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Abstract

Stereo matching has emerged as a cost-effective solution for road surface 3D reconstruction, garnering significant attention
towards improving both computational efficiency and accuracy. This article introduces decisive disparity diffusion (D3Stereo),
marking the first exploration of dense deep feature matching that adapts pre-trained deep convolutional neural networks (DCNNs)
to previously unseen road scenarios. A pyramid of cost volumes is initially created using various levels of learned representations.
Subsequently, a novel recursive bilateral filtering algorithm is employed to aggregate these costs. A key innovation of D3Stereo
lies in its alternating decisive disparity diffusion strategy, wherein intra-scale diffusion is employed to complete sparse disparity
images, while inter-scale inheritance provides valuable prior information for higher resolutions. Extensive experiments conducted
on our created UDTIRI-Stereo and Stereo-Road datasets underscore the effectiveness of D3Stereo strategy in adapting pre-trained
DCNNs and its superior performance compared to all other explicit programming-based algorithms designed specifically for road
surface 3D reconstruction. Additional experiments conducted on the Middlebury dataset with backbone DCNNs pre-trained on the
ImageNet database further validate the versatility of D3Stereo strategy in tackling general stereo matching problems. Our source
code and supplementary material are publicly available at https://mias.group/D3-Stereo.
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I. INTRODUCTION

ENSURING safe and comfortable driving requires the timely assessment of road conditions and the prompt repair of road
defects [1]. With an increasing emphasis on maintaining high-quality road conditions [2], the demand for automated 3D

road data acquisition systems has grown more intense than ever [3], [4]. The study presented in [5] employs a laser scanner
to collect high-precision 3D road data. Nevertheless, the high equipment costs and the long-term maintenance expenses have
limited the widespread adoption of such laser scanner-based systems [6]. Therefore, stereo vision, a process similar to human
binocular vision that provides depth perception using dual cameras, has emerged as a practical and cost-effective alternative
for accurate 3D road data acquisition [7], [8]. Existing stereo matching approaches are either explicit programming-based or
data-driven. The former ones rely on hand-crafted feature extraction and estimate disparities through local block matching
or global energy minimization [9]. Nonetheless, hand-crafted feature extraction faces challenges in handling varying lighting
conditions and noises. With recent advances in deep learning, researchers have resorted to deep convolutional neural networks
(DCNNs) for stereo matching [10], [11]. These data-driven approaches can learn abstract features directly from input stereo
images, making them increasingly favored in this research domain. Unfortunately, the limited availability of well-annotated road
disparity data restrains the transfer learning of these DCNNs [12]. Therefore, explicitly programming-based stereo matching
approaches [7], [13], [14] remain the mainstream in the field of road surface 3D reconstruction.

Building upon the local coherence constraint [15], seed-and-grow stereo matching algorithms [7], [16], [17] have been
widely utilized for quasi-dense disparity estimation. Given that road disparities change gradually across continuous regions,
our previously published road surface 3D reconstruction algorithm search range propagation (SRP) [7] initializes disparity seeds
using a winner-take-all (WTA) strategy at the bottom row of the image and estimates disparities iteratively with the search
range propagated from three neighboring seeds. Another significant contribution of [7] lies in the perspective transformation
(PT), designed to convert the target view of road image into a reference view. This transformation helps decrease computations
by reducing the disparity search range and improving stereo matching accuracy by increasing the similarity of the compared
blocks. While the combination of SRP and PT yields a remarkable 3D geometry reconstruction accuracy of approximately 3
mm, it is noteworthy that the disparity estimation accuracy remains constrained by the reliability of the initial seeds generated
using the simple WTA strategy. The unidirectional disparity propagation process further leads to disparity estimation errors on
discontinuities, such as road defects. Additionally, both seed-and-grow stereo matching and perspective transformation require
a set of sparse yet reliable initial correspondences, and the density and reliability of these correspondences directly affect the
efficiency and accuracy of the seed-growing process.

