraints, in particular, 
related to, e.g. the camera view angle and motion velocity.

To overcome the previous limitations, this paper proposes a new framework for skeleton-based action recognition, which is 
referred as IMDAR (Invariant Multi-Descriptors for Action Recognition). IMDAR consists of three modules; action representation, 
feature extraction, and action prediction. Specifically, in the action representation module, we devise five image-based spatio-temporal 
action descriptors for representing the action sequence from multiple perspectives to overcome the limited feature learning capability 
of single action representation. While there are many possible representations of human actions, our five proposed representations 
focus on key action dynamics to uniquely capture each action. When analyzing human body motion, actions are distinguished by the 
overall change in the skeleton pose over time and the direction of limb and joint movement. Movement direction can be represented 
in two complementary ways: through changes in the angles between limbs and changes in the distances between joints. Additionally, 
similar actions performed at different speeds will exhibit slight variations in angles and joint distances, which is why an invariant 
velocity representation is necessary.

To represent the skeleton pose evolution over time, we propose to transform the skeleton sequence into a spatio-temporal Graph 
Descriptor (GD), which is a feature map RGB image constructed from a graph matrix, where its columns represent the individual 
skeleton graph representations along the three Cartesian axes. Such representation is invariant to skeleton pose coordinates since 
it captures the change in the skeleton topological relationship between joints over time rather than relying specifically on the pose 
coordinates. The motivation behind this representation is that the over-smoothing problem in GCN-based methods makes the graph 
representation effectiveness depend on the network depth [4], while arranging the whole graph sequence once and for all in a fixed 
image provides a stable representation.

Since the graph representation fails to capture the dynamic motion of the joints, another three distance descriptors are proposed 
to track the spatio-temporal change in distance between joints and limbs across the sequence. Each descriptor is a single-channel 
grey image, obtained from a distance matrix, where its columns arrange the distance between joints or limbs. Specifically, the 
Joint Distance Descriptor (JDD) represents the inter-joint distances within each skeleton across the sequence. The Adjacent Distance 
Descriptor (ADD) represents the adjacent inter-frame joint distances along the sequence. It can visually represent the action velocity, 
allowing the same actions performed at different speeds to be classified as identical, which is beneficial for velocity invariance. The 
Limbs Angle Descriptor (LAD) captures the change in angles between adjacent limbs. It also provides insights about the direction of 
the joints based on the temporal change of angles. Finally, to create a global representation of the motion, the previous three distance 
descriptors are integrated into a three-channel Fusion Distance Descriptor (FDD). The four distance descriptors are view-invariant, 
as they only consider the distances between joints and limbs. Additionally, they represent actions of varying sequence lengths in a 
fixed-size image representation, which make them invariant to the number of frames in the sequence.

The feature extraction module consists of models trained to extract features from the five descriptors (GD, JDD, ADD, LAD and 
FDD). Since the descriptors are feature map images (Fig. 1) contain texture-like patterns, a shallow, low-level CNN model is designed 
to classify such patters. The features of each of the five descriptors are extracted independently through single-descriptor model for 
action prediction. Additionally, the features of the five descriptors are concatenated to form a robust and complementary action 
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Fig. 1. The pipeline of IMDAR consists of three modules. The action representation module transforms the skeleton sequence into five image descriptors (GD: Graph 
Descriptor, JDD: Joint Distance Descriptor, ADD: Adjacent Distance Descriptor, LAD: Limbs Angle Descriptor, FDD: Fusion Distance Descriptor). The feature extraction 
module consists of a ResBlock and Average pooling (AvgPool 4 × 4). The action prediction module predicts the score from the six features (five descriptors and their 
concatenation) using 1D convolution (Conv1D), and then a VPSS algorithm is used to select the correct class.

representation using a fusion-model. In the prediction module, six predictions are obtained, i.e., five predictions from the single-

descriptor models, and one prediction from the fusion-model. To select the correct predicted class, a simple and efficient Voting and 
Priority Score Selection (VPSS) algorithm is proposed to decide which prediction output should be considered as a final class. This 
algorithm is based on considering a majority voting in case of similar predictions and a pre-defined priority in the case of different 
predictions.

To evaluate the effectiveness of the proposed IMDAR framework, experiments have been conducted on four benchmark skeleton-

based action recognition datasets. Namely, NTU-RGB + D 60, NTU-RGB + D 120, N-UCLA, and UTD-MHAD datasets. The results report 
that IMDAR outperforms most of state-of-the-art methods, and the ablation study validates its invariant representation capability. 
The main contributions of this paper can be summarized as follows:

(1) A proposed multiple spatio-temporal invariant image representations to address the limited feature learning capability of a single 
action representation.

(2) An introduced spatio-temporal graph descriptor to capture the change in the skeleton topological relationship between joints 
over time.

(3) To capture the motion dynamics, we design another four spatio-temporal distance descriptors that represent the variation in 
inter-joint distances, adjacent inter-frame joint distances, and inter-limb angles across the sequence.

(4) We present a voting and priority score selection algorithm that identifies the most probable correct action class among multiple 
predictions.

The rest of this paper is organized as follows: Section 2 reviews related works on skeleton-based action recognition. Section 3
introduces the technical details of the framework. Section 4 presents the analysis of the experimental results and ablation study, 
followed by a conclusion in Section 5.

2. Related work

2.1. CNN-based skeleton action recognition

There have been only few attempts to transform the skeleton sequence into 2D image representation and then use CNNs for feature 
extraction and classification. For example, Wang et al. [40] (Joint Trajectory Maps) transform the plot of the skeleton trajectories of 
the joints’ motion from the top, side, and front views, into three images that are fed into three streams of CNNs for feature extraction 
and classification. Hernandez Ruiz et al. [15] encoded each skeleton into a 2D matrix which represents the Euclidean distance between 
each pair of joints, then the sequence of the 2D matrices is used as input to a 3D CNN for feature extraction and action prediction. 
In Caetano et al. [2] (Tree Structure Reference Joints Image), four joints are chosen as reference joints to create four corresponding 
images, each representing joint positions relative to one reference joint. These four images are stacked and processed by a CNN for 
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action classification. De Boissiere and Noumeir [10] transformed the skeleton coordinates into an image that represents temporal 
changes in joint positions along the three Cartesian axes. Existing image representation methods ignore invariance to camera view 
angle and motion vilocity. Moreover, they only rely on a single representation that is unable to capture complementary features.

2.2. GCN-based skeleton action recognition

Following the success of Graph Convolutional Networks (GCNs) in modeling and classifying graph data, Yan et al. [46] introduced 
ST-GCN to model the spatial and temporal relationships among the joints in a skeleton sequence. This pioneering work marked the 
first successful application of GCNs for skeleton-based action recognition, and became the main component for numerous methods. 
Instead of using a manually defined skeleton topology, Shi et al. [32] (2s-AGCN) proposed an adaptive graph convolutional layer that 
learns the skeleton topology dynamically. Their approach employs a two-stream GCN for action prediction, one stream model the 
joints, while the second stream model the bones (second-order joints). Chen et al. [7] (MST-GCN) proposed multi-scale spatial (MS-

GC) model that captures short-range joints dependencies and a multi-scale temporal (MT-GC) model which is capable of modeling 
long-range dependencies across the sequence. Kilis et al. [20] proposed a framework that first addresses missing joints in skeleton data 
through a feature imputation pre-processing step, and then employs a new adjacency matrix that treats the skeleton graph as clusters 
of nodes to enhance the performance. Instead of relying on a single skeleton topology, the CTR-GCN model of Chen et al. [6] learns 
multiple dynamic topologies to effectively aggregate joint features, then derives a shared topology from these learned representations 
for robust modeling. To tackle the issue of misclassifying ambiguous actions that are challenging to differentiate, Zhou et al. [50]

(FRhead) proposed a Feature Refinement Head that discovers those actions and calibrates their features to be more distinguishable.

2.3. Attention-based skeleton action recognition

Several methods involve attention-based approaches, or combine attention with GCNs to enhance feature representation. To ad-

dress the shortcomings of previous methods regarding the lack of spatial structural information and detailed temporal dynamics, Si 
et al. [35] (SR-TSL) introduced the SR-TSL model, which consists of a Spatial Reasoning Network (SRN) that captures spatial structure 
in each frame through a residual graph neural network and a Temporal Stack Learning Network (TSL) that models temporal dynamics 
using LSTM. Si et al. [34] (AGC-LSTM) integrate GCN and LSTM within a single network structure. This approach captures discrimi-

native spatial and dynamic temporal features, and investigates co-occurrence relationship features between the spatial and temporal 
domains. Pang et al. [28] (IGFormer) addressed skeleton-based action interaction. The skeleton sequences of the two individuals are 
fed into a Semantic Partition Module (SPM) to model the interaction between body parts, then a Transformer is used for prediction. 
Bavil et al. [1] (Action Capsules) encoded global dependencies of joints effectively using the self-attention mechanism to concentrate 
on a specific set of joints for each action, then aggregate their features for action recognition. Since not all the skeleton joints are 
equally informative, Nikpour and Armanfard [27] proposed a method that removes the uninformative and misleading joints in each 
frame using on a trained deep reinforcement learning agent.

3. Methodology

The framework of IMDAR is shown in Fig. 1. It consists of three modules: action representation, feature extraction, and action 
prediction.

