
Generative Representation Learning in Recurrent
Neural Networks for Causal Timeseries Forecasting

Georgios Chatziparaskevas, Ioannis Mademlis, Senior Member, IEEE, and Ioannis Pitas, Fellow, IEEE

Abstract—Feed-forward Deep Neural Networks (DNNs) are
the state-of-the-art in timeseries forecasting. A particularly sig-
nificant scenario is the causal one: when an arbitrary subset
of variables of a given multivariate timeseries is specified as
forecasting target, with the remaining ones (exogenous variables)
causing the target at each time instance. Then, the goal is
to predict a temporal window of future target values, given a
window of historical exogenous values. To this end, this paper
proposes a novel deep recurrent neural architecture, called
Generative-Regressing Recurrent Neural Network (GRRNN),
which surpasses competing ones in causal forecasting evaluation
metrics, by smartly combining generative learning and regres-
sion. During training, the generative module learns to synthesize
historical target timeseries from historical exogenous inputs via
conditional adversarial learning, thus internally encoding the
input timeseries into semantically meaningful features. During
a forward pass, these features are passed over as input to
the regression module, which outputs the actual future target
forecasts in a sequence-to-sequence fashion. Thus, the task
of timeseries generation is synergistically combined with the
task of timeseries forecasting, under an end-to-end multitask
training setting. Methodologically, GRRNN contributes a novel
augmentation of pure supervised learning, tailored to causal
timeseries forecasting, which essentially forces the generative
module to transform the historical exogenous timeseries to a
more appropriate representation, before feeding it as input to the
actual forecasting regressor. Extensive experimental evaluation on
relevant public datasets obtained from disparate fields, ranging
from air pollution data to sentiment analysis of social media
posts, confirms that GRRNN achieves top performance in multi-
step long-term forecasting.

Impact Statement—Timeseries forecasting is essential in several
real-world application domains, ranging from environmental
monitoring to network load prediction and financial assets
management. Causal forecasting is the specific scenario where
(part of) the input comes from a different timeseries than the
output, with a causal relationship present between the input and
the output series. Causal forecasting with a multi-step output
horizon is a difficult problem and current solutions based on
Recurrent Neural Networks (RNNs) lag in performance, which
potentially renders them too unreliable. The algorithm proposed
in this paper (GRRNN) offers lower error rates across various
application domains, thus increasing the real-world applicability
of RNNs for automated causal forecasting. GRRNN demonstrates
that integrated generative representation learning can usefully
amplify the performance of relevant RNNs, by enriching the
features learned via regular supervised training.

This work was supported by European Union’s Horizon Europe research
and innovation programme under Grant Agreement No. 101093003.

Georgios Chatziparaskevas was with the Aristotle University of Thessa-
loniki, Greece (e-mail: gehatzip@yahoo.gr).

Ioannis Mademlis was with the Aristotle University of Thessaloniki, Greece
(e-mail: imademlis@csd.auth.gr).

Ioannis Pitas is with the Aristotle University of Thessaloniki, Greece (e-
mail: pitas@csd.auth.gr).

The source code is publicly available at: https://github.com/gehatzip/
GRRNN.

Index Terms—Generative Adversarial Network, Multitask
learning, Recurrent Neural Network, Representation Learning,
Timeseries forecasting.

I. INTRODUCTION

THE explosion of storage space and computational power,
combined with ubiquitous connectivity, has allowed ever-

increasing volumes of data to be harvested and analyzed at
higher frequencies with each passing year. The substantial
data demands of Deep Neural Networks (DNNs), applicable
in a wide variety of areas such as computer vision [1] or
Natural Language Processing [2], has exacerbated this trend.
Timeseries data have also come into focus in this context, as
any quantifiable phenomenon exhibiting variability over time
can be studied as a timeseries; from sensor readings, like
climatic factors, to digital videos or behavioural data, like
electronic shop sales. Modelling and forecasting timeseries
is essential for effective management, automation, prevention,
decision making and leadership. Most useful timeseries consist
of a large number of variables with interdependencies that are
often not easily explainable. As a result, traditional approaches
to modeling and forecasting have become inadequate.

The majority of real-world quantitative phenomena varying
over time depend on multiple parameters, that may be interde-
pendent. To effectively identify such dependencies, modeling
through multivariate timeseries is the best option: they consist
of an M -dimensional vector at each time instance, with the
M different components of this time-varying vector called
channels. Essentially, a timeseries is a temporally ordered set
of such M -channel vectors and each element of this set, i.e., a
specific timestamped M -dimensional vector, is called an ob-
servation. Practical advances in sensor and computer technol-
ogy have made it possible to capture, store and analyze time-
series with a huge number of variables/parameters/channels.

In many problems, the ability to predict future values of a
timeseries given past ones is a major advantage in countless
application domains. Examples include financial forecasting
[3], electric load forecasting [4], etc. This type of forecasting
can be either single-step or multi-step: single-step forecasting
methods predict the timeseries only at the next timestep, while
multi-step predict the timeseries multiple timesteps ahead. The
ability to forecast deeper in time is obviously more valuable in
every application, rendering multi-step forecasting desirable,
nonetheless it is more difficult. As a result, special methods are
typically developed for multi-step forecasting, which are more
involved and complex that single-step algorithms [5]. The
process can be either direct, generating forecasts for a number

https://github.com/gehatzip/GRRNN
https://github.com/gehatzip/GRRNN


Fig. 1: The causal timeseries forecasting setting of GRRNN. At each timestep, each ellipse depicts a different channel. The
solid-lined red rectangle encloses the inference-stage inputs of GRRNN, while the dotted-lined green rectangle encloses its
inference-stage outputs. For simplicity, this example is limited to 7 timesteps overall.

of timesteps ahead at once, or recursive, with multiple single-
step-ahead forecasts [6]. The latter method has the drawback of
propagating the forecasting error of each single-step forecast
to the next one.

A particularly significant scenario is the causal one: when
an arbitrary subset of variables/channels of a given multivariate
timeseries is specified as forecasting target, with the remaining
ones (exogenous variables) ”causing” the target at each time
instance. Then, the goal is to predict a temporal window of
future target values, given a window of historical exogenous
values and, optionally, historical target values.

From an algorithmic perspective, the family of autoregres-
sive (AR) and moving average (MA) methods form the basis
of traditional forecasting. AR algorithms model the timeseries
as autoregressive processes with future observations depending
on previous ones [7]. MA methods on the other hand model
the timeseries as moving average processes with each next
observation depending on previous error terms. ARMA and
its generalization ARIMA result from these basic regression
methods [8], with Vector Autoregression (VAR) being a gener-
alization of AR for multivariate timeseries forecasting. ARMA
and ARIMA have also been generalized to multiple variables,
while autoregression approaches have also evolved to non-
linear ones [9]. Finally, the NARX (Non-linear AutoRegressive
eXogenous) family of models has been instrumental in the
popularization of causal forecasting [10].

Such traditional approaches have recently been surpassed
in evaluation metrics by DNNs. As universal function ap-

proximators, DNNs can achieve better forecasting perfor-
mance under certain conditions [11]. Multilayer Perceptrons
(MLPs) [12] and Convolutional Neural Networks (CNNs)
[13], Recurrent Neural Networks (RNNs) [14], autonecoders
[15], sequence-to-sequence architectures [16], [17] and neural
attention mechanisms [18] [19] have all been successfully
adapted to timeseries forecasting under regression settings
[20]. More recently, in an alternative approach, Generative
Adversarial Networks (GANs) [21] have been employed for
addressing timeseries forecasting as a timeseries generation
task [22].

