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ABSTRACT

In the realm of Natural Disaster Management (NDM), timely
communication with local authorities is paramount for an
effective response. To achieve this, multi-agent systems play
a pivotal role by proficiently identifying and categorizing
various disasters. In the field of Distributed Deep Neural
Network (D-DNN) inference, such approaches often require
DNN nodes to transmit their results to the cloud for inference,
or they necessitate the establishment of a fixed topology net-
work to enable inference directly on the edge, a practice
prone to security risks. In this work, we propose a decentral-
ized inference strategy tailored for fire classification tasks. In
this approach, individual DNN nodes communicate within a
network and enhance their predictions by considering other
DNN node inference outputs that contribute to improving
their individual performance. The overall coordination of the
system on a specific decision is achieved through a consensus
protocol, which acts as a universally accepted inference rule
adopted by all DNN nodes operating within the system. We
present a comprehensive experimental analysis, of the forest-
fire classification task, focusing on enhancing both individual
DNN node performance and the stability of the consensus
protocol.

Index Terms— Natural Disaster Management (NDM),
Fire classification, Multi-Agent Systems, Decentralized DNN
Inference, BFT Consensus Protocol

1. INTRODUCTION

Natural disasters, such as fires in forested areas, floods, and
earthquakes, are a major issue plaguing modern society. In
such circumstances, the destruction caused to human lives,
properties, and national infrastructure is devastating and often
associated with significant economic repercussions [1]. The
prompt communication of essential information to local au-
thorities regarding these phenomena is crucial to minimize
exposure to dangers and mitigate the potentially destructive
consequences. Multi-agent systems (MAS) can therefore be
used for effective Natural Disaster Management (NDM) of-
fering the capability to swiftly identify and categorize vari-
ous disasters [2]. Typically, a MAS comprises multiple au-

tonomous agents gathering data from various sources such as
satellites, UAVs (Unmanned Aerial Vehicles), social media,
and smart cameras. These agents communicate their findings
with one another, within a network, collectively assess the
situation, and prioritize response actions or coordinate emer-
gency resources effectively [3]. The overall coordination of
the system is commonly organized by centralized authorities,
such as a master node or a robust cloud server, which can
potentially give rise to significant security vulnerabilities or
privacy implications.

In deep learning problems, many current approaches re-
volve around architectures operating within an edge-to-cloud
DNN inference framework [4]. In this scenario, edge devices
act as autonomous agents, collecting and processing data with
limited capacity, while the results are transmitted to the cloud
for the decision-making process. Subsequently, the outcome
is communicated and distributed back to the edge devices.
In such settings, various approaches involve techniques for
compressing and pruning large-scale models to enable par-
tial inference on the device while the remaining processing
is executed in the cloud [5]. Similarly, other approaches en-
tail model selection techniques wherein multiple DNNs are
trained and stored in the cloud. Depending on the input data,
a dynamic function is utilized to search for and execute the
best model for the specific task [6]. Conversely, on-device in-
ference primarily focuses on approaches such as computation
offloading, wherein a multilayered DNN is partitioned among
multiple nodes to form a larger network during inference [7].
Regardless of the approach used, none of the strategies men-
tioned above facilitate a fully decentralized inference process
without the need for any centralized coordination, ensuring a
properly operating protocol in which none of the participating
devices can be considered reliable.

In simple terms, the strategies outlined above predom-
inantly depend on mutual trust among participating DNN
nodes, presuming their consistent and reliable operation un-
der all circumstances. However, this reliance poses a consid-
erable risk of failure due to potential factors such as system
crashes, computational errors, or malicious attacks. In such
scenarios, certain DNN nodes may present a façade of nor-
malcy while simultaneously engaging in activities aimed at
subverting and compromising the integrity of the system.



These concerns are particularly significant for systems re-
quiring utmost reliability, especially in the context of NDM
processes.

Motivated by these challenges, our study introduces a
decentralized fire classification pipeline operating in two
stages. Firstly, we employ a node-to-node model selection
technique, enabling each autonomous DNN node to enhance
its performance through consultation with neighboring DNN
nodes. Secondly, we propose a novel consensus protocol
designed to serve as a universally accepted inference rule for
all participating DNN nodes within the system. In our exper-
iments focused on fire classification, we observed a notable
enhancement in the performance of individual DNN nodes.
The proposed consensus protocol successfully functions as a
universally accepted inference rule among participating DNN
nodes, resulting in an overall accuracy score surpassing those
obtained through typical centralized ensemble aggregation
techniques such as majority voting and weight averaging [8].