3.1. Action representation

We define the skeleton sequence as 𝑆𝑒𝑞 = {𝑆𝑘,𝑘 = 1, ..., 𝑇 }, where 𝑇 is the number of frames, and the skeleton S𝑘 as a graph 
S𝑘 = {𝑉 ,𝐸}, 𝑉 = {{{𝐽𝑖,𝑗}𝑁𝑖=1}

3
𝑗=1, 𝐽𝑖,𝑗 is the coordinate 𝑗 of the joint 𝑖, and 𝑁 is the number of joints (vertices). Like De Boissiere and 

Noumeir [10], we normalize the skeleton sequence by considering the ’middle of the spine’ joint of the first frame as the new origin 
of the coordinates system. In the rest of the coming sections, we use the term ’limb’ to refer to a skeleton bone that forms an angle 
with its adjacent bone.

3.1.1. Skeleton graph matrix

For each skeleton S𝑘 represented as 𝑁 × 3 matrix, the symmetric adjacency matrix is defined as A = {𝑎𝑖,𝑗 , 𝑖, 𝑗 = 1, ...,𝑁}, where 
𝑎𝑖,𝑗 = 1 if the joints 𝑖 and 𝑗 are connected, and 𝑎𝑖,𝑗 = 0, otherwise. The normalized adjacency matrix A′ is calculated by dividing each 
row by the sum of its values. The graph G𝑘 of a single skeleton S𝑘 is obtained by:

G𝑘 = S𝑡
𝑘
A′ =

⎡⎢⎢⎣
𝑗11 𝑗21 ⋯ 𝑗𝑁1
𝑗12 𝑗22 ⋯ 𝑗𝑁2
𝑗13 𝑗23 ⋯ 𝑗𝑁3

⎤⎥⎥⎦ ⋅
⎡⎢⎢⎢⎣
𝑎′11 𝑎′12 ⋯ 𝑎′

𝑁1
𝑎′21 𝑎′22 ⋯ 𝑎′

𝑁2
⋮ ⋮ ⋱ ⋮
𝑎′
𝑁1 𝑎′

𝑛2 ⋯ 𝑎′
𝑁𝑁

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣
𝑔11 𝑔21 ⋯ 𝑔𝑁1
𝑔12 𝑔22 ⋯ 𝑔𝑁2
𝑔13 𝑔23 ⋯ 𝑔𝑁3

⎤⎥⎥⎦ , 𝑎′𝑖,𝑗 = 𝑎𝑖,𝑗∕
𝑁∑
𝑗=1 
𝑎𝑖,𝑗 (1)

Where 𝑡 represents the matrix transpose operation. The spatio-temporal graph representation of the sequence is given by the 3D graph 
matrix M𝑔𝑟 ∈ℝ𝑁×3×𝑇 as:
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Fig. 2. The process of transforming the skeleton sequence into five spatio-temporal image descriptors. (a) GD: Graph Descriptor. (b) LAD: Limbs Angle Descriptor. (c) 
JDD: Joint Distance Descriptor. (d) ADD: Adjacent Distance Descriptor. FDD: Fusion Distance Descriptor.

M𝑔𝑟 = {G𝑡
𝑘
}𝑇
𝑘=1 = {{{𝑔𝑖,𝑗,𝑘}𝑁𝑖=1}

3
𝑗=1}

𝑇
𝑘=1 =

⎡⎢⎢⎢⎣
𝑔1,𝑗,1 𝑔1,𝑗,2 ⋯ 𝑔1,𝑗,𝑇
𝑔2,𝑗,1 𝑔2,𝑗,2 ⋯ 𝑔2,𝑗,𝑇
⋮ ⋮ ⋱ ⋮

𝑔𝑁,𝑗,1 𝑔𝑁,𝑗,2 ⋯ 𝑔𝑁,𝑗,𝑇

⎤⎥⎥⎥⎦
, 𝑗 = 1,2,3 (2)

Where 𝑔𝑖,𝑗,𝑘 are the features of the joint 𝑖 of the coordinate 𝑗 of the skeleton 𝑘. M𝑔𝑟 is a 3D matrix consists of three 2D matrices, 
corresponding to 𝑗 = 1,2,3, which represents the three Cartesian axes. The construction of the graph matrix is illustrated visually in 
Fig. 2(a).

3.1.2. Joints distance matrix

One of the key factors for a robust motion representation is to capture the inter-joints distance evolution over time. For example, 
in the action ‘clapping’, it is important to know how far the left-hand joint is moving from the right-hand joint. To construct a joint 
distance representation, we selected the 32 most informative pairs that have a higher changeable rate during the motion than the 
other pairs Fig. 2(c). In the figure, the joints involved in the selected pairs are highlighted in dark green color.

Given a skeleton S𝑘, we define the set of the selected pairs as: 𝑃𝑎𝑖𝑟 = {𝑝𝑖, 𝑖 = 1, ..., 𝑃 }, where 𝑃 is the total number of selected 
pairs, and 𝑝𝑖 = (𝐽𝑎, 𝐽𝑏) is the pair of the joints 𝐽𝑎 and 𝐽𝑏. For each pair 𝑝𝑖, the Euclidean distance 𝑑𝑖 is calculated between its two 
joints as: 𝑑𝑖 = ‖𝐽𝑎 − 𝐽𝑏‖2. However, the distance between two joints in a skeleton of a shorter person is less than that of a taller 
person, due to the difference in limbs length. To normalize the distance 𝑑𝑖 of the pair 𝑝𝑖 for all body sizes, we divide the distance 𝑑𝑖
by the body size 𝑧, where the normalized distance 𝑑′𝑖 = 𝑑𝑖∕𝑧, and the body size 𝑧 =

∑𝑁−1
𝑖=1 𝐿𝑖, which is the sum of the lengths of all 

the skeleton limbs 𝐿𝑖, and the limb length is the distance between its joints. The joints distance matrix M𝑗𝑑𝑖𝑠 ∈ℝ𝑃×𝑇 is defined as:

M𝑗𝑑𝑖𝑠 = {{𝑑𝑖∕𝑧}𝑃𝑖=1}
𝑇
𝑘=1 = {{𝑑′𝑖,𝑘}

𝑃
𝑖=1}

𝑇
𝑘=1 =

⎡⎢⎢⎢⎢⎣

𝑑′1,1 𝑑′1,2 ⋯ 𝑑′1,𝑇
𝑑′2,1 𝑑′2,2 ⋯ 𝑑′2,𝑇
⋮ ⋮ ⋱ ⋮
𝑑′
𝑃 ,1 𝑑′

𝑃 ,2 ⋯ 𝑑′
𝑃 ,𝑇

⎤⎥⎥⎥⎥⎦
(3)

Where 𝑑′
𝑖𝑘

is the normalized distance of the pair 𝑝𝑖 of the skeleton S𝑘.
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3.1.3. Adjacent distance matrix

The adjacent distance matrix represents the temporal change in the joint coordinates values between each two consecutive frames. 
In other words, the distance between the joint in a frame 𝑘 and its new position in the frame 𝑘+ 1. It also represents action velocity, 
where larger distances indicate faster movement of the joints. Given two consecutive skeletons S𝑘 and S𝑘+1 of the sequence, the 
adjacent Euclidean distance 𝑎𝑖,𝑘 of a joint 𝑖 between two consecutive frames 𝑘 and 𝑘 + 1 is written as: 𝑎𝑖,𝑘 = ‖𝐽𝑖,𝑘 − 𝐽𝑖,𝑘+1‖2. The 
Adjacent Distance Matrix M𝑎𝑑𝑖𝑠 ∈ℝ𝑁×(𝑇−1) is defined as follows:

M𝑎𝑑𝑖𝑠 = {{𝑎𝑖,𝑘}𝑁𝑖=1}
𝑇−1
𝑘=1 = {{‖𝐽𝑖,𝑘 − 𝐽𝑖,𝑘+1‖2}𝑁𝑖=1}𝑇−1𝑘=1

=
⎡⎢⎢⎢⎣
‖𝐽1,1 − 𝐽1,2‖2 ‖𝐽1,2 − 𝐽1,3‖2 ⋯ ‖𝐽1,𝑇−1 − 𝐽1,𝑇 ‖2‖𝐽2,1 − 𝐽2,2‖2 ‖𝐽2,2 − 𝐽2,3‖2 ⋯ ‖𝐽2,𝑇−1 − 𝐽2,𝑇 ‖2

⋮ ⋮ ⋱ ⋮‖𝐽𝑁,1 − 𝐽𝑁,2‖2 ‖𝐽𝑁,2 − 𝐽𝑁,3‖2 ⋯ ‖𝐽𝑁,𝑇−1 − 𝐽𝑁,𝑇 ‖2
⎤⎥⎥⎥⎦

(4)

The calculation of M𝑎𝑑𝑖𝑠 is visually illustrated in Fig. 2(d).

3.1.4. Limbs angle matrix

The angle between two adjacent skeleton limbs provides information about how far the two limbs are moving from each other. 
However, such a feature cannot be captured by the previous distance representations, because even though the distance between the 
joints of the limbs is known, it is difficult to tell in which direction the joints are moving. The temporal change in the angles provides 
features that can represent the direction of the joints. As shown in Fig. 2(b), we selected 14 angles that have a higher changeable rate 
during the movement than the 4 remaining angles. However, all the angles could be considered, as an automatic selection.