Most neural architectures initially handled forecasting under
a specific learning paradigm. Nevertheless, in recent years,
attempts have been made to deploy combinations of the above
approaches, or hybridize deep learning with traditional time-
series forecasting methods. One such example is LSTNet [23],
which embeds autoregression into a deep learning regression
pipeline. However, existing multivariate forecasting DNNs,
such as these ones, typically struggle to identify and utilize
interdependencies between the different input channels, in
order to come up with more accurate future predictions. Var-
ious approaches have been tested to overcome this limitation,
but without any spectacular success up to now. Examples
include clustering of similar timeseries [24], spatial attention
mechanisms [25], [26], [27], as well as Convolutional [28]
and Graph-Convolutional Neural Networks [29] capturing both
spatial and temporal dynamics simultaneously. The limited
ability of similar existing methods to identify and exploit



interdependencies between input channels have motivated us
to formulate, implement and evaluate a novel alternative,
relying on combining attention with generative representation
learning. Partially relevant combinations, although attempted
for other domains and tasks [30], [31], [32], [33], have not
been designed for causal timeseries forecasting up to now.

Thus, this paper presents Generative-Regressing Recurrent
Neural Network (GRRNN): a novel deep neural architecture
for direct multi-step causal forecasting. It fills an important
gap in existing literature, by exploring synergistic joint ex-
ploitation of regression and generative learning. To the best of
our knowledge, no previous DNN has investigated this avenue
for reducing causal timeseries forecasting error rates.

Essentially, GRRNN is a pipeline of two consecutive neural
modules, i.e., a generative one (a Wasserstein Conditional
Recurrent Generative Adversarial Network) and a regression
one (a sequence-to-sequence Long Short-Term Memory-based
Encoder-Decoder network with spatial and temporal attention).
GRRNN appropriately exploits our knowledge of historical
target data during training, so as to better forecast future target
data during inference. Thus, the main novel contributions of
the proposed method are two-fold:

• Joint, end-to-end regression and generative training is
proposed for the first time in timeseries forecasting,
leading to improved generalization ability concerning
the prediction of future target data, due to a cross-
regularization effect between the two modules. This effect
likely stems from two sources: i) the inherent regularizing
influence of multitask learning [34], [35], and ii) the
inherent resistance of GANs to overfitting [21].

• The regression module does not receive raw historical
exogenous input timeseries observations, but semantically
rich internal features computed by the auxiliary genera-
tive module1. Thus, the latter one essentially learns ef-
fective latent representations, as it is trained to synthesize
historical target data given historical exogenous ones, and
transforms the input exogenous data accordingly, before
feeding them to the regressor. These transformed rep-
resentations natively capture interdependencies between
the exogenous and the target timeseries channels. To the
best of our knowledge, nothing similar has been proposed
before for causal timeseries forecasting.

The causal timeseries forecasting setting in which GRRNN
operates is depicted in Figure 1. Extensive experimental eval-
uation on 5 relevant public datasets obtained from disparate
fields, ranging from air pollution data to sentiment analysis
of social media posts, confirms that GRRNN indeed achieves
top performance in multi-step long-term multivariate time-
series forecasting. The source code is publicly available at
https://github.com/gehatzip/GRRNN.

The remainder of this article is structured in the following
manner. Section II details previous recent literature in deep
neural timeseries forecasting, emphasizing the causal scenario.
Section III formulates the problem at hand, overviews required
algorithmic preliminaries and presents the proposed method.
Section IV overviews the experimental evaluation process

1Along with the raw last historical target observation.

and discusses the obtained results. Finally, Section V draws
relevant conclusions from the preceding presentation.

II. RELATED WORK

Deep neural architectures for causal timeseries forecasting
analyze historical exogenous values of an input timeseries in
order to predict its future target values, for a horizon of fixed
timesteps. Causal forecasting follows the NARX paradigm:
assuming that the multivariate target/exogenous timeseries is
denoted by yt/xt, respectively, the goal is to predict future
target timeseries values, for a horizon of Np timesteps, given
an input window of historical target values and historical
exogenous values, across Nh timesteps:

[yt+1, . . . ,yt+Np] = F (yt,yt−1, . . . ,yt−Nh+1,

xt,xt−1, . . . ,xt−Nh+1).
(1)

A notable DNN improving upon the NARX concept
is DARNN [26]: a sequence-to-sequence Long Short-Term
Memory (LSTM) RNN network architecture for single-step
ahead forecasting. DARNN receives as its input a window of
historical exogenous values and forecasts the respective future
target values for the next timestep, following immediately after
the input time window.

DARNN consists of two LSTMs, i.e., an Encoder and
Decoder, and is equipped with two neural attention mecha-
nisms. The first one assigns attention weights to the individual
channels (spatial attention) and the second applies weights to
different observations of each channel (temporal attention). A
similar approach, combining spatial and temporal attention,
is also followed in DSTP-RNN [27], where spatial attention
consists of two parts: the first one weighs only the exogenous
channels, while the second one weighs the weighed exogenous
channels along with the historical channels.

The idea of capturing both the spatial (inter-timeseries)
and temporal relations, which is central to DARNN, lies
also behind neural architectures such as LCRM [36], DA-
SKIP [37] or CNN-LSTM-NARX [38]. LCRM uses convo-
lutional layers to extract the spatial and short-term temporal
relations, along with an LSTM recurrent layer to capture
longer-term temporal relations. DA-SKIP uses a DARNN
to capture dependencies and a GRU-SKIP component that
captures periodicity, followed by an autoregressive component
that captures linearity. The final forecasts are the sum of
DARNN and GRU-SKIP/autogressive combo. CNN-LSTM-
NARX uses a 1D convolutional layer to capture correlations
between the exogenous and target series. Subsequently, the
computed feature maps are forwarded to a LSTM that captures
the temporal correlations and predicts the final future target
values for one time-step ahead.

Moving beyond the causal setup, recent neural architectures
which have utilized GANs for timeseries forecasting include
CWGAN-TS [39] and [40]. These exploit a GAN and a GAN-
MLP combination, respectively, to generate future observa-
tions of the target timeseries as a conditional data synthesis
task. However, GANs have not been previously utilized in the
causal forecasting setup.

https://github.com/gehatzip/GRRNN


Fig. 2: GRRNN block diagram during the inference stage (no Critic present).

GRRNN, i.e., the deep neural architecture proposed in this
paper, augments the input channels selection and weighting
of the spatiotemporal attention mechanism with generative
representation learning. Unlike [39] and [40], which use a
GAN to conduct probabilistic forecasting, GRRNN internally
exploits the Generator of a GAN during inference not to
generate the final/future target forecasts, but to synthesize
the historical target timeseries that corresponds to the input
historical exogenous timeseries. To achieve this, it generates
semantically rich latent features which encode efficiently the
historical exogenous inputs. These are being fed as input to the
main sequence-to-sequence regression module, where the final
future target timeseries is forecast. Therefore, the proposed
method combines a regression module (trained in a supervised
manner) with a generative synthesis module (trained in an
adversarial manner), into an end-to-end pipeline that takes
advantage of both.

III. TIMESERIES FORECASTING WITH
GENERATIVE-REGRESSING RECURRENT NEURAL

NETWORK

This Section first formulates the causal timeseries forecast-
ing task. Subsequently, it briefly presents necessary preliminar-
ies that are being exploited by the proposed method. Finally,
it details the proposed deep neural architecture (GRRNN) and
highlights its novel contributions.

A. Problem formulation

In this paper, the goal of multivariate causal timeseries fore-
casting is to predict a future target series multiple timesteps
ahead, given as input a window of historical exogenous obser-
vations that form a generating series. Both the generating and
the target series are sets of temporally ordered multichannel
observations (vectors), with the latter one depending on the
former one.