The rest of the paper is structured as follows: In Section
2, a comprehensive review of distributed and decentralized
inference architectures is provided. Section 3 describes the
proposed Decentralized Fire Classification Pipeline. Experi-
mental results are discussed in Section 4. Finally, a conclu-
sion is provided in Section 5.

2. DISTRIBUTED AND DECENTRALIZED
INFERENCE

In recent years, several methodologies have emerged for dis-
tributed DNN inference strategies, with a focus on architec-
tures tailored for mobile and IoT services. These architec-
tures typically employ edge-to-cloud pipelines, utilizing edge
devices like smartphones and smart cameras for data collec-
tion [9]. In some cases, these devices also perform partial
data processing to preserve privacy [10, 11, 12]. However,
this approach introduces data transferring delays due to the
frequent transition of high-dimensional intermediate repre-
sentations between edge devices and the cloud. Additionally,
there’s a reliance on a dedicated server to oversee the entire
process, posing a risk of compromise as it becomes a single
point of failure, threatening the integrity of the system.

In decentralized settings, edge devices, exchange infor-
mation directly with each other leveraging peer-to-peer (P2P)
or gossiping communication links, to collaborate and pro-
duce results without requiring any form of centralized coor-
dination. The Edge Ensembles [13] is a collaborative infer-
ence approach wherein DNN nodes within the system uti-
lize a trainable shared encoder to encode and quantify in-
put data. These quantified features are then transmitted and
shared among the other DNN nodes in the system. Upon en-
countering features sent by another DNN node, a DNN node
utilizes its local decoder model to communicate the mapping
and aggregates it with the feature representation it has pro-
duced locally. While we acknowledge that such approaches

seems to be heading in the right direction, they are not strictly
inference-based methods. Also, they do not conduct model
selection to filter and streamline the inference process, nor
are they entirely fault-tolerant, as they lack the capability to
effectively identify and exclude malicious users seeking to
compromise the entire process.

Architectures like the Danku protocol [14] function as
layer 2 solutions on the Ethereum blockchain, utilizing smart
contracts in an endeavor to offer an efficient highly-secured
decentralized exchange environment of trainable models, on
which the best performing one is selected by the committe.
In the Danku protocol, each node functions as a DNN node
bound to a designated baseline model, responsible for training
and sharing its knowledge with other DNN nodes. Ultimately,
the protocol selects the best-performing model, and the node
responsible receives a reward for its honest contributions. The
Ethereum blockchain’s inherent trust serves as collateral, en-
suring integrity and fostering honest participation within the
system. Building on top of layer 1 blockchain protocols in-
deed holds promise, but it comes with inherent risks, such as
high gas fees and limitations on the amount of data that can
be processed and written directly to the blockchain.

Distributed consensus protocols, originating from the
Byzantine Generals’ Problem introduced by Lamport et al.
[15], have long been employed to ensure agreement among
nodes in systems operating over unreliable communication
links. Protocols like Practical Byzantine Fault Tolerance
(PBFT) [16] have been extensively studied and form the basis
for modern consensus mechanisms such as BFT-Smart [17],
DR-BFT [18], and Raft [19]. While widely used in private
blockchain systems like Hyperledger [20], these protocols
have seen limited integration into distributed deep learning
systems. This is largely due to their inefficiency during train-
ing, where state machine replication increases computational
complexity by requiring the saving and verification of system
states at each training epoch. However, in distributed DNN
inference systems, this complexity is mitigated as the focus is
on inference rather than training, reducing the computational
overhead associated with state verification.

3. METHODOLOGY

In this section, we provide a detailed description of the pro-
posed decentralized DNN fire classification pipeline. Let G =
{A, E} be a graph comprised of N collaborating DNN nodes
defined in a set A = {α1, α2, ..., αN}, that are equipped with
a specific Convolutional Neural Network (CNN) model tai-
lored to perform a fire inference classification task of the form
ŷi = fi(x;θi), where x is the data sample and θi is the learn-
ing parameters of the ith’s DNN node model. Assuming that
C = {c1, . . . , cc} is a set of classification labels, then each
node’s inference output are softened using a softmax acti-
vation function so that,