Given two adjacent limbs 𝐴𝐵 and 𝐵𝐶 that share the same joint 𝐵 (Fig. 2(b)), the angle 𝜃 = 𝐴𝐵𝐶 of the triangle 𝐴𝐵𝐶 can be 
calculated based on the coordinates values of the joints 𝐴, 𝐵, and 𝐶 , using the law of Cosines:

𝐴𝐶2 =𝐴𝐵2 +𝐵𝐶2 − 2 ×𝐴𝐵 ×𝐵𝐶 × cos(𝜃)

𝜃 = arccos
(
𝐴𝐵2 +𝐵𝐶2 −𝐴𝐶2

2 ×𝐴𝐵 ×𝐵𝐶

)
(5)

Where AB, BC, and AC are the Euclidean distance between the joints A and B, B and C, and A and C, respectively:

𝐴𝐵 = ‖𝐴−𝐵‖2, 𝐵𝐶 = ‖𝐵 −𝐶‖2, 𝐴𝐶 = ‖𝐴−𝐶‖2 (6)

Given a skeleton S𝑘 of the sequence, we denote 𝑈 as the number of the selected angles (Fig. 2(b)). We also denote 𝜃𝑖,𝑘 as the angle 𝑖
of the skeleton S𝑘. The Limbs Angle Matrix M𝑎𝑛𝑔 ∈ℝ𝑈×𝑇 is defined as:

M𝑎𝑛𝑔 = {{𝜃𝑖,𝑘}𝑈𝑖=1}
𝑇
𝑘=1 =

⎡⎢⎢⎢⎣
𝜃1,1 𝜃1,2 ⋯ 𝜃1,𝑇
𝜃2,1 𝜃2,2 ⋯ 𝜃2,𝑇
⋮ ⋮ ⋱ ⋮
𝜃𝑈,1 𝜃𝑈,2 ⋯ 𝜃𝑈,𝑇

⎤⎥⎥⎥⎦
(7)

3.1.5. Image descriptors

To construct a visual image representation of the four matrix representations, we transform the 3D graph matrix into a three-

channel RGB image, and each of the three 2D distance matrices into a single-channel gray image. Before transforming the matrices into 
images, they are normalized to pixel values (between 0 and 255). We denote GD: Graph Descriptor, JDD: Joint Distance Descriptor, 
ADD: Adjacent Distance Descriptor, and LAD: Limbs Angle Descriptor, the transformation of the matrices M𝑔𝑟, M𝑗𝑑𝑖𝑠, M𝑎𝑑𝑖𝑠, and 
M𝑎𝑛𝑔 , respectively to images. Since the number of skeletons in the sequence varies according to the action, and to normalize the 
data for training and make it size-invariant, the images are resized to 112 × 112. Choosing such a larger size than the matrices size 
is convenient to preserve features. To obtain a robust representation that captures the spatio-temporal motion of the joints distance 
and limbs together, we construct an RGB descriptor FDD (Fusion Distance Descriptor) by stacking the three gray descriptors (JDD, 
ADD, and LAD). The transformation of the matrices into image descriptors can be formalized as follows:

𝑁𝑜𝑟𝑚(𝐌) = 255 × 𝐌−min(𝐌) 
max(𝐌) − min(𝐌)

,

𝐷𝑒𝑠𝑐(𝑀) =𝑅𝑒𝑠𝑖𝑧𝑒(𝐼𝑚𝑔(𝑁𝑜𝑟𝑚(𝑀)),112 × 112),

{𝐺𝐷,𝐽𝐷𝐷,𝐴𝐷𝐷,𝐿𝐴𝐷} = {𝐷𝑒𝑠𝑐(𝐌𝑔𝑟),𝐷𝑒𝑠𝑐(𝐌𝑗𝑑𝑖𝑠),𝐷𝑒𝑠𝑐(𝐌𝑎𝑑𝑖𝑠),𝐷𝑒𝑠𝑐(𝐌𝑎𝑛𝑔)},

𝐹𝐷𝐷 = 𝑆𝑡𝑎𝑐𝑘(𝐽𝐷𝐷,𝐴𝐷𝐷,𝐿𝐴𝐷).

(8)

Where 𝐼𝑚𝑔 is the function that transforms a matrix to image. Some of the actions require two people in the sequence like ‘shaking 
hands’. Inspired by [10], our proposed method can handle two people in the sequence by doubling the number of joints 𝑁 , the 
number of selected pairs 𝑃 , the number of joints 𝑁 , and the number of angles 𝑈 in M𝑔𝑟, M𝑗𝑑𝑖𝑠, M𝑎𝑑𝑖𝑠, and M𝑎𝑛𝑔 , respectively. Fig. 2
illustrates the construction of the matrix representations and the image descriptors. Fig. 4 shows the result of constructing the five 
descriptors in case of one or two people performing the action.
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Fig. 3. A detailed structure of the ResBlock in Fig. 1. N_ch: number of channels, s: stride, p: padding. 

Algorithm 1 Voting and Priority Score Selection.

Input: 𝑐𝐺𝐷 , 𝑐𝐽𝐷𝐷 , 𝑐𝐴𝐷𝐷 , 𝑐𝐿𝐴𝐷 , 𝑐𝐹𝐷𝐷 , 𝑐𝑐𝑎𝑡
Output: class 
Priority: Pr(𝑐𝑐𝑎𝑡) > Pr(𝑐𝐺𝐷) > Pr(𝑐𝐹𝐷𝐷) > Pr(𝑐𝐽𝐷𝐷) > Pr(𝑐𝐴𝐷𝐷) > Pr(𝑐𝐿𝐴𝐷) 
Same Predictions: Sm = Same(𝑐𝐺𝐷 , 𝑐𝐽𝐷𝐷 , 𝑐𝐴𝐷𝐷 , 𝑐𝐿𝐴𝐷 , 𝑐𝐹𝐷𝐷 , 𝑐𝑐𝑎𝑡)
1: if Sm > = 2 then // two or more predictions have the same class

2: class = any(Sm)

3: else if Sm = (3,3) or Sm = (2,2,2) then // different classes predicted equally

4: class = Max(Pr(Sm(.)))

5: else

6: 𝑃 : set of all pairs of the predicted classes (𝑐𝑎, 𝑐𝑏), where 𝑃𝑟(𝑐𝑎) > 𝑃𝑟(𝑐𝑏)
7: if Pr(𝑐𝑎) > all(Pr(𝑐𝑎)) and Pr(𝑐𝑏) > all(Pr(𝑐𝑏)) then

8: class = 𝑐𝑏
9: end if

10: end if

3.2. Feature extraction and action classification

Fig. 1 shows the feature extraction module of IMDAR. Each of the five descriptors is used as input to a ResBlock network (Fig. 3), 
then a 4×4 average pooling is applied on the output of the ResBlock to obtain features of size 1×1×1024. After that, a 1D Convolution 
is applied to get the prediction score vector with a size equal to the number of classes. For complementary feature representation of 
the action, the outputs of the average pooling layers of the five descriptors are concatenated to obtain features of size 1 × 1 × 5120, 
then a 1D Convolution is applied to get a prediction score of the concatenated features. The ResBlock (Fig. 3) is carefully designed 
to fit our image patters by using few layers for low-level feature extraction. The feature extraction module can be formulated as 
follows:

𝐷 = {𝐺𝐷,𝐽𝐷𝐷,𝐴𝐷𝐷,𝐿𝐴𝐷,𝐹𝐷𝐷}

𝑓𝐷 =𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘(𝐷),4 × 4)

𝑐𝐷 = 𝐶𝑜𝑛𝑣(𝑓𝐷,1024,1 × 1)

𝑓𝑐𝑎𝑡 = 𝐶𝑎𝑡(𝑓𝐺𝐷,𝑓𝐽𝐷𝐷,𝑓𝐴𝐷𝐷,𝑓𝐿𝐴𝐷,𝑓𝐹𝐷𝐷)

𝑐𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑣(𝑓𝑐𝑎𝑡,5120,1 × 1)

(9)

Where 𝑓𝐷 are the features of the descriptor 𝐷, and 𝑓𝑐𝑎𝑡 are the concatenated features of the five descriptors. 𝑐𝐷 is the predicted 
class from the descriptor 𝐷, and 𝑐𝑐𝑎𝑡 is the predicted class from the concatenation of the five descriptors. 𝐶𝑜𝑛𝑣, 𝐴𝑣𝑔𝑃𝑜𝑜𝑙, and 𝐶𝑎𝑡
are the 1D convolution, the average pooling, and the concatenation operations, respectively.

We denote 𝑃𝑟𝑒𝑑 = {𝑐𝐺𝐷, 𝑐𝐽𝐷𝐷, 𝑐𝐴𝐷𝐷, 𝑐𝐿𝐴𝐷, 𝑐𝐹𝐷𝐷, 𝑐𝑐𝑎𝑡}, the predicted classes from the six models. The models generate different 
predictions for the same input sequence, and some predictions like 𝑐𝐺𝐷 and 𝑐𝐽𝐷𝐷 can be more accurate. To decide which of the six class 
predictions must be considered as the final class, we propose a Voting and Priority Score Selection (VPSS) algorithm (Algorithm 1). 
The idea of the algorithm is to assign a priority to each of the models based on its individual performance:

𝑃𝑟(𝑐𝑐𝑎𝑡) > 𝑃𝑟(𝑐𝐺𝐷) > 𝑟(𝑐𝐹𝐷𝐷) > 𝑃𝑟(𝑐𝐽𝐷𝐷) > 𝑃𝑟(𝑐𝐴𝐷𝐷) > 𝑃𝑟(𝑐𝐿𝐴𝐷) (10)

Where 𝑃𝑟 indicates the priority. If two or more models predictions agree on a class, we consider it as the final predicted class:
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Fig. 4. Visualization of the action representation and the feature invariance with different views, velocities, sequence sizes, and number of actors. Left: key video 
frames of the actions. Right: Action representation via image descriptors.