Drawing inspiration from recent advances in plug-and-play sparse correspondence matching [18], [19] approaches, we propose
a feasible solution to address these limitations. For example, the deep feature matching (DFM) method [18] utilizes a backbone
DCNN pre-trained on the ImageNet database [20] to extract feature pyramids for both views, and subsequently refines the coarse
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correspondences initialized at the deepest feature layer to former layers following a linear hierarchical manner. These methods
have demonstrated the effectiveness of using deep features provided by pre-trained backbones to solve the correspondence
matching task. Therefore, our primary motivation is to develop a dense deep feature matching strategy by improving the
seed-and-grow stereo matching with the hierarchical refinement strategy in DFM. Leveraging accurate sparse correspondences
as disparity seeds, such a dense deep feature matching strategy exhibits compatibility with perspective transformation, thus
leading to improvements in both stereo matching accuracy and efficiency compared with the combination of SRP and PT.
However, directly incorporating a hierarchical refinement strategy into seed-and-grow stereo matching still has the following
limitations:

• The dense matching process in the stereo matching task requires additional matching noise elimination operations in
challenging areas with weak/repetitive textures.

• Additional efforts in eliminating inaccurate sparse correspondences are required to mitigate error accumulation and
propagation in the seed-growing process.

• The linear hierarchical refinement strategy in DFM is designed to enhance the spatial details of the coarse initial
correspondences, while having limited effectiveness in enhancing their density.

To address these limitations, we propose a plug-and-play stereo matching strategy for road surface 3D reconstruction, referred
to as Decisive Disparity Diffusion Stereo (D3Stereo), serving as the first exploration of dense deep feature matching. D3Stereo
is compatible with any hand-crafted feature extraction approaches, stereo matching networks pre-trained on other public datasets,
and even backbone DCNNs pre-trained for image classification. We first propose the recursive bilateral filtering (RBF) algorithm,
a more efficient alternative to traditional bilateral filtering (BF) [13] for matching cost aggregation. By recursively applying
a small filtering kernel, our BRF achieves a significantly expanded receptive field while maintaining the same computational
cost as BF, thereby gathering more context information for cost aggregation. The proposed method leverages the powerful
semantic feature extraction ability of a pre-trained DCNN backbone in a hierarchical manner. It consists of two algorithms
that diffuse decisive disparities at both intra and inter scales, respectively. With a cost volume pyramid built with different
layers of feature maps, we first find coarse decisive disparities at the deepest layer. Then, the coarse decisive disparities are
adversarially diffused to their neighboring pixels in the same layer to yield a dense disparity map, within which reliable decisive
disparities are inherited into the former layer by checking the matching cost local minima consistency between consecutive
layers. Our adversarial disparity diffusion process and novel disparity inheritance strategy help in eliminating the inaccurate
correspondences initialized at the last layer. Afterwards, the derived refinement results activate the decisive disparity intra and
inter scale diffusion in the former layer. This process is repeated until a dense disparity map is obtained at the finest resolution
layer. In general, the combined usage of diffusing decisive disparities at both intra and inter scales fully exploits the semantic
information at different scales of feature maps and thus obtaining improved disparity seeds in terms of both accuracy and
distribution uniformity compared with the hierarchical refinement strategy in DFM [18].

Additionally, we create a synthetic road dataset called the UDTIRI-Stereo dataset using the CARLA simulator [21] for
disparity estimation evaluation. Although collecting datasets using simulators has emerged as a prevalent alternative for real-
world datasets [22], [23], these simulators model the road surface as a ground plane, thereby significantly reducing the
complexity of the stereo matching task. In order to narrow the domain gap between the idealized road surface in CARLA and
the real-world road surface, we originally augment the road surface mesh model in CARLA with 1) 2D Perlin noise and 2)
digital twins of pothole models. By applying linear interpolation between initial random noises, 2D Perlin noise is utilized to
generate the natural undulations of the real-world road surface. Moreover, digital twins of pothole models yielded in real-world
[6] are randomly transplanted onto the road surface, thus further introducing disparity discontinuities into the UDTIRI-Stereo
dataset.