∑C
j=1 ŷij = 1, where iϵ[0, N ] and

jϵ[0, |C|] to represent probability distributions. E is defined



as a set of fixed communication links allowing them to com-
municate with each other. It is assumed that all DNN nodes
have obtained access to the same test sample x, while their
goal is to produce a single prediction ŷ = argmax

jϵC
{ŷj}. This

methodology encompasses two integral components: a) Indi-
vidualized Model Selection Process (IMSP) method in which
each DNN node is requested to detect and eventually select
the neighboring nodes that will indeed help him to improve
his performance and b) Quality of Inference (QoI) Consensus
Protocol in which all DNN nodes are requested to collaborate
with each other in order to reach a common decision agree-
ment about the content of a given sample, and thus serve as a
single inference rule.

3.1. Individualized Model Selection Process (IMSP)

In this section, we introduce the Individualized Model Selec-
tion Process (IMSP), a crucial aspect of our decentralized fire
classification framework. During the DNN inference stage,
each node independently generates predictions based on the
observed sample x and communicates them across the net-
work. The communication protocol operates within prede-
fined time intervals, denoted as t. Once a sufficient num-
ber of transmissions have occurred and adequate time has
elapsed, each DNN node engages in an individual decision-
making process. This process incorporates both the node’s
local observations and the information received from other
nodes, leading to personalized model selections tailored to
each node’s perspective.

After the time interval t has expired, each DNN node αi

receives prediction vectors from the remaining N − 1 nodes.
Based on a predefined criterion, node αi determines whether
to integrate these DNN inference outputs into its final deci-
sion or discard them. Any node that fails to transmit its DNN
inference output within the specified time delay t is automat-
ically recognized as null. Additionally, if the prediction from
node αj deviates from the predefined format, it is considered
null and disregarded by all other nodes. Nodes select their
neighbors based on the following aggregation schemes:

• Majority Voting-based Condition: For a given sam-
ple x, the DNN inference output of node aj only takes
into account nodes that are more confident than itself:

ŷ′j = mode(biŷi) | ŷi = argmax(fi(x;θi)),∀iϵ[0,N]
(1)

where bi = 1 if max((fj(x;θj)) < max((fi(x;θi)) and
bi = 0, otherwise, and mode(·) is a function denote the
number that is most commonly viewed in the given set.

• Average-based Condition: For a given sample x, the
DNN inference output of node aj considers only the
nodes that are more confident than itself for each class

separately, i.e:

ŷ′j =
1

N ′

N∑
i=1

biŷi, (2)

where bi = 1 if ŷj < ŷi and bi = 0, otherwise, and
N ′ ≤ N is the number of DNN nodes outputs taken
into account, based on the above condition. Addition-
ally, by introducing a med(·) function, we can apply a
median rule for the aggregation step formally defined
as:

ŷ′j = med
iϵN

(biŷi), ∀bi ̸= 0. (3)

3.2. QoI-BFT protocol

In this section, we introduce Quality of Inference (QoI) a
novel consensus protocol designed to operate as a single infer-
ence rule, enabling coordination among individual DNN node
decisions within a fully decentralized framework, thus elim-
inating the need for centralized coordination. The QoI pro-
tocol adapts the traditional Byzantine Fault Tolerance State
Machine Replication (BFT SMR) principles, where a mini-
mum of N ≤ 2f + 1 nodes are required to tolerate f poten-
tially faulty DNN nodes. These nodes, termed honest, aim
to collectively agree on the content and order of predictions
despite potential adversarial behavior. The protocol operates
under a synchronous assumption, ensuring timely delivery of
DNN inference outputs while minimizing communication de-
lays. Each DNN node broadcasts its inference output to all
neighboring nodes, maintaining a complete history of DNN
inference outputs in the same order. QoI guarantees validity,
agreement, integrity, and total order of predictions, ensuring
that honest DNN nodes receive and agree upon predictions
for all samples. QoI’s core processes encompass view change,
normal operation, and conflict decision agreement operations,
enabling coordinated decision-making and handling conflicts
that may arise during the inference process.