𝑃vote = 𝑉 𝑜𝑡𝑒(𝑃𝑟𝑒𝑑)

class =𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦(𝑃𝑟𝑒𝑑) if |𝑃vote| ≥ 2
(11)

If some of the models agree on one class and others agree on another class equally, we trust the models that the sum of their 
priority is higher:

class = arg max 
𝑐𝑘∈𝑃𝑟𝑒𝑑

∑
𝑖∈𝑎𝑔𝑟𝑒𝑒(𝑐𝑘)

𝑃𝑟(𝑐𝑖) (12)

Where 𝑎𝑔𝑟𝑒𝑒(𝑐𝑘) represents the set of models that predict the class 𝑐𝑘 . In the rest of the cases when the models don’t agree on the 
same class, we consider the ones with less priority but not the least priority, because sometimes the correct class can be predicted 
with the less performant model. For the latter case, we create a combination of pairs (𝑐𝑎, 𝑐𝑏) from the predicted classes, where the 
first element of the pair has higher priority than the second element, then we select the pair that both its elements are higher than 
all the elements of the rest of the pairs, and the correct class corresponds to the second element of the pair:

class = arg max 
(𝑐𝑎,𝑐𝑏)

(
𝑃𝑟(𝑐𝑎) > 𝑃𝑟(𝑐𝑏)

)
= 𝑐𝑏 (13)

4. Experiments

4.1. Datasets

The NTU-RGB + D 60 is a large-scale human action recognition dataset with 60 action classes, containing 56,880 skeleton sequences. 
For comparison with the state-of-the-art, we follow the same evaluation protocol of the dataset [31]: Cross-Subject (C-Sub) and 
Cross-View (C-View). The NTU-RGB + D 120 dataset is an extension of NTU-RGB + D 60 with 60 additional actions. It contains 114,480 
sequences across 120 classes. We also follow the same evaluation protocol of the dataset [24]: Cross-Subject (C-Sub) and Cross-Setup 
(C-Set). The N-UCLA (Northwestern-UCLA) dataset consists of 1,494 sequence clips of 10 actions captured from 3 camera angles 
simultaneously. In the testing benchmark [39], camera views 1 and 2 are used for training, and camera view 3 is used for testing. 
UTD-MHAD [3] dataset includes 861 sequences of 27 actions. The evaluation protocol for this dataset is Cross-Subject [22].

4.2. Implementation details

Six models are trained for action prediction (Fig. 1). Five models are trained separately for each descriptor, and the sixth model 
(fusion-model) is trained using the five descriptors together. All the six models are trained with 0.0001 learning rate that decreases 
by 0.5 after the fifth epoch, using Adam optimizer with a batch size of 32. A Cross-Entropy loss is used to train each of the five 
models, but for the fusion-model, the total loss is the sum of eight Cross-Entropy losses: five losses from the individual models, one 
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Table 1
Comparison of accuracy between IMDAR and the state-of-the-art action 
recognition methods on the NTU-RGB + D 60 DATASET for Cross-Subject 
(C-Sub) and Cross-View (C-View) benchmarks (%).

Method C-Sub C-View 
ST-GCN [46] (AAAI’18), GCN 81.5 88.3 
SR-TSL [35] (ECCV’18), GNN+Att 84.8 92.4 
AS-GCN [23] (CVPR’19), GCN 86.8 94.2 
2s-AGCN [32] (CVPR’19), GCN 88.5 95.1 
AGC-LSTM [34] (CVPR’19), GCN+Att 89.2 95.0 
RA-GCN [36] (TCSVT’20), GCN 87.3 93.6 
4s-Shift-GCN [8] (CVPR’20), GCN 90.7 96.5 
Dynamic-GCN [47] (ACMMM’20), GCN 91.5 96.0 
MST-GCN [7] (AAAI’21), GCN 91.5 96.6 
ST-TR [30] (CVIU’21), GCN+Att 90.3 96.3 
Ta-CNN [45] (AAAI’22), CNN 90.7 95.1 
EfficientGCN [37] (TPAMI’22), GCN+Att 92.1 96.1 
ST-SLKA [26] (TVCG’23), GCN+Att 90.7 96.1 
Action Capsules [1] (CVIU’23), Att 90.0 96.3 
SHARL [27] (TSMCS’23), Att 90.4 96.5 
IMDAR (Proposed) 92.8 96.8

Table 2
Comparison of accuracy between IMDAR and the state-of-the-art action 
recognition methods on NTU-RGB + D 120 DATASET for Cross-Subject 
(C-Sub) and Cross-Setup (C-Set) benchmarks (%).

Method C-Sub C-Set 
ST-GCN [46] (AAAI’18), GCN 70.7 73.2 
AS-GCN [23] (CVPR’19), GCN 77.9 78.5 
2s-AGCN [32] (CVPR’19), GCN 82.5 84.2 
RA-GCN [36] (TCSVT’20), GCN 81.1 82.7 
4s-Shift-GCN [8] (CVPR’20), GCN 85.9 87.6 
Dynamic-GCN [47] (ACMMM’20), GCN 87.3 88.6 
MST-GCN [7] (AAAI’21), GCN 87.5 88.8 
ST-TR [30] (CVIU’21), GCN+Att 85.1 87.1 
Ta-CNN [45] (AAAI’022), CNN 85.7 87.3 
IGFormer [28] (ECCV’22), Att 85.4 86.5 
EfficientGCN [37] (TPAMI’22), GCN+Att 88.7 88.9 
ST-SLKA [26] (TVCG’23), GCN+Att 86.3 87.8 
IMDAR (Proposed) 87.5 89.1

loss from the concatenated features of all the models, one loss from the concatenated features of GD and FDD, and one loss from the 
concatenated features of JDD, ADD and LAD. The experiments were conducted using PyTorch framework on a machine with Nvidia 
RTX 4090 GPU, 64 GB of RAM, and a CPU of Intel(R) Core(TM) i9-13900k.

4.3. Comparison with the state-of-the-art

The comparison with the state-of-the-art methods on NTU-RGB + D 60 for both C-Sub and C-View benchmarks are shown in Table 1. 
IMDAR demonstrates higher prediction accuracy on the C-Sub benchmark and performs even better than methods that combine 
both GCN and attention mechanisms. Specifically, it shows better performance than SHARL [27] by 2.4% (C-Sub), which focuses 
on dynamic joint selection through reinforcement learning, while our multiple invariant representations provide a comprehensive 
encoding of actions that can adapt to any dynamic change without the need for complex training frameworks.

The performance on the NTU-RGB + D 120 dataset in Table 2 indicates that our work is on par with state-of-the-art methods on the 
C-Sub benchmark and surpasses the new state-of-the-art methods on the C-Set benchmark. IMDAR outperformed IGFormer [28] by 
2.1% on C-Sub and 2.6% on C-Set. IGFormer focuses on human interaction recognition using graph representations for each person, 
combined with self-attention. Unlike this method, our representations can effectively capture interactions among people through a 
2D representation for both skeletons. Additionally, the integration of multiple representations, including a spatio-temporal graph 
representation, enhances the model’s ability to process complex interactions.

Further comparison on a smaller dataset such as N-UCLA is shown in Table 3. Although FRHead [50] includes an auxiliary feature 
refinement module, which focuses on dynamic calibration of ambiguous samples through a specialized refinement head, our method 
shows better performance by 2.3%. This improvement is attributed to the multiple representations that provide diverse features 
to distinguish actions that are highly similar to other actions, helping to reduce ambiguity. InfoGCN [9] combines an information 
bottleneck-based learning objective with attention-based graph convolution to learn effective latent representations. However, IMDAR 
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Table 3
Accuracy comparison of IMDAR with the state-of-the-art action recog-

nition methods on N-UCLA DATASET for Cross-View benchmark (%).

Method Accuracy 
AGC-LSTM [34] (CVPR’19), Att 93.3 
VA-CNN [48] (TPAMI’19), CNN+Att 90.7 
4s-shift-GCN [8] (CVPR’20), GCN 94.6 
Ta-CNN [45] (AAAI’22), CNN 96.1 
CTR-GCN [6] (CVPR’22), GCN 96.5 
InfoGCN [9] (CVPR’22), GCN+Att 96.6 
FRHead [50] (CVPR’23), GCN 96.8 
Action Capsules [1] (CVIU’23), Att 97.3 
IMDAR (Proposed) 99.1

Table 4
Accuracy comparison of IMDAR with action recognition methods 
on UTD-MHAD DATASET (%) on Cross-Subject benchmark (%).

Method Accuracy 
Kinect [3] (ICIP’15) 66.1 
Inertial [3] (ICIP’15) 67.2 
Kinect&Inertial [3] (ICIP’15) 79.1 
JTM [40] (ACMMM’16) 85.8 
Optical Spectra [16] (TCSVT’16) 86.9 
JDM [22] (SPL’17) 88.1 
IMDAR (Proposed) 97.3

Table 5
Statistical analysis of P-Values across datasets. P-Values below 5 × 10−2 threshold 
indicate significant improvement in accuracy. For each dataset, the accuracies of 
the compared models are used as baselines.

Dataset Nbr of baselines P-Values Accuracy (%) 
NTU-RGB+D 60 (C-Sub) 16 7.0 × 10−5 92.8 
NTU-RGB+D 60 (C-View) 16 2.4 × 10−3 96.8 
NTU-RGB+D 120 (C-Sub) 13 1.1 × 10−2 87.5 
NTU-RGB+D 120 (C-Set) 13 6.6 × 10−3 89.1 
N-UCLA 8 1.8 × 10−3 99.1 
UTD-MHAD 7 2.7 × 10−3 97.3 

shows better accuracy by 2.5%, which can be attributed to the fact that the action descriptors are more effective than the latent 
representation.