Formally, the generating series consists of Nh MG-
dimensional vectors (multichannel observations), while the
target series may consist of Np MT -dimensional observations.
In the general case, it may hold that MG ̸= MT and
Nh ̸= Np. Obviously, Np is the number of timesteps ahead the
forecasting is desired to “see”. Thus, the input to a machine
learning model for timeseries forecasting is a temporal window
of historical exogenous values in the form of the generating

timeseries: X ∈ RMG×Nh , with each column of matrix X
being an observation. Similarly, the output of the model is the
temporally ordered set of future values of the target series:
X ∈ RMT×Np . The goal of the forecasting model is to predict
Y given X. Depending on the employed algorithm, the input
and/or the output can be fed/generated either all at once, or
sequentially (one observation/column at a time, in consecutive
steps).

Moreover, during training, a set of Nh MT -dimensional
vectors of historical target values may be given. These are
temporally coupled to the Nh corresponding exogenous ob-
servations in a one-to-one fashion. They can be considered a
separate matrix H ∈ RMT×Nh .

B. Preliminaries

1. Wasserstein Recurrent Conditional Generative Ad-
versarial Network, or WRCGAN [41]. A simple Genera-
tive Adversarial Network (GAN) [21] consists of two neural
networks trying to outwit one another during training: the
Generator and the Discriminator. The first one receives as
input a random vector and generates as output a vector
that should be drawn from the generating distribution of a
given dataset. The Discriminator is a classifier attempting to
discriminate between input vectors that have been fabricated
by the Generator (“fake”) and ones that have been drawn
from the actual training dataset (“real”). In Conditional GANs
[42], the Generator receives an additional input vector, besides
the random one, upon which the generation process is condi-
tioned. After training is completed, the Discriminator can be
discarded.

In vanilla GANs, the Discriminator tries to maximize the
log probability of real input and the inverted probability of
fake input, while the Generator tries to minimize the latter.
This introduces lack of stability to learning and decelerates
convergence. The so-called Wasserstein GAN [41] addressed
this issue by essentially replacing the Discriminator, which
classifies the input as real or fake, with a so-called Critic,
which assigns a higher score to real inputs than fake ones.
The training objective is to minimize the Wasserstein distance
between the distributions Pr, Pg of the real samples x and
generated ones x̂:

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,x̂)∼γ [∥x− x̂∥], (2)



Fig. 3: WRCGAN block diagram.

where Π(Pr, Pg) is the set of all joint distributions γ(x, x̂),
x ∼ marginal Pr, x̂ ∼ marginal Pg and inf denotes the greatest
lower bound.

The Wasserstein distance is approximated by:

W (Pr, Pg) = sup
∥f∥L≤1

Ex∼Pr
[f(x)]− Ex∼Pg

[f(x)], (3)

where sup denotes the least upper bound and f is a function
bounded by the 1-Lipschitz constraint:

|f(x1)− f(x2)| ≤ |x1 − x2|. (4)

The WGAN Discriminator, referred to as “Critic”, is trained
to approximate f with an objective to maximize the Wasser-
stein distance: the discrepancy between the distribution of the
real and generated samples. Its loss function is the negative of
that distance, adjusted by a Gradient Penalty [43] that enforces
the Lipschitz constraint on function f :

LD =−Ex∼Pr [D(x)] + Ex̂∼Pg [D(x̂)]︸ ︷︷ ︸
Original Critic Loss

+ λEx̂∼PG
[(∥∇x̂D(x̂)∥2 − 1)2]︸ ︷︷ ︸

Gradient Penalty

.
(5)

The Generator tries to minimize the Wasserstein distance,
so its loss function is the negative score assigned by the Critic
to the generated samples:

LG = −Ex̂∼Pg
[D(x̂)], (6)

where
D ∼ f, x̂ = G(x). (7)

WRCGAN is a Wasserstein Conditional GAN where both
the Generator and the Discriminator/Critic are LSTM RNNs
[44], as they are more suitable for sequential data (e.g.,
timeseries). The structure of WRCGAN is depicted in Figure
3.

2. Sequence-to-Sequence modelling. Tasks involving
the mapping of input sequences to output sequences, where

the lengths of the input and the output are not necessarily
equal, are typically addressed by Encoder-Decoder neural
architectures [45]. Using LSTMs for timeseries forecasting,
the context of the Encoder LSTM’s hidden states along with
the last known observation of the timeseries is given as input
to the Decoder. During training, this last known observation
is known and used in a scheme called teacher forcing [46].
During inference, it may simply be the last observation
forecast as the Decoder’s output in the previous timestep.

3. Spatio-Temporal Attention. The proposed method
adopts from [26] a dual-stage attention mechanism acting on
LSTM-based Encoder-Decoder architectures. This consists of
a spatial attention module and a temporal attention module.
The first one applies a weight to each individual current input
channel/variable at each timestep. These weights are outputted
by a MultiLayer Perceptron (MLP), given all the values of
this variable throughout the input window, along with the
hidden state of the Encoder during the previous timestep. The
weighted channels are subsequently passed on to the Encoder
afterwards. Figure 4 depicts the overall process, which can be
formally expressed as:

ekt = We · [ht−1; ct−1;xk],

akt =
exp(ekt )∑Mgen

i=1 exp(eit)
,

x̃t = (a1tx
1
t , a

2
tx

2
t , . . . , a

Mgen

t x
Mgen

t )⊤,

1 ≤ k ≤ Mgen

(8)

where ht−1 and ct−1 are the hidden and cell states of the
encoder LSTM at the previous timestep t − 1, We are the
trainable parameters of the spatial attention MLP, akt is the
weight of the k-th feature at time t. Finally x̃t is the weighted
feature vector at time t and Mgen is the number of the rich
generated features.

The temporal attention mechanism weighs the Encoder’s
hidden states at each timestep using the Decoder’s hidden
state. A context ct is computed at each timestep t as the
weighted sum of the Encoder’s hidden states. This context
is concatenated with the previous forecast produced or the
last historical target timeseries observation at the initial step.
The temporal attention weights are outputted by a deep neural
network consisting of a linear layer, followed by a tanh non-
linearity and another linear layer. Figure 5 depicts the process,
which can be formally expressed as:

lit = v⊤
d · tanh(Wd · [dt−1; st−1;hi]),

βi
t =

exp(lit)∑Np

j=1 exp(l
j
t )
,

ct =

T∑
i=1

βi
thi,

ỹt−1 = w̃⊤[yt−1; ct−1],

1 ≤ i ≤ Nh,

(9)

where dt−1 and st−1 are the previous hidden and cell states
of the decoder LSTM, hi is the hidden state of the encoder
at the i-th timestep of the input window, v⊤

d , Wd, w̃⊤ are



Fig. 4: GRRNN Encoder block diagram.

Fig. 5: GRRNN Decoder block diagram.

trainable parameters, ct is the context at time t, and Nh is the
input window size. The decoder LSTM is given as input ỹt−1

and produces the forecast yt at each timestep t.

C. GRRNN: The proposed architecture for causal timeseries
forecasting

GRRNN is a deep neural architecture for direct multi-
step timeseries forecasting. It consists of two separate LSTM
modules, namely the generative module G and the regression
module R. From an architectural perspective these are placed
consecutively, thus forming a pipeline that is being trained
end-to-end using a multitask loss function. Figure 2 depicts
the block diagram of GRRNN’s inference stage.
G is tasked to sequentially synthesize a timeseries, con-

ditioned on the input generating series. This is a secondary,
auxiliary task meant to generate semantically rich internal
representations of the input that are forwarded to R during
inference. G is structured as a Wasserstein Conditional Recur-
rent GAN (WRCGAN) [41]. Therefore, it is composed of a
Generator and a Critic (Discriminator). Both the Generator and
the Critic are single LSTM layers unfolding for Nh timesteps.
During the forward pass of both the training and the inference
stage, at the i-th timestep, the hidden state vector fi of the
Generator layer is the i-th feature vector forwarded as input
to R. On the other hand, during the forward pass of the training

stage only, the respective output vector oi of this layer is
forwarded as the i-th input observation to the Critic. With this
structure, G is adversarially trained to synthesize historical
target observations H conditioned on historical exogenous
observations X. After training of the overall GRRNN model
has been completed, the Critic can be discarded.