DNN nodes engage in a series of actions referred to as
views. In the context of the QoI protocol, operational activ-
ities are organized into rounds, where each consensus round
represents a single execution of the normal operational pro-
cess, regardless of its success. Views delineate the consen-
sus rounds necessary for the network to achieve agreement
on a given sample. Let V = {v1, . . . , vv} be the view set,
views are described as elements of an index v ∈ V , compris-
ing a sequence of test pairs whose predictions are scheduled
within the time interval t. During each view, one node acts
as the primary DNN node, while the remaining N − 1 nodes
function as validators. For the remainder of this study, we
simplify our approach by considering each ’view’ as encap-
sulating a single sample alongside its class label, denoted as
(x, y). Our objective is that every honest DNN node in N
maintains an identical DNN inference history set defined as
Ŷ = {ŷvj, ∀v ∈ V and j ∈ C}.



3.2.1. View Change

Leader Election. At any given moment, synchronization
among all DNN nodes is essential, with each commencing
from the same view. Initially, a primary node is designated
from the set of DNN nodes, A, to initiate the consensus pro-
cess for the first round. Subsequently, the remaining N − 1
nodes operate as validators. The primary node is elected in a
cyclical manner, ensuring equal opportunity for all nodes to
claim the primary role as long as they adhere to the consensus
rules The election formula for determining the primary node
is defined as:

ap = v mod |A|, (4)

where |A| = N and vϵV represent the current view we
are currently working on.

View Change. When a misbehavior is detected in the pri-
mary DNN node of the current view, a view change is trig-
gered to facilitate its replacement. Specifically, in the vth

view, the primary agent is promoting a DNN inference out-
put for the ith sample of the form:

ŷp = argmax (fp (xi;θp)) . (5)

The primary DNN node ap communicates its DNN infer-
ence output ŷp to the validators by constructing and broad-
casting a pre-prepared message in a specific format (e.g.,
{ap, ŷp, vp, rp}) where ap is the primary id, ŷp ∈ C is its
predicted value for the current sample, vp is the view in-
dex and rpϵR is the rewards he has collected so far. Set
R = {r1, . . . , rN is generated and locally maintained in
the system of each DNN node and represents the collected
rewards for each node.

Let ajϵA represent a random validator that has just re-
ceived the primary’s message. He calculates its prediction
value as:

ŷj = argmax (fj (xi;θj)) , aj ∈ {A|aj ̸= ap}. (6)

If its DNN inference predicted value ŷj ̸= ŷp or vj ̸= vp
then, from now onwards, the jth DNN node recognizes the
primary as faulty. When a DNN node identifies the primary
node as faulty, it promptly multicasts a view-change mes-
sage to the remaining validators, adhering to a specific format
(e.g., {aj , vj + 1, voj , rj}. The parameter voj = 1 if ŷj ̸=
ŷp or voj = 0 otherwise. Once the validators receive that
view change messages, they append them to a local log. If∑N−1

i=1 voi
|A| ≥ 0.5 then the primary is globally recognized as

faulty since it has lost the favor of the majority. As a result
of this failure in achieving consensus, DNN nodes transition
to the new view, commencing the consensus round anew to
reflect the updated perspective.

Reward System. The reward system provides incentives
for primary DNN nodes to sustain the approval of the majority
of validators. It rewards honest behavior with quality points

q while penalizing the loss of majority favor. For a specific
primary node ap, the reward and penalty are computed as fol-
lows:

rp =

q, if
∑N−1

i=1 voi
|A| < 0.5

0.5rp, if
∑N−1

i=1 voi
|A| ≥ 0.5

. (7)

If the primary DNN node fails to secure majority support,
then a significant amount of the accumulated primary points
are forfeited. This mechanism reinforces the importance of
honest performance for sustained rewards. Conversely, failure
to maintain majority favor jeopardizes the node’s high-quality
status, aiding in the identification of potentially faulty or ma-
licious DNN nodes for exclusion from the decision-making
process.

3.2.2. Normal Operation

In this stage, the designated primary DNN node evaluates de-
cisions from validators, selecting pertinent ones, and assem-
bling a final decision. This decision is then multicast to honest
validators. For a primary DNN node ap, let Ŷp = {ŷp} de-
note the set of the valid collected predictions so far. Then the
set Ŷp is dynamically updated according to his observations
as:

Ŷp =

{
Ŷp ∪ {ŷj}, if ŷp = ŷj

Ŷp, otherwise
, (8)

and the final decision is produced by combining the selected
validators decisions using average 2 or median rule 3.