In Table 4, we present the prediction accuracy on UTD-MHAD dataset. IMDAR achieves 9.2% improvement over the latest skeleton-

based action recognition method tested on this dataset (JDM [22]), which uses multiple coordinate-based representations of the 
skeleton sequences. This significant improvement demonstrates the effectiveness of our diverse spatio-temporal graph-based and 
distance-based representations.

Table 5 presents the p-values for each dataset to statistically analyze the improvement in accuracy of IMDAR over existing methods 
mentioned in Tables 1, 2, 3, and 4. Overall, the p-values are below 5 × 10−2 threshold, which indicates significant improvement. 
Especially for NTU-RGB + D 60 (C-Sub) and N-UCLA datasets.

In Fig. 5(left), the confusion matrix for the Cross-Subject benchmark on NTU-RGB + D 60 shows the prediction accuracy for each 
class, with 20 actions displayed numerically and the rest represented by cell colors. Misclassified actions are highlighted with red 
rectangles, and while overall accuracy is high, slight confusion occurs for actions with similar movements, such as ‘11-reading’ and 
‘12-writing’ being confused with ‘29-play with phone/tablet’ and ‘37-salut’. Fig. 5(right) for the Cross-View benchmark presents 
minimal confusion, confirming the effectiveness of view invariance. As the action classes increase to 120 in NTU-RGB + D 120 dataset, 
the accuracy remains stable for both Cross-Subject and Cross-Setup benchmarks (Fig. 6). For Cross-Subject, ‘76-cutting paper’ is 
confused with actions like ‘73-stable book’ and ‘74-counting money’, while ‘83-ball up paper’ overlaps with several other actions. 
In Cross-Setup, actions like ‘71-make OK sign’ and ‘75-cutting nails’ are confused with ‘104-stretch oneself’ and ‘86-apply cream on 
hand’.

4.4. Ablation studies

4.4.1. Effect of each component on the prediction

Each descriptor represents one aspect of the action. For some actions, one descriptor is enough to predict the correct class. However, 
for complex actions, multiple descriptors are needed to have a complete representation using different features. The performance of 

Information Sciences 700 (2025) 121832 

10 



K. Aouaidjia, C. Zhang and I. Pitas 

Fig. 5. Confusion matrix of the class prediction on NTU-RGB + D 60 dataset for Cross-Subject benchmark (left) and Cross-View benchmark (right). The areas highlighted 
in red indicate the predicted actions that have been misclassified as other actions.

Fig. 6. Confusion matrix of the class prediction on NTU-RGB + D 120 dataset for Cross-Subject benchmark (left) and Cross-Setup benchmark (right). The areas highlighted 
in red indicate the predicted actions that have been misclassified as other actions.

Table 6
Accuracy of single-descriptor models, the fusion-model, and whole-framework 
on different datasets (%) .

NTU-RGB+D 60 NTU-RGB+D 120 
Models C-Sub C-View C-Sub C-Set N-UCLA 
GD 80.3 86.2 72.0 74.8 83.8 
JDD 77.8 86.4 68.0 70.8 91.0 
ADD 73.6 80.1 62.2 65.2 88.1 
LAD 73.1 77.9 61.4 63.7 87.7 
FDD 81.1 87.7 72.1 74.4 92.1 
fusion-model 85.2 91.2 76.7 79.2 95.0 
whole-framework 92.8 96.8 87.5 89.1 99.1 

single-descriptor models on each dataset for different benchmarks is shown in Table 6. The priority given to each model when applying 
the VPSS algorithm is based on the results of the table. The VPSS has a big effect on the final prediction accuracy. It is better than 
the fusion-model on the NTU-RGB + D 60 dataset by 7.6% and 5.7% for the C-Sub and C-View benchmarks, respectively. The impact 
is even higher than the fusion-model on the NTU-RGB + D 120 dataset by 10.8% and 9.9% for the C-Sub and C-Set, respectively. 
Applying VPSS increases the prediction performance even more to 99.1% on N-UCLA dataset.

To evaluate the impact of each descriptor on the overall framework, Table 7 shows the accuracy achieved when one or two de-

scriptors are omitted. The results indicate that omitting a single descriptor leads to a drop in accuracy, while omitting two descriptors 
results in an even greater decline. This demonstrates how each descriptor contributes to the effectiveness of the proposed representa-

tions when used together. Specifically, the absence of the GD or the fusion-model results in a decrease of 2.2% and 2.4%, respectively, 
which both have a higher impact compared to the absence of JDD, ADD, LAD or FDD with a decrease of just 1.1%, 1.6%, 1.1%, and 
1%, respectively. However, the absence of GD and JDD, ADD and LAD, or FDD and fusion-model lead to a higher decrease of 4.7%, 
3.4%, and 4.2%, respectively.
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Table 7
Ablation study on the effect of each descriptor on the global accuracy. 
The results are obtained on NTU-RGB + D 60 for C-Sub benchmark (%).

GD JDD ADD LAD FDD fusion-model Accuracy 
✓ ✓ ✓ ✓ 88.1 

✓ ✓ ✓ ✓ 89.4 
✓ ✓ ✓ ✓ 88.6 

✓ ✓ ✓ ✓ ✓ 90.6 
✓ ✓ ✓ ✓ ✓ 91.7 
✓ ✓ ✓ ✓ ✓ 91.2 
✓ ✓ ✓ ✓ ✓ 91.7 
✓ ✓ ✓ ✓ ✓ 91.8 
✓ ✓ ✓ ✓ ✓ 90.4 
✓ ✓ ✓ ✓ ✓ ✓ 92.8 

Table 8
Comparison of accuracy between single-descriptor model 
and Multi-Axis Vision Transformer (MaxVIT) model on 
NTU-RGB + D 60 (C-Sub) and N-UCLA datasets (%).

NTU-RGB+D 60 N-UCLA 
Descriptors Ours MaxVIT Ours MaxVIT 
GD 80.3 74.4 83.8 73.1 
JDD 77.8 60.1 91.0 87.3 
ADD 73.6 68.2 88.1 78.3 
LAD 73.1 64.6 87.7 82.1 
FDD 81.1 71.5 92.1 88.5 

4.4.2. Classification with a vision Transformer

Vision Transformers exceeded state-of-the-art CNN models for image classification. Table 8 shows the classification results on 
NTU-RGB + D 60 dataset for the C-Sub benchmark and N-UCLA dataset, compared to the prediction results using a state-of-the-art 
vision Transformer MaxVIT [38] to classify our descriptors. Our simple CNN model exceeded the Transformer by a large difference in 
accuracy. The comparison results confirm our first assumption which stated that vision Transformers may not be efficient to classify 
such kind of feature map images, and verify the efficacy of the ResBlock with its shallow structure. A shallow CNN model is more 
suitable to classify such images, because it primarily captures low-level features, such as edges, textures, and simple patterns. In 
contrast, vision Transformers are designed to capture high-level semantic features and global context.

4.4.3. View invariance

The descriptors JDD, ADD, and LAD are distance-based, which means that their representations are independent of the skeleton 
pose coordinates. For example, the same action viewed from different angles has different skeleton coordinates, but the distances 
between joints remain unchanged. These four distance descriptors significantly impact view invariance and action prediction. More-

over, since the GD descriptor represents the changes in the skeleton joints topological relationships, it makes it view-independent. In 
Fig. 5, we show view-invariant features of the ‘pick up’ action of the NTU-RGB + D 60 dataset from three different angles. The visual 
comparison of five feature maps confirms the invariance of the action across views, though small differences in ADD descriptors due 
to speed variations between adjacent frames.

For quantitative evaluation of the view invariance, in Fig. 7, we show the prediction accuracy of individual classes on NTU-RGB + D 
60 for C-Sub benchmark on three different views for each action. The figure reports that the accuracy for each action from the three 
views is stable, i.e., the performance depends on the action type, and not on the view. In most cases, for the same action, if the 
accuracy is high on a certain view, it is also high with almost the same value on the other views, and vice versa. The view invariance 
is reflected in having the same graph shape on the three views.

4.4.4. Velocity and sequence size invariance

To evaluate the performance of the descriptors on different action velocities, in Fig. 8, we visualize in detail the accuracy of each 
action, categorized based on the number of frames in the samples. The number of frames in the video samples are organized in three 
intervals: [36-100], [100-150], and [150-200]. For the same action, samples with large velocity contain few frames, while samples 
with small velocity contain larger number of frames. We notice that the accuracy is not affected by the difference in the number of 
frames. For example, for the action ‘wipe face’ the accuracy is 93.12% despite having actions of three different ranges, while the 
accuracy for the action ‘clapping’ is just 83.46% despite having one range of frames. Even though the action ‘put on a shoe’ has 
the largest number of actions with two very different ranges, its accuracy (94.51%) still better than ‘drop’ (91.64%) which contain 
only one range of frames. The reason for this performance can be attributed to the fact that the representations of actions using a 
fixed-size images of 112 × 112 ensure sequence size invariance. Additionally, the ADD captures the movement of joints between 
adjacent frames, which contributes to the overall representation by incorporating velocity features.
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Fig. 7. Analysis of the view invariance of IMDAR for each class across the three views in the NTU-RGB + D 60 dataset for the C-Sub benchmark. Overall, the prediction 
accuracy for each action across the three views are closely aligned with each other.

Fig. 8. Analysis of the velocity invariance of IMDAR. Each action contain video samples with different lengths. The length of video samples of each action are 
organized into three categories: [36,100], [100,150], and [150,200]. The results are obtained on NTU-RGB + D 60 for C-Sub benchmark. It is clearly observed that 
IMDAR generates high prediction accuracy for actions of varying video lengths.