II. RELATED WORKS

A. Stereo Matching for Road Surface 3D Reconstruction

Several stereo matching approaches [7], [13], [14], developed specifically for road surface 3D reconstruction, have been
proposed since 2014 [24]. The first reported effort in this area of research was our proposed iterative stereo matching algorithm
SRP [7]. Despite the remarkable 3D geometry reconstruction accuracy yielded by SRP, its row-by-row disparity propagation
process is challenging to implement in parallel on GPUs. To address this issue, [13] proposed a GPU-friendly algorithm for
road disparity estimation based on fast bilateral stereo (FBS) that can be embedded in a drone for real-time road surface
3D reconstruction. Nevertheless, the bilateral filtering process in FBS is computationally intensive, especially when a large
filter kernel is employed, thus further increasing the memory burden on the embedded computers. As a result, semi-global
matching (SGM) was used in conjunction with PT in [14] for road disparity estimation. Experimental results suggest that SGM
outperforms both SRP and FBS when PT is incorporated. In general, D3Stereo continues the search range propagation strategy
in SRP, while the seed-growing process is executed within a single instruction multiple data architecture for better leveraging
parallel computing resources. Additionally, a recursive bilateral filter is proposed for more efficient cost aggregation compared
with FBS.
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Fig. 1. An illustration of our proposed D3Stereo strategy. Cost volume pyramid is first initialized with RBF. Afterwards, coarse decisive disparities initialized at
the deepest layer are hierarchically propagated into former layers with alternating decisive disparity intra-scale diffusion and inter-scale inheritance algorithms.

On the other hand, recent domain generalization-aimed stereo matching networks [25]–[29] achieve remarkable general-
izability across various scenarios. Common strategies to maintain the performance of stereo matching networks under scene
changes include narrowing the cross-domain feature inconsistency [26], [28], [29] and enhancing the ability of DCNNs to
learn more image structure information [25]. However, stereo matching in road scenes additionally emphasizes the ability of
networks to handle fine-grained disparity variations compared to general domain adaptation tasks, and the performance of these
domain generalization-aimed stereo matching networks in road scenes remains unverified.

B. Sparse Correspondence Matching

Conventional hand-crafted sparse correspondence matching approaches [30]–[32] first extract keypoints using explicitly
designed local feature detectors and descriptors. Correspondence pairs are then determined using the nearest neighbor search
algorithm. Although recent data-driven approaches [33]–[40] have demonstrated significant improvements over hand-crafted
methods, these supervised methods usually demand a large amount of well-annotated data for model training, resulting in
unsatisfactory performance when applied to new domains [19]. Moreover, adopting an independent sparse correspondence
matching algorithm, regardless of whether it relies on explicit programming or DCNNs, for seed initialization leads to increased
consumption of memory and computational resources. Recent plug-and-play approaches, such as DFM [18] and epipolar-
constrained cascade correspondence matching (E3CM) [19], utilize backbone DCNNs pre-trained on the ImageNet database
[20] for sparse correspondence matching based on a hierarchical refinement strategy, obviating the necessity for model training
and fine-tuning. Consequently, a preferred solution would be to opt for plug-and-play algorithms that leverage the backbone
DCNN incorporated into D3Stereo for seed initialization.

III. METHODOLOGY

Based on Markov random field theory [41], stereo matching can be formulated as an energy minimization problem [7]:

E =
∑
p∈D

D(p, d) +
∑
q∈Np

V (p, q), (1)