The regression module R consists of an Encoder-Decoder
neural architecture, which implements sequence-to-sequence
modelling. Both the Encoder and the Decoder consist of
a single LSTM layer each. The Encoder unfolds for Nh

timesteps, while the Decoder unfolds for Np times steps. Addi-
tionally, R is equipped with a dual-stage attention mechanism
adopted from [26]. The first-stage spatial attention mechanism
weighs the individual current input channels/variables at each
timestep, using the previous state of the Encoder. The second-
stage temporal attention mechanism weighs the hidden states
of the Encoder, each time using the previous hidden state of
the Decoder. The sum of the weighted hidden states of the
Encoder is passed as context to the Decoder.

Training of the overall pipeline-structured architecture pro-
ceeds end-to-end, by means of multitask learning [47]. In
short, G is tasked to synthesize the historical target obser-
vations given the historical exogenous observations, across
the input time window. The generated internal representations
of the latter ones are fed as input to the Encoder of R.



Additionally, the raw last historical target observation is fed as
an extra input to the Decoder of R, which is tasked to forecast
future target observations across the output time window.
Thus, during training, the overall loss function is a sum of:

• a regression term LR, acting on the output of the Decoder
of R and employing ground-truth future target observa-
tions for loss computations, and

• an adversarial term LG, acting on the output of the
Generator of G thanks to an independent Critic network
which is being trained concurrently.

Optimizing the model in these two tasks simultaneously,
using any variant of Stochastic Gradient Descent (SGD) and
error back-propagation, has the advantage of cross-regularizing
the two modules to achieve better generalization. Obviously,
during back-propagation, the gradient signal caused by LR is
propagated backwards until reaching R, where the respective
neuronal errors are summed with errors caused by LG.

Formally, the GRRNN loss function is LGRRNN = 1
2LG+

1
2LR, with both terms equally weighted. LG is given by Eq.
(6) and LR is given by:

LR =

Np∑
i=1

∥ŷi − yi∥22, (10)

where yi is the ground-truth value of the future target series
at the i-th timestep of the forecast horizon, while ŷi is the
predicted one at the i-th timestep.

As it can be seen, LR is the sum of Mean Square Errors
(MSE) of the forecasts throughout the forecast horizon Np. LG

is the negative mean score computed by the Critic D for the
fake samples G(z) produced by the Generator. Concurrently,
D is being trained with the loss function LD from Eq. (5).

The proposed architecture is visualized for the inference
stage (no Critic present) in Figure 2. The advantage of
GRRNN is that the regressor receives as input learnt, semanti-
cally rich timeseries representations, which inherently capture
the interdependencies between the historical target and the
historical exogenous timeseries. Yet, during inference, only
historical exogenous observations are required to be known
and provided as input (not the historical target channels, except
for the last timestep of the input window). Additionally, the
multitask nature of LGRRNN and the involvement of a GAN
jointly result in heightened resistance to overfitting [34], [35],
[21]. As shown in Section IV, these improvements jointly
lead to significant, measurable performance gains in the most
difficult scenario of long-term, multi-step forecasting.

As a final methodological note, G can be slightly modi-
fied to perform timeseries-to-timeseries translation instead of
conditional timeseries generation, similarly to how GANs are
employed for image-to-image translation in computer vision
[48]. In practical terms, the only difference is that an additional
LT supervised loss term is added to the overall pool of loss
functions during training, which penalizes the deviation of
the Generator’s output from the respective historical target
timeseries:

LT =

Nh∑
i=1

∥oi − hi∥1, (11)

TABLE I: Target channels of each dataset used.

Dataset Target
SML2010 Living room Temperature, Bedroom Temperature
Air Quality CO, NMHC, C6H6, NOx, NO2

ETD Oil Temperature
Energy Consumption Appliances, Lights
Twitter Public Opinion Republicans Poll Result, Democrats Poll Result

where hi, i.e., the i-th column of matrix H, is the ground-truth
value of the historical target series at the i-th timestep, while oi

is the one generated by G at the i-th timestep. In this case, the
overall loss function is LGRRNN−T = 1

2LG + 1
2LR + λTLT ,

where λT is a non-negative real hyperparameter. As training
converges, this setup leads G to synthesize a historical target
series that is not only realistic enough to fool the Critic, given
the condition, but also as close to the specific ground-truth
series as possible. However, the GAN dynamics become more
complex with the inclusion of LT and there is a greater danger
of unstable training for G. This second variant of the proposed
method is separately evaluated in Section IV, under the name
of GRRNN-T.

IV. EXPERIMENTAL EVALUATION

The proposed DNN architecture was evaluated and com-
pared against competing methods on 5 public datasets. The
experimental protocol and the corresponding results are pre-
sented below.

A. Datasets

Five different timeseries datasets have been employed for
evaluation purposes. The first one is “SML2010” [49], which
consists of house sensor outputs (exogenous series) and the
living room and bedroom temperatures (target series). Second,
the “Air Quality” dataset [50] has been used, which includes
measurements of various air pollutants obtained from sensors
located in an Italian city over a period of several months.
These measurements are the exogenous series, while the target
is the concentration of non-methane hydrocarbons (NMHC),
benzene (C6H6), carbon monoxide (CO), and nitric oxides
(NOx, NO2). The “Energy Consumption” dataset [51] includes
temperature and humidity measurements in various parts inside
and outside a household for a period of multiple months
(exogenous timeseries). The target series consists of energy
consumption measurements for its appliances and lights. Four,
the “ETD” dataset [52] contains data related to electricity grid
transformers having as exogenous series certain load types and
as target the oil temperature of the transformer. Finally, the
“Twitter Public Opinion” dataset [53] contains as exogenous
series the daily, nationwide average (for the United States)
of values quantifying sentiment, polarity, political bias and
profanity in Twitter posts about the two main political parties.
Its target series is the daily average of US nationwide opinion
polls for the two parties. All measurements were obtained
during the six-month period before the 2016 US presidential
elections. The exact target channels of each dataset can be
seen in Table I; all other available channels have been utilized
as exogenous ones.



(a) Model: GRRNN-T, Dataset: SML2010. (b) Model: Stem-GNN, Dataset: SML2010.

(c) Model: GRRNN-T, Dataset: Air Quality. (d) Model: DARNN, Dataset: Air Quality.

(e) Model: GRRNN-T, Dataset: ETD. (f) Model: Stem-GNN, Dataset: ETD.

(g) Model: GRRNN-T, Dataset: Energy Consumption. (h) Model: DARNN, Dataset: Energy Consumption.

(i) Model: GRRNN-T, Dataset: Twitter Public Opinion. (j) Model: DSTP-RNN, Dataset: Twitter Public Opinion.

Fig. 6: Visual examples of forecasting 7 timesteps ahead with GRRNN-T vs with the best performing competitor (per dataset).
Specific channels have been chosen for visualization purposes.



TABLE II: Optimal hyperparameters for the examined datasets. Forecasting horizon: 1 timestep (short/single-step).