4.5. Computation complexity

Table 9 compares IMDAR with other action recognition models on FLOPS (Floating Point Operations Per Second) and inference 
time (sequences/second). The single-descriptor model shows 7.8 FLOPS, ranking second. In contrast, the fusion-model requires 31.6 
FLOPS, which is approximately five times the FLOPS of the single-descriptor model due to the concatenated features of the five 
descriptors. Since the entire framework consists of multiple models, we calculate its FLOPS by summing the FLOPS of all individual 
models, resulting in a total of 70.6 FLOPS. From Table 1 and Table 3, we observe that IMDAR (whole-framework) significantly 
outperforms the methods listed in Table 9, despite a slightly higher computational demand. Furthermore, the performance of the 
fusion-model, which requires 36.1 FLOPS, is comparable to other methods such as ST-GCN [46] and SR-TSL [35] in Table 1. Regarding 
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Table 9
Computation complexity comparison of IMDAR models with 
other action recognition models on Floating-Point Operations 
Per Second (FLOPS) and inference time (sequence/second).

Models FLOPS Inference time 
ST-GCN [46] 16.3 42.91 
RA-GCN [36] 32.8 18.72 
2s-AGCN [32] 37.3 22.31 
4s-ShiftGCN [8] 10.0 -

CTR-GCN [6] 7.6 -

DSTA-Net [33] 64.7 -

ST-TR [30] 259.4 -

IMDAR (single-descriptor) 7.8 108 
IMDAR (fusion-model) 31.6 36 
IMDAR (whole-framework) 70.6 18 

Table 10

Trade-off between efficiency (seconds) and accuracy (%) of IMDAR on the NTU-RGB + D 60 dataset for C-Sub benchmark. The 
total time is calculated for a single skeleton sequence, including descriptors generation, initial predictions, and VPSS.

Descriptors generation Inital predictions VPSS Total Time Accuracy 
whole-framework 5.2 × 10−2 2.2 × 10−4 6.2 × 10−3 ≈ 5.8 × 10−2 92.8 
fusion-model 5.2 × 10−2 2.2 × 10−4 - ≈ 5.2 × 10−2 85.2 
two-descriptors (FDD+GD) 2.1 × 10−2 7.3 × 10−5 2 × 10−3 ≈ 2.3 × 10−2 87.0 
single-descriptor (FDD) 10−2 3.6 × 10−5 - ≈ 10−2 81.1 

inference time, the whole-framework has a similar inference speed to RA-GCN, which is slower than other methods but offers better 
accuracy (Table 1). In contrast, the single-descriptor model demonstrates a high inference speed of 108 sequences/second.

4.6. Trade-off between efficiency and accuracy

Table 10 presents a trade-off analysis between efficiency (seconds) and accuracy. We observe that the inference time is primarily 
affected by the descriptor generation, then the VPSS algorithm, and much less by the initial prediction. The fusion model shows a 
decrease of 7.6% in accuracy without a noticeable increase in efficiency. Including only one descriptor leads to the best efficiency 
with just 10−2, but with the lowest accuracy (81.1%). However, using only two descriptors shows a smaller decrease of accuracy to 
5%, with 3.5 × 10−3 gain in efficiency, which is more convenient for practical applications since it balances between accuracy and 
efficiency.

Based on the results in Table 6, we observe that a dataset with fewer actions such as N-UCLA, require either a fusion model or a 
single-descriptor model to achieve acceptable accuracy. In real-world applications that require recognizing a limited set of actions, 
such as fitness tracking (e.g., detecting squats, jumping, push-ups), sports analysis (e.g., tennis serve, bat swing), or elderly care 
(e.g., detecting sitting, standing, walking, or falling), using two descriptors can provide high accuracy with lower computational cost. 
In conclusion, the efficient deployment of IMDAR for real-world action recognition depends on factors like the number of actions, 
the required accuracy, and the computational resources of the target device. For simpler applications or environments with limited 
resources, optimizing the pipeline with fewer descriptors offers a practical balance between accuracy and efficiency.

4.7. Qualitative evaluation

The evaluation of IMDAR effectiveness on actions that exhibit high similarity to other actions is shown in Fig. 9. We present the 
predictions, ground truth, and the key frames of each sequence, using samples from the testing set of the NTU-RGB + D 60 dataset. 
The actions ‘reading’ and ‘writing’ (first pair) are correctly classified despite their high similarity in global movements, with small 
differences observed in frames 60 and 80. IMDAR also accurately classifies highly similar actions, such as the pair ‘hand waving’ and 
‘make a selfie’, which can be distinguished only by arm movement. However, when actions demonstrate even greater similarity, the 
model sometimes misclassifies actions, such as ‘neck pain’ as ‘headache’ and ‘eat meal’ as ‘sneeze/cough’.

In Fig. 10, we analyze the behavior of IMDAR on unseen actions in real-world videos. The action predictions are generated using 
a model trained on the NTU-RGB + D 120 dataset, with input skeleton sequences obtained from a 3D pose estimation model applied to 
the RGB video frames. The model demonstrates good generalization for actions performed similarly to those in the training data. For 
example, actions like ‘Tennis serve’ and ‘Throw something’, shown in rows 1 and 3, respectively, are correctly predicted. However, for 
actions that are partially similar to the training data, the model exhibits partial correctness. For instance, the action ‘Throw something’ 
(row 2) is classified as ‘Shot at basket’, because both involve throwing. Similarly, the action ‘Weight lifting stand’ is classified as ‘Stand 
up’, as the ‘Stand up’ action is the most similar action in the training set. When actions are performed differently from those in the 
training dataset, the model tends to misclassify them. For example, the ‘Tennis serve’ actions in rows 5 and 6, performed differently 
from the ‘Tennis serve’ action in row 1, and they are mistakenly classified as ‘Stretching oneself’ and ‘Sneeze/Cough’, respectively. 
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Fig. 9. Predictions alongside the ground truth for samples from the testing set of the NTU-RGB + D 60 dataset, where all test actions are captured with settings S=001, 
camera view C=001, performed by the performer P=003, and trial R=001. For each ground truth action, the key frames of the sequence are presented. Correctly 
classified actions are highlighted in green (despite high similarity with another action), while misclassified actions are highlighted in red (in cases of very high 
similarity with another action).

Fig. 10. IMDAR predictions on unseen actions of real-world videos. The predictions are obtained using the model trained on NTU-RGB + D 120 dataset. The skeleton 
sequence is generated by a 3D pose estimation model from the RGB video. Green: Correct prediction, Red: Incorrect prediction, Orange: Partially correct prediction. 
The circles indicate the pose similarity between the real action and the wrong prediction.
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Fig. 11. IMDAR predictions on noisy samples from NTU-RGB + D 120 dataset. The black areas in the descriptors indicate missing skeletons or joints. The correct 
predictions are presented in green, and the wrong predictions are presented in red. For each action, the five descriptors are shown.

In the same way, the action ‘Throw something’ (last row) is misclassified as ‘Point to something’, likely due to the similarity in the 
arm movement.

To demonstrate the effectiveness of the diverse representations in handling missing skeletons or joints within a sequence, Fig. 11

presents several noisy samples, where the black areas indicate the missing skeletons or joints. In most cases, our method successfully 
classifies the actions, showing its robustness, even for interaction-based actions involving two individuals, such as ‘Walking towards’ 
and ‘Giving objects’.

4.8. Discussion

Advantages: IMDAR outperformed several state-of-the-art methods across four benchmark datasets with varying setups, camera 
view angles, action performances, and with different dataset sizes. The primary reason for this performance is the use of multiple 
representations of actions, which capture various aspects and critical features for holistic and complementary action representation 
through multiple descriptors combined with the VPSS algorithm. This was clearly demonstrated in the ablation study, where the 
absence of one descriptor impacts the overall accuracy (Table 6). Moreover, the analysis of the invariance capabilities of the descriptors 
indicates that accuracy is influenced more by how the action is performed than by pose, view angle, or sequence length (velocity). 
Furthermore, the qualitative evaluation of similar actions (Fig. 9), handling noisy data (Fig. 11), and the predictions of real-world 
actions (Fig. 10), demonstrate the robustness of IMDAR.

Limitations: Although IMDAR achieved high accuracy on multiple benchmarks, the analysis of the computation cost and inference 
time shows a high computation complexity compared to existing methods despite higher accuracy. The reason behind such complexity 
is the involving of six models for prediction, especially the fusion-model that include the five descriptors. Moreover, IMDAR shows a 
slower inference time, starting from the input skeleton sequence to the final prediction. This slow inference is mainly because of the 
constructions of five descriptors. Moreover, the VPSS algorithm investigates several options based on multiple predictions to decide 
the correct class, which influences the inference time.

Another limitation is the confusion between actions that have similar global and local skeleton movements, such as “eating meal” 
and “sneezing/coughing” (Fig. 9). In these cases, the lack of visual information (e.g., the presence of food) makes distinguishing them 
challenging, which require very precise local discriminative skeleton features.

Future work: Our proposed action representations have proven that they are crucial for efficient action recognition. However, 
using six models separately in parallel during the inference can be improved by stacking the five descriptors into a single representation 
with multiple channels, where each channel represents one descriptor. This approach allows to use a single model to process the 
stacked representations. But directly applying a single model to the stacked channels may not lead to the same performance as 
separated models, since features in some channels can influence those in others. Therefore, a careful design of the single model is 
essential. One solution for model design is to use 3D convolution to capture local features from multiple channels, and incorporate a 
self-attention mechanism to capture relationships between local features within each channel and global features across channels. The 
stacked representation will significantly reduce the computational time required, by eliminating the need for saving five descriptors 
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for each sample, which reduces data loading by one-fifth. Additionally, using a well-designed single model that preserves the features 
of the five stacked descriptors will decrease the FLOPS by one-sixth.