where p = [u, v]⊤ denotes a 2D pixel within the disparity map D, function D(·) measures the stereo matching confidence
at a given disparity d, function V (·) quantifies the compatibility between p and its neighborhood system Np comprising a
collection of 2D pixels q adjacent to p. As demonstrated in [42], confident disparities tend to have similar values, and their
matching costs are consistent regardless of scales. Therefore, drawing inspiration from the scale-invariant feature detection
introduced in [30], we extend Np to incorporate neighborhood systems of p across different scales, enabling pyramid stereo
matching in this study. Following [18], we perform stereo matching via a hierarchical refinement strategy, as illustrated in Fig.
1. The process of D(·) is accomplished using either conventional explicit programming-based algorithms or pre-trained DCNN
backbones, as detailed in Sect. III-A, while the process of V (·) is achieved through an intra-scale decisive disparity diffusion
algorithm, and an inter-scale decisive disparity inheritance algorithm, as detailed in Sects. III-B and III-C, respectively. Our
adopted sparse decisive disparity initialization approach obviates the necessity for additional keypoint detection and matching
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algorithms that are commonly used in conventional seed-and-grow stereo matching methods. Additionally, the combined use
of decisive disparity intra-scale diffusion and inter-scale inheritance not only ensures the quantity and distribution uniformity
of the estimated disparities but also significantly enhances stereo matching efficiency.

A. Recursive Bilateral Filtering for Cost Volume Initialization

In our earlier research [7], we utilized the basic normalized cross-correlation (NCC) for stereo matching cost computation.
Nevertheless, recent data-driven algorithms, generally developed based on DCNNs, have demonstrated superior performance,
compared to such explicit programming-based methods. This is attributed to their capabilities of learning more informative
hierarchical representations with pyramid structures, thereby offering a more effective solution for stereo matching challenges
in complex scenarios. Hence in this paper, we develop D3Stereo for both explicit programming-based and data-driven methods.
In this subsection, we detail only the cost volume initialization using pre-trained DCNN backbones (either the backbones pre-
trained on the ImageNet [20] database for natural image classification or those embedded in pre-trained deep stereo networks).
Nevertheless, this procedure can also be accomplished through explicit block matching.

Given a pair of stereo road images IL and IR, we first extract a collection of deep feature maps FL = {FL
1 , . . . ,F

L
k } and

FR = {FR
1 , . . . ,F

R
k } at k different resolutions using a pre-trained DCNN backbone. The feature maps FL,R

i generally possess
half the resolution of their shallower adjacent ones FL,R

i−1 . A cost volume pyramid C = {C1, . . . ,Ck} can be subsequently
obtained by computing the cosine similarity between each pair of left and right deep feature maps, respectively. The matching
costs in C undergo normalization, with a lower matching cost indicating a better match.

As a standard step in stereo matching algorithms, we conduct cost aggregation on the cost volumes to improve the piece-wise
disparity coherency across the support region of each pixel [43]. It has been mathematically proven that the function V (·) in
(1) can be formulated through an adaptive cost aggregation process using a bilateral filter [44]. A larger kernel size (commonly
regarded as the “receptive field”) often brings improved disparity estimation results. However, increasing the bilateral filtering
kernel size can substantially lead to a notable increase in computational demands, thereby imposing significant memory pressure
on parallel computing resources.

A prevalent trend in network architecture design lies in replacing a large convolution kernel with stacked small ones [45].
While possessing the same receptive field size, stacked small kernels exhibit lower computational complexity and greater
network depth compared to a single large kernel. Motivated by this network architecture design, we introduce a recursive
bilateral filtering algorithm for memory-efficient cost aggregation as follows:

C
(t)
i (p, d) =

∑
q∈Np,i∪{p}

Ki(q)C
(t−1)
i (p, d)∑

q∈Np,i∪{p}
Ki(q)

, (2)

where p is a 2D pixel in Ci, d represents a disparity candidate at p, C(t)
i represents the i-th cost volume after the t-th RBF

iteration with C
(0)
i = Ci. In the RBF kernel:

Ki(q) = exp
{
− ||p− q||22

σ1
2

− (IL
i (p)− IL

i (q))
2

σ2
2

}
, (3)

Np,i denotes a neighborhood system of p (the RBF kernel radius κa = 1 corresponds to an eight-connected neighborhood
system) at the i-th scale, IL

i denotes a downsampled IL with the same resolution as FL
i , σ1 and σ2 denote weighting parameters

related to spatial distance and color similarity, respectively. As discussed in [46], executing tmax iterations of bilateral filtering
with a 3× 3 kernel is functionally equivalent in terms of receptive field size to performing the filtering process once, but with
a (2tmax + 1)× (2tmax + 1) kernel. The computational consumption ratio of traditional bilateral filtering versus our proposed
RBF is 1