SML2010 Air Quality ETD
Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

NARX 28 0.011 65 7 29 25 0.015 40 7 62 31 0.012 10 9 47
LSTM 22 0.043 66 7 29 16 0.05 70 13 24 16 0.039 15 8 45
Enc-Dec 17 0.05 41 8 30 31 0.011 17 8 60 18 0.05 69 9 45
LSTNET 20 0.046 65 10 63 18 0.023 32 9 27 31 0.017 62 8 64
DARNN 18 0.048 12 11 57 29 0.027 11 10 35 27 0.029 28 13 28
DSTP-RNN 28 0.03 68 14 54 30 0.034 67 13 44 21 0.032 67 7 26
Stem-GNN 17 0.05 56 10 - 31 0.01 15 7 - 20 0.03 62 11 -
GRRNN (proposed) 25 0.043 33 13 62 28 0.016 64 13 36 21 0.018 43 8 48

Energy Consumption Twitter Public Opinion
Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

NARX 19 0.010 25 13 55 17 0.046 15 8 29
LSTM 19 0.016 70 12 37 24 0.025 19 7 28
Enc-Dec 32 0.01 29 14 32 24 0.045 11 7 45
LSTNET 28 0.01 67 14 61 23 0.036 65 7 61
DARNN 26 0.014 11 7 24 18 0.02 52 9 64
DSTP-RNN 24 0.012 42 7 56 20 0.029 55 5 50
Stem-GNN 28 0.018 16 9 - 29 0.011 14 7 -
GRRNN (proposed) 31 0.023 23 10 42 22 0.03 59 5 24

TABLE III: Optimal hyperparameters for the examined datasets. Forecasting horizon: 7 timesteps (long/multi-step).

SML2010 Air Quality ETD
Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Enc-Dec 16 0.049 69 14 55 27 0.01 15 7 64 16 0.049 12 14 29
DARNN 31 0.043 15 13 57 24 0.034 22 10 41 25 0.028 10 13 46
DSTP-RNN 23 0.03 56 13 32 24 0.015 44 9 26 24 0.032 11 12 37
Stem-GNN 31 0.03 29 13 - 31 0.012 34 8 - 23 0.027 28 11 -
GRRNN (proposed) 32 0.022 57 13 31 24 0.02 55 10 61 24 0.02 50 10 48

Energy Consumption Twitter Public Opinion
Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Batch
size

Learning
Rate

Epochs Window
Size

Hidden
Dim.

Enc-Dec 28 0.01 25 14 46 20 0.021 12 3 36
DARNN 16 0.036 19 8 24 22 0.053 40 4 45
DSTP-RNN 27 0.016 48 8 57 21 0.04 45 4 58
Stem-GNN 20 0.01 10 11 - 21 0.039 61 3 -
GRRNN (proposed) 20 0.024 34 14 40 24 0.05 56 3 49

TABLE IV: Optimal values of hyperparameter λT for the
examined datasets, in the case of GRRNN-T.

Dataset Single-step-ahead Multi-step-ahead

SML2010 0.677 0.121
Air Quality 0.133 0.628
ETD 0.101 0.334
Energy Consumption 0.133 0.108
Twitter Public Opinion 0.530 0.994

TABLE V: Hyperparameter value optimization range.

Hyperparameter Min Max
Learning rate 0.0001 1.0
Mini-batch size 16 32
Number of epochs 10 70
LSTM hidden dimension 24 64
Input window size 7 14
λT 0.1 1.0

The above-mentioned datasets were selected because they
are publicly available and widely used, cover diverse applica-
tion fields and can be inherently partitioned into exogenous
and target channels. The only exception is “Twitter Public
Opinion”, which is not widely used and has been selected due
to its unique properties, as it is a comparatively small dataset in
terms of total time steps. In each case, the relevant multivariate
timeseries was temporally split into a training subset (80% of
the overall timesteps) and a test subset (the remaining 20%).
The training subset was then internally split into a training set
and a validation set, again following the 80%/20% rule. All
splits were performed according to the chronological order, as
per common protocols in relevant literature (e.g., [29], [27],
[26], [54], [23], etc.).

The training set was partitioned into individual data points
by employing overlapping temporal sliding windows of obser-
vations across all channels, with a size of Nh +Np timesteps
and a shifting step of 1 timestep. The validation set was simi-
larly split into sliding windows of size Nh+Np and a shifting
step equal to the forecast horizon Np. During validation, the



TABLE VI: Forecasting error rates for the examined datasets. Forecasting horizon: 1 timestep (short/single-step). The best
performance per metric is in bold, the second best is underlined. Lower is better in all metrics.

SML2010 Air Quality ETD
MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE

NARX 0.408 0.514 0.457 0.132 0.652 0.191 0.014 0.088 0.018
LSTM 0.087 0.158 0.105 0.103 0.386 0.139 0.065 0.326 0.079
Enc-Dec 0.103 0.173 0.134 0.163 0.592 0.212 0.066 0.337 0.081
LSTNet 0.204 0.276 0.300 0.088 0.350 0.120 0.026 0.137 0.031
DARNN 0.024 0.040 0.047 0.082 0.308 0.118 0.013 0.068 0.016
DSTP-RNN 0.061 0.107 0.078 0.077 0.294 0.110 0.015 0.093 0.018
Stem-GNN 0.154 0.258 0.186 0.180 0.647 0.230 0.085 0.439 0.105
GRRNN (proposed) 0.045 0.079 0.058 0.079 0.347 0.110 0.013 0.066 0.017
GRRNN-T (proposed) 0.148 0.250 0.178 0.159 0.578 0.207 0.085 0.385 0.106

Energy Consumption Twitter Public Opinion
MAE SMAPE RMSE MAE SMAPE RMSE

NARX 0.582 1.778 0.732 0.294 0.556 0.326
LSTM 0.054 1.229 0.082 0.405 0.799 0.464
Enc-Dec 0.054 1.241 0.082 0.363 0.678 0.427
LSTNet 0.032 1.175 0.069 0.163 0.317 0.214
DARNN 0.028 1.100 0.056 0.296 0.609 0.334
DSTP-RNN 0.033 1.151 0.057 0.150 0.328 0.207
Stem-GNN 0.063 1.176 0.087 0.316 0.630 0.371
GRRNN (proposed) 0.038 1.190 0.060 0.215 0.474 0.269
GRRNN-T (proposed) 0.042 1.227 0.070 0.292 0.507 0.364

TABLE VII: Forecasting error rates for the examined datasets. Forecasting horizon: 7 timesteps (long/multi-step). The best
performance per metric is in bold, the second best is underlined. Lower is better in all metrics.

SML2010 Air Quality ETD
MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE

Enc-Dec 0.144 0.246 0.175 0.161 0.587 0.209 0.072 0.359 0.089
DARNN 0.131 0.217 0.171 0.147 0.622 0.205 0.074 0.371 0.091
DSTP-RNN 0.081 0.144 0.111 0.158 0.746 0.224 0.069 0.342 0.084
Stem-GNN 0.068 0.115 0.093 0.171 0.603 0.211 0.069 0.339 0.083
GRRNN (proposed) 0.062 0.101 0.098 0.133 0.471 0.174 0.027 0.140 0.036
GRRNN-T (proposed) 0.060 0.102 0.098 0.133 0.491 0.173 0.026 0.132 0.035

Energy Consumption Twitter Public Opinion
MAE SMAPE RMSE MAE SMAPE RMSE

Enc-Dec 0.053 1.235 0.081 0.305 0.555 0.377
DARNN 0.052 1.554 0.083 0.219 0.362 0.278
DSTP-RNN 0.079 1.312 0.100 0.191 0.365 0.298
Stem-GNN 0.069 1.199 0.090 0.287 0.508 0.367
GRRNN (proposed) 0.035 1.131 0.073 0.148 0.420 0.238
GRRNN-T (proposed) 0.041 1.210 0.071 0.184 0.302 0.214

TABLE VIII: Standard deviation of the proposed method’s forecasting error rates in the 7-timestep horizon scenario, across
all data points in each test set.

SML2010 Air Quality ETD
MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE

GRRNN 0.061 0.256 0.064 0.070 0.264 0.074 0.009 0.076 0.009
GRRNN-T 0.053 0.066 0.058 0.106 0.194 0.117 0.938 0.310 1.333

Energy Consumption Twitter Public Opinion
MAE SMAPE RMSE MAE SMAPE RMSE

GRRNN 0.033 0.233 0.041 0.195 0.573 0.152
GRRNN-T 0.031 0.183 0.034 0.155 0.247 0.080



TABLE IX: Average model ranking across all datasets and
metrics, for both forecasting horizon scenarios. The best per-
formance per scenario is in bold, the second best is underlined.
Lower is better.