To address the challenge of distinguishing between very similar actions that demonstrate local and global movements, a new 
proposed Motion Sensitive Descriptor (MSD) can be added to the stacked channels. This descriptor must focus exclusively on the 
most active joints and limbs, rather than including all joints, because the key factor in distinguishing actions in such cases is the body 
parts that exhibit more movement than the other parts.

5. Conclusion

In this paper, we introduced a new framework for skeleton-based action recognition, which consists of three modules; the action 
representation module, the feature extraction module, and the action prediction module. In the action representation module, we 
represented the skeleton sequence with five image descriptors, one descriptor represents the spatio-temporal relations change between 
joints over time, and four descriptors represent the distance change between joints and limbs over time. The descriptors are feature 
invariant, which means that similar actions are not affected by the pose, view angle, or velocity. In the feature extraction module, a 
well designed CNN model is used for feature extraction and classification of the five descriptors and their concatenated features. In 
the prediction module, six predicted classes are generated, and a VPSS algorithm was applied to select the correct class. Experiments 
have been conducted on four benchmark datasets. The comparison results and the ablation study demonstrate the effectiveness of 
our method.

CRediT authorship contribution statement

Kamel Aouaidjia: Writing – original draft, Software, Methodology, Conceptualization. Chongsheng Zhang: Writing – review & 
editing. Ioannis Pitas: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgement

Kamel Aouaidjia and Chongsheng Zhang are supported in part by the National Natural Science Foundation of China (No. 
62250410371) and the Henan Provincial Key R&D Project (No. 232102211021). Prof. Pitas was partially funded by the European 
Commission HORIZON Research and Innovation Actions under grant TEMA (No. 101093003, HORIZON-CL4-2022-DATA-01-01).

Data availability

Four public datasets used for evaluation

References

[1] A.F. Bavil, H. Damirchi, H.D. Taghirad, Action capsules: human skeleton action recognition, Comput. Vis. Image Underst. 233 (2023) 103722.

[2] C. Caetano, F. Brémond, W.R. Schwartz, Skeleton image representation for 3d action recognition based on tree structure and reference joints, in: 2019 32nd 
SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), IEEE, 2019, pp. 16–23.

[3] C. Chen, R. Jafari, N. Kehtarnavaz, Utd-mhad: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor, in: 
2015 IEEE International Conference on Image Processing (ICIP), IEEE, 2015, pp. 168–172.

[4] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, X. Sun, Measuring and relieving the over-smoothing problem for graph neural networks from the topological view, in: 
Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 3438–3445.

[5] X. Chen, X. Luo, J. Weng, W. Luo, H. Li, Q. Tian, Multi-view gait image generation for cross-view gait recognition, IEEE Trans. Image Process. 30 (2021) 
3041–3055.

[6] Y. Chen, Z. Zhang, C. Yuan, B. Li, Y. Deng, W. Hu, Channel-wise topology refinement graph convolution for skeleton-based action recognition, in: Proceedings 
of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 13359–13368.

[7] Z. Chen, S. Li, B. Yang, Q. Li, H. Liu, Multi-scale spatial temporal graph convolutional network for skeleton-based action recognition, in: Proceedings of the AAAI 
Conference on Artificial Intelligence, 2021, pp. 1113–1122.

[8] K. Cheng, Y. Zhang, X. He, W. Chen, J. Cheng, H. Lu, Skeleton-based action recognition with shift graph convolutional network, in: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2020, pp. 183–192.

[9] H.g. Chi, M.H. Ha, S. Chi, S.W. Lee, Q. Huang, K. Ramani, Infogcn: representation learning for human skeleton-based action recognition, in: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 20186–20196.

[10] A.M. De Boissiere, R. Noumeir, Infrared and 3d skeleton feature fusion for rgb-d action recognition, IEEE Access 8 (2020) 168297–168308.

[11] M. Ding, Y. Ding, L. Wei, Y. Xu, Y. Cao, Individual surveillance around parked aircraft at nighttime: thermal infrared vision-based human action recognition, 
IEEE Trans. Syst. Man Cybern. Syst. 53 (2022) 1084–1094.

[12] Y. Du, Y. Fu, L. Wang, Representation learning of temporal dynamics for skeleton-based action recognition, IEEE Trans. Image Process. 25 (2016) 3010–3022.

[13] G. Evangelidis, G. Singh, R. Horaud, Skeletal quads: human action recognition using joint quadruples, in: 2014 22nd International Conference on Pattern 
Recognition, IEEE, 2014, pp. 4513–4518.

[14] P.T. Hai, H.H. Kha, An efficient star skeleton extraction for human action recognition using hidden Markov models, in: 2016 IEEE Sixth International Conference 
on Communications and Electronics (ICCE), IEEE, 2016, pp. 351–356.

Information Sciences 700 (2025) 121832 

17 

http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0581E7C801A638E7686C1CB52082C45Ds1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4731A4B227849512B585DAEF57785DA2s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4731A4B227849512B585DAEF57785DA2s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib390D935E7505FC43F22603FFCE1CB77Bs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib390D935E7505FC43F22603FFCE1CB77Bs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib2522A470D8225ACFA5083FDEEF769FF6s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib2522A470D8225ACFA5083FDEEF769FF6s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibDC3D6A6C9CED5C5F13A85E57BD00D78Cs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibDC3D6A6C9CED5C5F13A85E57BD00D78Cs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0D17D26C76F00E7E74514B21579B1A36s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0D17D26C76F00E7E74514B21579B1A36s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib6AE9D0DA02B4D12B6E2B06FA689548CDs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib6AE9D0DA02B4D12B6E2B06FA689548CDs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib3DC8CB8E00D88AD8B1254C78194F5BE7s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib3DC8CB8E00D88AD8B1254C78194F5BE7s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7E58233E5C97CE746AC416896473D2B8s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7E58233E5C97CE746AC416896473D2B8s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibFB8A5AA15CA9CB8EB6AD5E2083BEBC43s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib63C9FCE81EF440C32761686CC7FE5A8Cs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib63C9FCE81EF440C32761686CC7FE5A8Cs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib1A7C406E55B998B703F0B3F9B3F41869s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibF49F218A6EFD13AA7F3BF9FC23625902s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibF49F218A6EFD13AA7F3BF9FC23625902s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibE1B146E7A08BE959D1E3B3B44C35FA61s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibE1B146E7A08BE959D1E3B3B44C35FA61s1


K. Aouaidjia, C. Zhang and I. Pitas 

[15] A. Hernandez Ruiz, L. Porzi, S. Rota Bulò, F. Moreno-Noguer, 3d cnns on distance matrices for human action recognition, in: Proceedings of the 25th ACM 
International Conference on Multimedia, 2017, pp. 1087–1095.

[16] Y. Hou, Z. Li, P. Wang, W. Li, Skeleton optical spectra-based action recognition using convolutional neural networks, IEEE Trans. Circuits Syst. Video Technol. 
28 (2016) 807–811.

[17] B. Jin, X. Xu, Carbon emission allowance price forecasting for China Guangdong carbon emission exchange via the neural network, Glob. Finance Rev. 6 (2024) 
3491.

[18] B. Jin, X. Xu, Forecasting wholesale prices of yellow corn through the Gaussian process regression, Neural Comput. Appl. 36 (2024) 8693–8710.

[19] B. Jin, X. Xu, Pre-owned housing price index forecasts using Gaussian process regressions, J. Model. Manag. (2024).

[20] N. Kilis, C. Papaioannidis, I. Mademlis, I. Pitas, An efficient framework for human action recognition based on graph convolutional networks, in: 2022 IEEE 
International Conference on Image Processing (ICIP 2022), 2022, pp. 1441–1445.

[21] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint, arXiv:1609.02907, 2016.

[22] C. Li, Y. Hou, P. Wang, W. Li, Joint distance maps based action recognition with convolutional neural networks, IEEE Signal Process. Lett. 24 (2017) 624–628.

[23] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, Q. Tian, Actional-structural graph convolutional networks for skeleton-based action recognition, in: Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 3595–3603.

[24] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.Y. Duan, A.C. Kot, Ntu rgb + d 120: a large-scale benchmark for 3d human activity understanding, IEEE Trans. Pattern 
Anal. Mach. Intell. 42 (2019) 2684–2701.

[25] J. Liu, G. Wang, L.Y. Duan, K. Abdiyeva, A.C. Kot, Skeleton-based human action recognition with global context-aware attention lstm networks, IEEE Trans. 
Image Process. 27 (2017) 1586–1599.

[26] Y. Liu, H. Zhang, Y. Li, K. He, D. Xu, Skeleton-based human action recognition via large-kernel attention graph convolutional network, IEEE Trans. Vis. Comput. 
Graph. 29 (2023) 2575–2585.

[27] B. Nikpour, N. Armanfard, Spatial hard attention modeling via deep reinforcement learning for skeleton-based human activity recognition, IEEE Trans. Syst. Man 
Cybern. Syst. (2023).

[28] Y. Pang, Q. Ke, H. Rahmani, J. Bailey, J. Liu, Igformer: interaction graph transformer for skeleton-based human interaction recognition, in: European Conference 
on Computer Vision, Springer, 2022, pp. 605–622.

[29] C. Papaioannidis, I. Mademlis, I. Pitas, Fast cnn-based single-person 2d human pose estimation for autonomous systems, IEEE Trans. Circuits Syst. Video Technol. 
33 (2023) 1262–1275.