9 (4tmax +
1

tmax
+ 4), which shows a monotonic increase when tmax > 1

2 . Moreover, it has been mathematically proven
in [47] that for a stack of convolutional layers, the weights of each pixel within its theoretical receptive field adhere to a
Gaussian distribution. This concept naturally translates to the recursive structure of our proposed RBF. Therefore, with the
same computational complexity, our proposed RBF can produce a larger receptive field adhering to a Gaussian distribution,
thereby gathering more context information for cost aggregation. In addition, in practical implementations, the GPU memory
needs are reduced by a factor of 1

9 (4t
2
max + 4tmax + 1) when using our proposed RBF, significantly optimizing the memory

resource usage.

B. Intra-Scale Decisive Disparity Diffusion

As illustrated in Fig. 1, D3Stereo strategy is initialized with a collection of coarse decisive disparities, determined by
measuring the peak ratio naive (PKRN) [48] scores and checking the left-right disparity consistency (LRDC) [7] at the k-th
layer, as employed in DFM [18]. This process results in DS

k , a sparse disparity map with the lowest resolution. The linear
hierarchical refinement structure employed in DFM has been proven to dramatically improve the stereo matching efficiency.
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Algorithm 1: Intra-Scale Decisive Disparity Diffusion

Input: Cost volume Ci and decisive disparity map DS
i

Output: Disparity map Di

1 Initialize an empty set P to store the candidates for intra-scale decisive disparity diffusion;
2 Di ←DS

i ;
3 for p whose neighboring pixel q is determined to have a decisive disparity do
4 P ← P ∪ {p};
5 repeat
6 for p ∈ P do
7 P ← P − {p} ;
8 Calculate its state s

(t)
p,i using (4);

9 if its state satisfies hypotheses (2) and (3), or the adversarial mechanism condition in (5) then
10 Di(p)← s

(t)
p,i and P ← P ∪Np;

11 until no more pixels experience state changes;

However, the resulting disparity map is often quasi-dense, comprising a set of disparity clusters originating from a single initial
decisive disparity. To address this issue, we introduce an intra-scale decisive disparity diffusion process positioned between
two successive inter-scale refinement processes, denoted by an alternating hierarchical refinement structure (ARS). This novel
contribution helps densify the sparse depth information initialized by the PKRN dense search process, thereby improving
both the quantity and distribution uniformity of decisive disparities while retaining the efficiency gains achieved by the linear
hierarchical refinement strategy in DFM. Our proposed intra-scale decisive disparity diffusion algorithm is developed based on
the following hypotheses:

(1) disparities change gradually across continuous regions;
(2) the matching cost of a desired disparity is a local minima;
(3) disparities between stereo images are consistent.

We define a disparity state variable s
(t)
p,i for p in the t-th iteration of decisive disparity diffusion when estimating the i-th

disparity map Di (i ∈ [1, k]∩Z) as follows:

s
(t)
p,i = argmin

s

{
Ci(p, s)|s ∈ Φ

( ⋃
q∈Np,i

{
D

(t−1)
i (q) + r

})}
, (4)

where r ∈ [−τ, τ ] ∩ Z denotes the disparity search tolerance, in which τ ∈ Z represents the disparity search bound, the
neighborhood system Np,i for disparity diffusion has a radius κd, Φ(·) represents an operation to uniquify a given set, and
D

(t−1)
i denotes the disparity map obtained after the (t − 1)-th iteration with D

(0)
k = DS

k , and D
(0)
i = DS

i (i < k) and are
derived from the inter-scale refinement process at the i-th layer. The disparity state variable s