Model 1-step horizon 7-step horizon
NARX 6.53 -
LSTM 6.07 -
Enc-Dec 6.73 4.93
LSTNET 4.33 -
DARNN 2.33 4.4
DSTP-RNN 2.33 4.47
Stem-GNN 7.53 3.87
GRRNN (proposed) 2.60 1.73
GRRNN-T (proposed) 6.53 1.6

first part of each such data point (with temporal length Nh)
was utilized as input to the forecasting algorithm/DNN, while
the second part (with temporal length Np) was exploited as
ground-truth forecast. The validation set was exploited for
selecting the best model for each competing method, during
hyperparameter optimization. Finally, the test set was split to
data points in a manner identical to how the validation set had
been partitioned and was employed for final evaluation of each
forecasting DNN/algorithm with its optimal hyperparameters.

At the i-th timestep (1 ≤ i ≤ Nh), the Encoder of
R receives as its i-th input observation the hidden state
vector fi from the Generator of G. The Decoder sequentially
forecasts Np future target observations/vectors, where Np is
the forecasting horizon. Typically, it is selected according to
the needs of the user in the context of the application domain.
Since Np ̸= Nh, an Encoder-Decoder neural architecture is
the most suitable [55].

B. Preprocessing

All datasets were preprocessed according to standard proce-
dures before being utilized. Initially, any invalid channels (e.g.,
with constant value over time) were removed. Afterwards,
min-max scaling per channel was applied to the remaining
data: each value x was transformed to x̃ as follows:

x̃ =
x− xmin

xmax − xmin
. (12)

C. Hyperparameter optimization

The hyperparameter space consists of the batch size, the
learning rate, the number of epochs, the hidden state dimension
of the RNN units and the input window size. Additionally, LT

loss scaling factor λT is employed for GRRNN-T training.
The validation set of each dataset has been exploited for
hyperparameter optimization before evaluating the proposed
architecture on the corresponding test set, separately for each
forecast horizon. The optimization algorithm used is SMAC
(Sequential Model-based Algorithm Configuration) [56], i.e.,
a stochastic algorithm that applies Bayesian optimization in
order to find an optimal hyperparameter combination. A cost
function is defined and the algorithm navigates the hyperpa-
rameter space with the objective to minimize it. In this paper,
the average of all error metrics computed on the validation set

was used, while the number of optimization cycles was set to
100.

Tables II and III contain the optimal hyperparameter val-
ues for the examined forecast horizons of 1 and 7 timesteps,
respectively. Table IV contains the optimal values of the hyper-
parameter λT across all datasets and for both forecast horizons,
in the case of GRRNN-T. Table V defines the value range
utilized for hyperparameter optimization.

D. Evaluation
The proposed and the other competing methods were evalu-

ated for one short-term (Np = 1) and one long-term (Np = 7)
forecasting horizon, separately for each dataset. Besides the
proposed GRRNN architecture, four competing, recent, so-
phisticated DNNs were evaluated on causal timeseries fore-
casting in the 5 employed datasets for comparison purposes.
The first one is LSTNet [23] which combines a CNN and
an RNN, along with autoregression, and normally conducts
only single-step forecasting. Thus, LSTNet is examined only
in the single-step-ahead forecast setting. The second is DSTP-
RNN [27] which implements two spatial and one temporal
attention mechanisms. The third one is Stem-GNN [54] which
uses spectral representation and convolutions to extract inter-
channel correlations and patterns. The fourth one is a multi-
step ahead version of DARNN [26]. DSTP-RNN, Stem-GNN
and DARNN are evaluated for both forecasting horizons.

Besides the above-described recent DNN competitors, three
traditional baselines were additionally evaluated: a) NARX,
implemented as a MultiLayer Perceptron, b) a single vanilla
LSTM, and c) a double vanilla LSTM in an Encoder-Decoder
(Enc-Dec) formulation. NARX and the single vanilla LSTM
can only be utilized in the single-step forecasting scenario,
while Enc-Dec is also applicable in the multi-step forecasting
case. Finally, a second variant of the proposed architecture
was evaluated, which also contains LT from Eq. (11) as an
additional loss term during training. It is denoted below as
GRRNN-T.

The employed evaluation metrics were the following ones:
• Mean Absolute Error:

MAE =
1

N

N∑
i=1

|xi − x̂i| .

• Symmetric Mean Absolute Percentage Error:

SMAPE =
1

N

N∑
i=1

|xi − x̂i|
(|xi|+ |x̂i|)/2

.

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2.

In the above, xi is the real value of a timeseries at timestep i,
x̂i is the forecasted value of that timeseries at timestep i and
N is the number of timesteps. In all three cases, a lower metric
value implies better forecasting. The final forecast errors per
dataset were produced after averaging over all target channels,
since the employed evaluation metrics generate one value per
target channel.



TABLE X: Dunn-Bonferroni post-hoc test results for the 7-step forecasting horizon.

DARNN DSTP-RNN GRRNN GRRNN-T Enc-Dec Stem-GNN
DARNN 1.0 1.0 0.000317 0.000120 1.0 1.0
DSTP-RNN 1.0 1.0 0.000196 0.000073 1.0 1.0
GRRNN 0.000317 0.000196 1.0 1.0 0.000005 0.010038
GRRNN-T 0.000120 0.000073 1.0 1.0 0.000002 0.004514
Enc-Dec 1.0 1.0 0.000005 0.000002 1.0 1.0
Stem-GNN 1.0 1.0 0.010038 0.004514 1.0 1.0

E. Results

The forecasting error rates for the test sets of all employed
datasets are presented in Tables VI and VII (for all metrics,
lower is better). Overall, the proposed GRRNN architecture
is typically either the best one or the second best one across
almost all evaluation metrics and for all datasets. It is intended
as a multiple-step-ahead forecasting method and, indeed, it
performs best in terms of error rates in the relevant, more
challenging experimental setting that has a long forecast hori-
zon of 7 timesteps. Table VIII depicts the standard deviation
of the proposed method results per error metric, across all test
data points, for this multi-step horizon scenario. For evaluation
completeness reasons, the method has also been tested on the
single-step-ahead forecasting horizon scenario.

In the difficult 7-step horizon scenario, GRRNN achieves
the lowest error rates in all error metrics, except in “SML2010”
RMSE where it comes second behind Stem-GNN. When dis-
tinguishing between GRRNN and GRRNN-T, although there
is no clear winner between them, it seems that GRRNN-
T performs far better on two out of three error metrics in
the “Twitter Public Opinion” dataset. This difference can be
attributed to the small size of this dataset, which consists
of less than 100 timesteps. Indeed, without the LT loss
term of GRRNN-T during training, the generative module
simply learns the conditional distribution of the historical
target data given historical exogenous ones; thus the quality
of the features it computes is highly sensitive to the sample
(training set) size. The result is a poor representation learning
capability in the low-data regime for GRRNN. This behaviour
is fully in-line with the intuition behind the functionality and
modus operandi of GRRNN, as well as with the well-known
data inefficiency of GANs.

In single-step-ahead forecasting the proposed GRRNN ar-
chitecture performs slightly worse, although it still remains
the best or second best performer in 3 out of 5 datasets. It
comes second for all metrics in the “SML2010” dataset, after
DARNN. It also has the lowest RMSE and second lowest MAE
of the “Air Quality” dataset. As for the “ETD” dataset, GR-
RNN excels along with DARNN: both of them have the lowest
MAE, with GRRNN having lower SMAPE and DARNN lower
RMSE. In the “Twitter Public Opinion” dataset, LSTNet and
DSTP-RNN architectures are more accurate than the proposed
method, again probably due to small dataset size.