After the primary DNN node has reached a final decision,
it multicasts an encrypted prepare message to all nodes, in-
cluding itself. The message is structured as {ap, ŷp, vp, rp}
where ap is the primary’s id, ŷp is its final DNN inference out-
put for the current sample, vp is the view index and rp is the
collected so far rewards. Upon receiving a prepare message
from the primary, each validator verifies its validity by con-
firming whether vp matches its own view number and whether
ŷp aligns with its locally produced prediction. If the prepare
message is indeed valid, it is transmits the prepared message
to the rest validators. Validators await receipt of 2f + 1 iden-
tical messages from different nodes to proceed to the commit
phase. Here, a commit message of the form {aj , ŷj , vj , rj}
message is sent. Once a validator confirms the validity of the
commit message, it forwards it back to the primary. If the pri-
mary receives 2f +1 identical commit messages from differ-
ent validators, it concludes that consensus has been achieved
for that specific sample.

3.2.3. Conflict Decision Agreement

Conflict Decision Agreement emerges when the complexity
of a sample surpasses the understanding of the majority of
nodes. A sample for which the majority of nodes fail to reach



a consensus is termed a conflict sample. In such cases, DNN
nodes are ordered based on the rewards R they have collected,
in descending order, for the conflict sample ith as rj+1 <
rj where rj+1, rjϵR.

The final decision for each sample is determined using the
Group of Experts Rule, where DNN nodes are grouped based
on the correlation of their decisions, with the most qualified
group making the decision. In cases where this method proves
ineffective, the Most Honest Rule is invoked. Here, the DNN
node with the highest accumulated rewards is entrusted with
making the final decision.

Under the Group of Experts Rule, each DNN node in the
set A operates sequentially, commencing with the node pos-
sessing the highest reward score and proceeding in descend-
ing order. The initial node serves as the primary node and
generates a prediction ŷp using Eq. (5). If any subsequent
node agrees with this prediction, they form a group and col-
lectively advocate for ŷp, combining their rewards. The node
that has aligned with the primary node is then excluded from
further participation. This process iterates until all nodes in
A have formed groups, resulting in sets of agreed-upon DNN
inference predictions and cumulative rewards for the specific
conflict sample. The final decision for the ith sample occurs
when consensus for the next sample i + 1 is reached. At this
point, let gi be one of the formed groups and rgi the combined
rewards for that group, if the primary DNN node for the next
sample ap ∈ gi and:

rgi∑N
i=1 ri

≥ 0.51 (9)

then the agent ap, is responsible to decide for the ith conflict
sample as ŷp = argmax (fp(xi;θp)).

Alternatively, under the Most Honest Rule, if the pri-
mary’s group fails to meet the quality threshold, the decision
is made by the DNN node with the highest reward score (e.g.,
ap = argmax(rj)), and the decision he produce is the one
applied to the ith conflict sample.

4. DISCUSSION AND EXPERIMENTS

This section contains a discussion and in-depth examination
of the suggested methods’ experimental results. In our sys-
tematic design, we envision a decentralized network consist-
ing of numerous autonomous DNN nodes, each representing
either Unmanned Autonomous Vehicles (UAVs) or ground
stations equipped with dedicated CNN models for inference
tasks. Within this network, some nodes are equipped with
robust, well-established pre-trained models capable of deliv-
ering state-of-the-art inference results. However, alongside
these proficient nodes, there exist poorly performing nodes.
These nodes may produce subpar results due to malicious in-
tent or inadequate training.

We conduct experiments on Blaze dataset consisting of
1576 testing images of labeled areas before and during a fire

Fig. 1. Forest fire example from Evros, Greece.
The baseline DNN nodes’ inference outputs are:
{fire, fire, fire, fire, burnt, burnt, non − burnt}.
Under the average condition of the IMSP
method, the final decisions for each agent are:
{fire, fire, fire, fire, fire, fire, burnt}. The overall
system’s decision was determined to be fire.

event, uniformly distributed in 4 classes (e.g., burnt, fire, half
burnt and non-burnt). We utilize a total of 7 pre-trained mod-
els, namely four versions of the EfficientNet [21] architec-
ture (e.g., BO, B1, B2, B3), Inception v3 [22], ResNet-50
[23], and ResNet-101 [24]. All models were pre-trained on
ImageNet [25] and further fine-tuned for an additional 200
epochs on the Blaze dataset. We evaluate the performance of
each individual DNN node and discuss their results with the
IMSP method’s numerical outcomes. Additionally, we apply
the QoI consensus protocol to both the base DNN nodes and
their enhanced versions.