[30] C. Plizzari, M. Cannici, M. Matteucci, Skeleton-based action recognition via spatial and temporal transformer networks, Comput. Vis. Image Underst. 208 (2021) 
103219.

[31] A. Shahroudy, J. Liu, T.T. Ng, G. Wang, Ntu rgb + d: a large scale dataset for 3d human activity analysis, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2016, pp. 1010–1019.

[32] L. Shi, Y. Zhang, J. Cheng, H. Lu, Two-stream adaptive graph convolutional networks for skeleton-based action recognition, in: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, 2019, pp. 12026–12035.

[33] L. Shi, Y. Zhang, J. Cheng, H. Lu, Decoupled spatial-temporal attention network for skeleton-based action-gesture recognition, in: Proceedings of the Asian 
Conference on Computer Vision, 2020.

[34] C. Si, W. Chen, W. Wang, L. Wang, T. Tan, An attention enhanced graph convolutional lstm network for skeleton-based action recognition, in: Proceedings of 
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 1227–1236.

[35] C. Si, Y. Jing, W. Wang, L. Wang, T. Tan, Skeleton-based action recognition with spatial reasoning and temporal stack learning, in: Proceedings of the European 
Conference on Computer Vision (ECCV), 2018, pp. 103–118.

[36] Y.F. Song, Z. Zhang, C. Shan, L. Wang, Richly activated graph convolutional network for robust skeleton-based action recognition, IEEE Trans. Circuits Syst. 
Video Technol. 31 (2020) 1915–1925.

[37] Y.F. Song, Z. Zhang, C. Shan, L. Wang, Constructing stronger and faster baselines for skeleton-based action recognition, IEEE Trans. Pattern Anal. Mach. Intell. 
45 (2022) 1474–1488.

[38] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, Y. Li, Maxvit: multi-axis vision transformer, in: European Conference on Computer Vision, Springer, 
2022, pp. 459–479.

[39] J. Wang, X. Nie, Y. Xia, Y. Wu, S.C. Zhu, Cross-view action modeling, learning and recognition, in: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition, 2014, pp. 2649–2656.

[40] P. Wang, Z. Li, Y. Hou, W. Li, Action recognition based on joint trajectory maps using convolutional neural networks, in: Proceedings of the 24th ACM International 
Conference on Multimedia, 2016, pp. 102–106.

[41] A. Waswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, in: NIPS, 2017.

[42] Y. Wei, X. Chen, J. Gu, Human activity recognition soc for ar/vr with integrated neural sensing, ai classifier and chained infrared communication for multi-chip 
collaboration, in: 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023, pp. 1–2.

[43] Y. Wu, X. Luo, Z. Xu, X. Guo, L. Ju, Z. Ge, W. Liao, J. Cai, Diversified and personalized multi-rater medical image segmentation, in: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 11470–11479.

[44] J. Xu, Y. Guo, Y. Peng, Finepose: fine-grained prompt-driven 3d human pose estimation via diffusion models, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), 2024, pp. 561–570.

[45] K. Xu, F. Ye, Q. Zhong, D. Xie, Topology-aware convolutional neural network for efficient skeleton-based action recognition, in: Proceedings of the AAAI 
Conference on Artificial Intelligence, 2022, pp. 2866–2874.

[46] S. Yan, Y. Xiong, D. Lin, Spatial temporal graph convolutional networks for skeleton-based action recognition, in: Proceedings of the AAAI Conference on Artificial 
Intelligence, 2018.

[47] F. Ye, S. Pu, Q. Zhong, C. Li, D. Xie, H. Tang, Dynamic gcn: context-enriched topology learning for skeleton-based action recognition, in: Proceedings of the 28th 
ACM International Conference on Multimedia, 2020, pp. 55–63.

[48] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, N. Zheng, View adaptive neural networks for high performance skeleton-based human action recognition, IEEE Trans. 
Pattern Anal. Mach. Intell. 41 (2019) 1963–1978.

[49] Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, J. Chen, Detrs beat yolos on real-time object detection, in: Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), 2024, pp. 16965–16974.

[50] H. Zhou, Q. Liu, Y. Wang, Learning discriminative representations for skeleton based action recognition, in: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 2023, pp. 10608–10617.

Information Sciences 700 (2025) 121832 

18 

http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7106B85D8964DA00665B4F4CC1691901s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7106B85D8964DA00665B4F4CC1691901s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibD711F44E19639F380D9BEFAD7CEF3023s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibD711F44E19639F380D9BEFAD7CEF3023s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib128E69816C7A8C149F58E66F8A2CF2C7s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib128E69816C7A8C149F58E66F8A2CF2C7s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibA4EF4D712451A1E6CC6228ED72438CEBs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib723B7488F85D5C3FAE4C8CC7182D833Bs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibBAE36A850A5001123C9C035C126F72BEs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibBAE36A850A5001123C9C035C126F72BEs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4EFBCCF638B63E6C3FFAC5F3E8B26EB3s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibF53F999BE12B9BD934BC334BF098A450s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB68A1210D0B77521A4974A7DF4338AE6s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB68A1210D0B77521A4974A7DF4338AE6s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib19A0691E8D568952F73DC0CF6DC7F79Ds1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib19A0691E8D568952F73DC0CF6DC7F79Ds1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0292455379C8FCE5CABAF924F3144DA4s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0292455379C8FCE5CABAF924F3144DA4s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib16418B5B59FE5A1AE7F12B5CBFBA7ABDs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib16418B5B59FE5A1AE7F12B5CBFBA7ABDs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibA99E396E55FD4C7FBD4EB3BA31D4B563s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibA99E396E55FD4C7FBD4EB3BA31D4B563s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibDE391BED31AD15F159EF67CBF320FCB2s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibDE391BED31AD15F159EF67CBF320FCB2s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibF4B0CA1E849416AAA4195E8219897165s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibF4B0CA1E849416AAA4195E8219897165s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB36680F72EC5797036B85312A8973401s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB36680F72EC5797036B85312A8973401s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib6AE982E3A51B73664C70CBC1FB5161FAs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib6AE982E3A51B73664C70CBC1FB5161FAs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0FE437BFBDEC941752F82115CEF12797s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib0FE437BFBDEC941752F82115CEF12797s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib8F6A511FCA39BF5B69407C55CEF7047Es1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib8F6A511FCA39BF5B69407C55CEF7047Es1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB35688E11CDF4E1BAFEEC614F72653F6s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB35688E11CDF4E1BAFEEC614F72653F6s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7AB5B266670460BB3AFA7DBC24173B81s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7AB5B266670460BB3AFA7DBC24173B81s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibFCDCA3224FCC5663012E605666EA6E07s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibFCDCA3224FCC5663012E605666EA6E07s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibFF829A846BEAF58D131FB908C2C1D45Cs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibFF829A846BEAF58D131FB908C2C1D45Cs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib3A4823C705239AE1D5A2A8C3EFF77D29s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib3A4823C705239AE1D5A2A8C3EFF77D29s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib8014DE68DCB8D004AF47CFA171092470s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib8014DE68DCB8D004AF47CFA171092470s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7F62B84CFD833BA9CD0861E9B8D3B779s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib7F62B84CFD833BA9CD0861E9B8D3B779s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib1C4EAACDE31F1EBEFF554D6FC66E8630s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibA5E4E9901FC9EB12A1C0F2729E73638As1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibA5E4E9901FC9EB12A1C0F2729E73638As1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib51DE8B17771D2489BBEB502E39993690s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib51DE8B17771D2489BBEB502E39993690s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB8F7CF541D5BBFA93B3261C3E8A7DD58s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibB8F7CF541D5BBFA93B3261C3E8A7DD58s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib17E9FB9485146D2C6B14CC2F86AD2AF8s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib17E9FB9485146D2C6B14CC2F86AD2AF8s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibE2A21FC0209793A3457AC40B686D6912s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibE2A21FC0209793A3457AC40B686D6912s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib19645FEAEBDAA961EADE7B656CE9C10As1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib19645FEAEBDAA961EADE7B656CE9C10As1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4CAACDC8E9707F9C74BB56CF9107F82Bs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4CAACDC8E9707F9C74BB56CF9107F82Bs1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4A3D1FE881D82FDC1CC379AE3E568444s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bib4A3D1FE881D82FDC1CC379AE3E568444s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibC4AD0B9D9005E899F579A8F1D0134D67s1
http://refhub.elsevier.com/S0020-0255(24)01746-8/bibC4AD0B9D9005E899F579A8F1D0134D67s1

	Spatio-temporal invariant descriptors for skeleton-based human action recognition
	1 Introduction
	2 Related work
	2.1 CNN-based skeleton action recognition
	2.2 GCN-based skeleton action recognition
	2.3 Attention-based skeleton action recognition

	3 Methodology
	3.1 Action representation
	3.1.1 Skeleton graph matrix
	3.1.2 Joints distance matrix
	3.1.3 Adjacent distance matrix
	3.1.4 Limbs angle matrix
	3.1.5 Image descriptors

	3.2 Feature extraction and action classification

	4 Experiments
	4.1 Datasets
	4.2 Implementation details
	4.3 Comparison with the state-of-the-art
	4.4 Ablation studies
	4.4.1 Effect of each component on the prediction
	4.4.2 Classification with a vision Transformer
	4.4.3 View invariance
	4.4.4 Velocity and sequence size invariance

	4.5 Computation complexity
	4.6 Trade-off between efficiency and accuracy
	4.7 Qualitative evaluation
	4.8 Discussion

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