Regarding the relative performance of the proposed GR-
RNN compared to the baseline DARNN architecture, the
former scores higher in all instances of the multi-step-ahead
forecasting setting. However it does not fare equally well
in the single-step-ahead setting, meaning that the benefits of
generative representation learning become apparent only in

the harder scenario (long forecasting horizon). In the less
challenging single-step-ahead configuration, the stochasticity
of the generated features during inference (caused by the
random vector input to the Generator) tends to drown out
the advantages of the richer representations computed by
the auxiliary generative module. This effect seems to get
exacerbated for GRRNN-T, which fails utterly in the single-
step-ahead forecast scenario compared to GRRNN. A potential
reason is the more unstable GAN training in such a setup,
where Eq. (10) offers less supervision in comparison to the
multi-step-ahead configuration.

The relative performance of all competing models is sum-
marized in Table IX, which depicts the average ranking of
each model over all error rates and datasets, for each of the
two examined forecast horizons. As it can be seen, GRRNN is
the second best approach in both forecasting scenarios, while
GRRNN-T is the best approach in the multi-step forecasting
scenario. To validate the significance of the ranking, Friedman
test was conducted for a typical significance level of 0.05. The
null hypothesis proposes that no statistical significance exists
in the rankings and that the forecasting accuracy is similar for
all competing models. The resulting p-value is 1.67E − 15
and 2.22E − 11 for the single-step and the multi-step fore-
casting scenario, respectively; both vales are many orders of
magnitude lower than 0.05. Thus, the null hypothesis is re-
jected and the models’ performance difference is shown to be
statistically significant. Post-hoc test results for the multi-step
horizon, which is the one this article focuses on, are depicted
in Table X that contains pair-wise p-values for the Bonferroni-
adjusted Dunn test. As it can be seen, GRRNN-T significantly
stands out from the competition. Finally, example visualiza-
tions of 7-step forecasts using GRRNN-T and the best per-
forming competing method per dataset are depicted in Fig.
6.

Finally, it can be noted that the errors for one dataset may
diverge across different metrics. For instance, this is the case
in the “Air Quality” dataset for the single-step-ahead forecast
configuration, where the proposed GRRNN came first per
RMSE (along with DSTP-RNN), second per MAE and third
per SMAPE. This behaviour can be attributed to the statistical
profile of the dataset and the nature of the metrics themselves.

V. CONCLUSIONS

This article presents a novel deep neural architecture, called
GRRNN, that conjoins generative learning and regression to
attack the challenging problem of direct multi-step causal
forecasting. Essentially, a generative module transforms the
input historical exogenous timeseries to a more appropriate
and richer representation, before feeding it as input to the



actual forecasting regressor. Thus, the task of timeseries gen-
eration is synergistically combined with the task of timeseries
forecasting, with the overall architecture trained end-to-end
in a multitask manner. Extensive experimental evaluation on
publicly available datasets from diverse fields has shown that
GRRNN is very effective and outperforms its competitors in
the multi-step-ahead forecasting setting, which is the most
challenging one, if large enough training datasets are available.

Future research may focus on overcoming the identified lim-
itations of the proposed architecture, for the low-data regime
and the single-step-ahead forecasting cases, by enhancing the
generative module to achieve improved conditional density
estimation during training and reduced stochasticity during
inference. Alternatively, it might be fruitful to rethink how the
generative module assists the forecasting process. In GRRNN,
it is exploited to generate richer features with greater predictive
capacity. It would be interesting for it to also assist the
regressor’s decoder in the generation of the final forecasts.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Commission’s Horizon Europe Research
and Innovation Actions under grant agreement 101093003
(HORIZON-CL4-2022-DATA-01-01, TEMA). Views and
opinions expressed are those of the author(s) only and do
not necessarily reflect those of the European Union or the
European Commission. Neither the European Union nor the
granting authority can be held responsible for them.

REFERENCES

[1] C. Symeonidis, I. Mademlis, I. Pitas, and N. Nikolaidis, “Neural
attention-driven Non-Maximum Suppression for person detection,” IEEE
Transactions on Image Processing, vol. 32, pp. 2454–2467, 2023.

[2] D. Tsirmpas, I. Gkionis, G. T. Papadopoulos, and I. Mademlis, “Neural
Natural Language Processing for long texts: A survey on classification
and summarization,” Engineering Applications of Artificial Intelligence,
vol. 133, p. 108231, 2024.

[3] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Tem-
poral logistic neural bag-of-features for financial time series forecasting
leveraging limit order book data,” Pattern Recognition Letters, vol. 136,
pp. 183–189, 2020.

[4] ——, “Deep adaptive input normalization for time series forecasting,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
no. 9, pp. 3760–3765, 2019.

[5] R. Chandra, S. Goyal, and R. Gupta, “Evaluation of deep learning
models for multi-step ahead time series prediction,” IEEE Access, vol. 9,
pp. 83 105–83 123, 2021.

[6] S. B. Taieb, G. Bontempi, A. Atiya, and A. Sorjamaa, “A review and
comparison of strategies for multi-step ahead time series forecasting
based on the NN5 forecasting competition,” 2011.

[7] R. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-
tice, 2nd ed. Australia: OTexts, 2018.

[8] G. E. P. Box and G. M. Jenkins, “Some Recent Advances in Forecasting
and Control,” Journal of the Royal Statistical Society Series C, vol. 17,
no. 2, pp. 91–109, 1968.

[9] ——, Time Series Analysis: Forecasting and Control. Holden-Day,
1976.

[10] I. J. Leontaritis and S. A. Billings, “Input-output parametric models for
non-linear systems Part I: deterministic non-linear systems,” Interna-
tional Journal of Control, vol. 41, no. 2, pp. 303–328, 1985.

[11] Z. Tang, C. de Almeida, and P. A. Fishwick, “Time series forecasting us-
ing neural networks vs. Box-Jenkins methodology,” Simulation, vol. 57,
no. 5, pp. 303–310, 1991.

[12] Z. Tang and P. Fishwick, “Feedforward neural nets as models for time
series forecasting,” Informs Journal on Computing, vol. 5, pp. 374–385,
11 1993.

[13] S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero,
“Deep learning and time series-to-image encoding for financial fore-
casting,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp.
683–692, 2020.

[14] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural net-
works for time series forecasting: Current status and future directions,”
International Journal of Forecasting, vol. 37, no. 1, pp. 388–427, 2021.

[15] N. Nguyen and B. Quanz, “Temporal latent auto-encoder: A method for
probabilistic multivariate time series forecasting,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2021.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
vol. 1409, 2014.

[17] S. Du, T. Li, and S.-J. Horng, “Time series forecasting using sequence-
to-sequence deep learning framework,” in Proceedings of the Interna-
tional Symposium on Parallel Architectures, Algorithms and Program-
ming (PAAP), 2018.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the International Conference on Advances in Neural Information
Processing Systems (NIPS), I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, R. Vishwanathan, and R. Garnett, Eds., 2017.

[19] T. Gangopadhyay, S. Y. Tan, Z. Jiang, R. Meng, and S. Sarkar,
“Spatiotemporal attention for multivariate time series prediction and
interpretation,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2021.

[20] A. Koochali, A. Dengel, and S. Ahmed, “If you like it, GAN
it—probabilistic multivariate times series forecast with GAN,” Engi-
neering Proceedings, vol. 5, no. 1, 2021.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proceedings of the Conference on Advances in Neural Information
Processing Systems (NIPS), 2014.

[22] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time
series generation with recurrent conditional GANs,” arXiv preprint
arXiv:1706.02633, 2017.

[23] G. Lai, W.-C. Chang, T. Yang, and H. Liu, “Modeling long- and short-
term temporal patterns with Deep Neural Networks,” in Proceedings of
the International ACM SIGIR Conference on Research & Development
in Information Retrieval, 2018.