Table 1. Results of IMSP method on Blaze Dataset.

Experiment Dataset Accuracy (%)

A1 A2 A3 A4 A5 A6 A7

Base Nodes 82.32 85.32 84.49 83.85 61.90 76.90 67.20
DA -MV Blaze 49.84 44.22 58.77 45.63 74.66 83.41 81.49
DA - Avg 83.54 85.26 85.07 85.07 78.69 82.03 79.90

To elucidate certain notations herein, we designate the
DNN nodes as Base Nodes and showcase their respective ac-
curacy metrics across the Blaze dataset. Furthermore, the
term DA - Avg denotes the Decentralized DNN nodes sub-
sequent to the implementation of the proposed averaging cri-
terion within the IMSP inference method, delineated in Sub-
section 3.1. Similarly, DA - MV represents the decentralized
DNN nodes following the integration of the majority voting
mechanism. To ensure manageability and discernibility of in-
dividual node performance, an effort is made to maintain a
limited count of nodes. In the base nodes scenario, accuracy
scores range from 61.90% to 85.32%, indicating varying per-
formance levels among the nodes. As depicted in Table 1, the
DA-MV condition struggles to effectively maintain and en-



hance the baseline accuracy of efficient models resulting in a
drop in their accuracy from 82.32% − 85.32% to 44.22% −
58.77%. This issue arises because underperforming nodes
have the potential to mislead the process, as they tend to ex-
hibit high confidence in their incorrect predictions. However,
in DA-Avg, this is not a concern. By focusing directly on
each class probability score, it can effectively detect and ex-
clude poorly performing nodes. With accuracy scores ranging
from 78.69% to 85.54%, DA-Avg method outperforms both
the base nodes and the DA - MV condition in almost all of
the cases, indicating that DA-Avg approach effectively miti-
gates the negative impact of poor behaving node’s accuracy
and may offer a more robust solution.

Table 2. Comparison of Aggregation Methods in Blaze Dataset

Experiments Dataset Centralized Voting Rules QoI Consensus Protocol

Weight Average Majority Voting

Base Nodes 84.65 83.66 85.64
DA - Avg Blaze - - 85.51

Moving forward, a thorough comparison between es-
tablished centralized decision-making aggregation methods,
such as majority voting and weighted average, and the out-
comes derived from the Quality of Inference (QoI) consensus
protocol, is depicted in Table 2. As evidenced, the QoI not
only yields comparable results but also effectively outper-
forms both majority and weighted average rules by 0.99%.
This performance consistency persists post-application of the
IMSP method, which initially enhances the baseline nodes’
performance by employing the average condition rule. The
DA-MV results are omitted due to their lower performance
compared to DA-Avg. Through the consensus process among
already enhanced nodes, a final decision is reached within a
fully decentralized structure. This architecture diverges from
a straightforward decision-making process seen in centralized
architectures, favoring a collaborative approach that enhances
the final process through the QoI protocol. This protocol ef-
fectively mitigates occasional ties in majority voting through
a reward system and conflict sample management, resolving
ties based on the integrity of nodes during the consensus
process rather than a predetermined rule.

5. CONCLUSION

In this study, a decentralized deep neural network (DNN) in-
ference framework tailored for fire classification tasks, with
the aim of enhancing the decision-making process within a
multi-agent system for effective natural disaster management
is introduced. An individualized model selection process fa-
cilitates the exchange and aggregation of information among
DNN nodes to enhance their individual performance. To en-
sure consistent and reliable inference, a Quality of Inference
(QoI) protocol is proposed enabling DNN nodes to maintain

a comprehensive record of DNN inference history to inform
system-wide knowledge and decision-making. Furthermore,
the adoption of a fault-tolerant inference architecture enabled
the effective management of misbehaving DNN nodes, reduc-
ing their ability to influence the decisions of well-behaved
DNN nodes. Through the empirical classification task on the
Blaze dataset, the proposed methodologies had proven that
they could be established as a secure decentralized inference
framework, had shown resilience to malicious attacks, and
had been capable of delivering performance on par with cen-
tralized decision techniques. In the context of future work,
there is potential to integrate and refine the QoI protocol to
function as a consensus mechanism within an AI-Blockchain
framework designed for diverse deep learning tasks. Further-
more, exploring the integration of these methods into other
computer vision applications such as segmentation and object
detection represents a promising avenue for investigation.
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