[24] K. Bandara, C. Bergmeir, and S. Smyl, “Forecasting across time series
databases using recurrent neural networks on groups of similar series:
A clustering approach,” Expert Systems with Applications, vol. 140, p.
112896, 2020.

[25] Y. Tao, L. Ma, W. Zhang, J. Liu, W. Liu, and Q. Du, “Hierarchical
attention-based recurrent highway networks for time series prediction,”
arXiv preprint arXiv:1806.00685, 2018.

[26] Y. Qin, D. Song, H. Cheng, W. Cheng, G. Jiang, and G. W. Cottrell,
“A dual-stage attention-based recurrent neural network for time series
prediction,” in Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2017.

[27] Y. Liu, C. Gong, L. Yang, and Y. Chen, “DSTP-RNN: A dual-stage
two-phase attention-based recurrent neural network for long-term and
multivariate time series prediction,” Expert Systems with Applications,
vol. 143, p. 113082, 2020.

[28] L. Bai, L. Yao, S. S. Kanhere, Z. Yang, J. Chu, and X. Wang, “Passen-
ger demand forecasting with multi-task convolutional recurrent neural
networks,” in Poceedings of the Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining. Springer, 2019.

[29] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph
convolutional recurrent network for traffic forecasting,” 2020.

[30] C. Papaioannidis, I. Mademlis, and I. Pitas, “Autonomous UAV safety by
visual human crowd detection using multi-task deep neural networks,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2021.

[31] ——, “Fast CNN-based single-person 2D human pose estimation for
autonomous systems,” IEEE Transactions on Circuits and Systems for
Video Technology, 2022.

[32] ——, “Fast single-person 2D human pose estimation using multi-
task Convolutional Neural Networks,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023.

[33] ——, “Fast semantic image segmentation for autonomous systems,” in
Proceedings of the IEEE International Conference on Image Processing
(ICIP), 2022.

[34] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.



[35] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” in Pro-
ceedings of the International Conference on Knowledge Discovery and
Data Mining (SIGKDD), 2004.

[36] X. Yu and D. Li, “A long-term recurrent convolutional network for stock
index prediction,” Journal of Physics: Conference Series, vol. 1914,
no. 1, p. 012049, 2021.

[37] B. Huang, H. Zheng, X. Guo, Y. Yang, and X. Liu, “A novel model
based on DA-RNN network and skip gated recurrent neural network for
periodic time series forecasting,” Sustainability, vol. 14, no. 1, 2022.

[38] A. S. A. Moursi, N. El-Fishawy, S. Djahel, and M. A. Shouman,
“Enhancing PM2.5 prediction using NARX-based combined CNN and
LSTM hybrid model,” Sensors, vol. 22, no. 12, 2022.

[39] S. Liu and M. Motani, “Towards better long-range time series
forecasting using generative adversarial networks,” arXiv preprint
arXiv:2110.08770, 2021.

[40] K. Zhang, G. Zhong, J. Dong, S. Wang, and Y. Wang, “Stock market
prediction based on generative adversarial network,” Procedia Computer
Science, vol. 147, pp. 400–406, 2019.

[41] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative
Adversarial Networks,” in Proceedings of the International Conference
on Machine Learning (ICML). PMLR, 2017.

[42] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, vol. abs/1411.1784, 2014.

[43] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANs,” in Proceedings of the Inter-
national Conference on Neural Information Processing Systems (NIPS),
2017.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[45] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

[46] A. Goyal, A. Lamb, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio,
“Professor forcing: A new algorithm for training recurrent networks,”
in Proceedings of the International Conference on Neural Information
Processing Systems (NIPS), 2016.

[47] Y. Zhang and Q. Yang, “An overview of multi-task learning,” National
Science Review, vol. 5, no. 1, pp. 30–43, 2017.

[48] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[49] F. Zamora-Martı́nez, P. Romeu, P. Botella-Rocamora, and J. Pardo, “On-
line learning of indoor temperature forecasting models towards energy
efficiency,” Energy and Buildings, vol. 83, pp. 162–172, 2014.

[50] S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia, “On
field calibration of an electronic nose for benzene estimation in an urban
pollution monitoring scenario,” Sensors and Actuators B: Chemical, vol.
129, no. 2, pp. 750–757, 2008.

[51] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven predic-
tion models of energy use of appliances in a low-energy house,” Energy
and Buildings, vol. 140, pp. 81–97, 2017.

[52] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the International Conference on Artificial
Intelligence (AAAI). AAAI Press, 2021.

[53] D. Karamouzas, I. Mademlis, and I. Pitas, “Public opinion monitoring
through collective semantic analysis of tweets,” Social Network Analysis
and Mining, vol. 12, no. 1, p. 91, 2022.

[54] D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong,
B. Xu, J. Bai, J. Tong, and Q. Zhang, “Spectral temporal graph neural
network for multivariate time-series forecasting,” in Proceedings of the
International Conference on Neural Information Processing Systems
(NIPS), 2020.

[55] S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero,
“Deep learning and time series-to-image encoding for financial fore-
casting,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp.
683–692, 2020.

[56] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proceedings of
the International Conference on Learning and Intelligent Optimization
(LION). Springer, 2011.

Georgios Chatziparaskevas is a software engineer.
He received his B.Sc. in Computer and Telecom-
munication Engineering in 2007. Currently he is
working as software engineer in the field of CAE.

Dr. Ioannis Mademlis (S’17-M’18-SM’22) is a
computer scientist, specialized in artificial intel-
ligence. He received a M.Sc. degree in intelli-
gent/cognitive systems (2014) and a Ph.D. in ma-
chine learning and computer vision (2018) from
the Aristotle University of Thessaloniki, Greece
(AUTH). He has participated in 6 European Union-
funded R&D projects, having co-authored approx-
imately 70 publications in academic journals and
international conferences. He is an IEEE Senior
Member and a committee member of the Interna-

tional Artificial Intelligence Doctoral Academy (IAIDA). His current research
interests include machine learning, computer vision, autonomous robotics and
human-computer interaction.

Prof. Ioannis Pitas (SM’94-F’07, IEEE Fellow,
IEEE Distinguished Lecturer, EURASIP Fellow) re-
ceived the Diploma and PhD degree in Electrical
Engineering, both from the Aristotle University of
Thessaloniki (AUTH), Greece. Since 1994, he has
been a Professor at the Department of Informatics
of AUTH and Director of the Artificial Intelligence
and Information Analysis (AIIA) lab. He served as a
Visiting Professor at several Universities. His current
interests are in the areas of computer vision, machine
learning, autonomous systems, intelligent digital me-

dia, image/video processing, human-centred interfaces, affective computing,
3D imaging and biomedical imaging. He has published over 906 papers,
contributed in 47 books in his areas of interest and edited or (co-)authored
another 11 books. He has also been member of the program committee of
many scientific conferences and workshops. In the past he served as Associate
Editor or co-Editor of 9 international journals and General or Technical Chair
of 4 international conferences. He participated in 70 R&D projects, primarily
funded by the European Union and is/was principal investigator/researcher
in 42 such projects. He has 31600+ citations to his work and h-index 87+
(Google Scholar). Prof. Pitas leads the International AI Doctoral Academy
(IAIDA) of the European H2020 R&D project AI4Media https://ai4media.eu/.
He coordinates the HE project “TEMA” (g.a.n. 101093003).


	Introduction
	Related Work
	Timeseries forecasting with Generative-Regressing Recurrent Neural Network
	Problem formulation
	Preliminaries
	GRRNN: The proposed architecture for causal timeseries forecasting

	Experimental Evaluation
	Datasets
	Preprocessing
	Hyperparameter optimization
	Evaluation
	Results

	Conclusions
	References
	Biographies
	Georgios Chatziparaskevas
	Dr. Ioannis Mademlis
	Prof. Ioannis Pitas