(t)
p,i that fulfills the hypotheses

(2) and (3) mentioned above is considered to be decisive. Afterwards, the newly generated decisive disparities are identically
utilized to propagate disparity ranges to their neighborhood systems in the next iteration, corresponding to an ongoing process
of depth information completion. To improve computational efficiency, we confine the intra-scale decisive disparity diffusion
process only to the pixels whose neighborhood system has experienced state changes in the previous iteration. Moreover,
unlike conventional unidirectional seed-growing process, we also incorporate an adversarial mechanism into our intra-scale
decisive disparity diffusion process to update disparities that may have been determined incorrectly in the previous iterations.
Specifically, if a pixel satisfies the following condition:

min
{
Ci(p, s

(j)
p,i)|j ∈ [0, t− 2] ∩ Z

}
<

min
{
Ci(p, s)|s ∈ Φ

( ⋃
q∈Np,i

{
D

(t−1)
i (q) + r

})}
,

(5)

its disparity will be updated accordingly. This mechanism helps reduce the occurrence of incorrect disparities in the subsequent
inter-scale decisive disparity inheritance process. Intra-scale decisive disparity diffusion terminates when no more pixels
experience state changes (namely s

(t)
p,i = s

(t−1)
p,i ), resulting in a dense disparity map Di. Additional details on our proposed

intra-scale decisive disparity diffusion strategy are provided in Algorithm 1. Subsequently, we follow our previous work [14] to
perform perspective transformation using the k-th dense disparity map Dk. By performing D3Stereo on the original left image
and the transformed right image, the disparity search range is considerably narrowed and the similarity between matching
blocks is further enhanced.
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Match Proposal

Fig. 2. An illustration of the inter-scale decisive disparity inheritance process. Each match proposal is mapped into a pair of patches with a size of 2 × 2
pixels at the former layer, between which fine-grained matches are subsequently determined via PKRN and LRDC.

C. Inter-Scale Decisive Disparity Inheritance

The robustness of stereo matching using feature maps from deeper layers has been demonstrated in effectively addressing
ambiguities, e.g., repetitive patterns and texture-less regions [49]. This can be attributed to the richer semantic information
within these feature maps generated through larger receptive fields [19]. In contrast, feature maps from shallower layers focus
on capturing local texture information and fine-grained details, and thus are more sensitive to pixel intensity changes. Shallower
layers are advantageous for disparity estimation near/on discontinuities. They help in identifying small details, e.g., edges and
surface textures [14]. Therefore, in this study, after estimating decisive disparities at the lowest resolution, we perform a series
of inter-scale decisive disparity inheritance and intra-scale decisive disparity diffusion operations alternately, until we obtain a
dense disparity map D1 at the highest resolution. This strategy incrementally introduces fine-grained details into the disparity
map.

In Patch2Pix [50], each coarse match proposal ML,R
k =

{
pL
k ,p

R
k

}
(determined by a decisive disparity in DS

k ) are expanded
into a pair of patches with a resolution of 2k−1 × 2k−1 pixels at the 1-st layer. All features from the layers {1, . . . , k} that
correspond to pL,R

1 within the patches are concatenated into a single feature vector, which is then fed to two regressors to
determine the correspondence matching confidence. However, the simple concatenation operation may not fully exploit the
fine-grained details present in the shallower layers, as features at deeper layers often have higher dimensions. To overcome
this limitation, DFM [18] employs a hierarchical refinement strategy to incrementally introduce fine-grained details into sparse
correspondence matching. Specifically, in DFM, a pair of correspondences pL

i+1 and pR
i+1 matched at the (i + 1)-th layer

(i < k) are mapped into a pair of patches SL,R
i =

{
pL,R
i,1 , . . . ,pL,R

i,4

}
with a size of 2 × 2 pixels at the i-th layer. Matches

between SL,R
i are subsequently determined via PKRN and LRDC, as introduced in Sect. III-B. However, the PKRN-based

hierarchical refinement constraint in DFM has two significant drawbacks: (1) determining satisfactory matches with PKRN and
LRDC is not always effective and robust due to the limited matching candidates, which can lead to error accumulation and
propagation from earlier stages to later stages; (2) PKRN requires a manually set threshold for each layer, which decreases its
applicability and requires a manual algorithm tuning step.

This study focuses entirely on stereo matching, which is a 1D search problem. Therefore, the hierarchical refinement process
aims at determining accurate matches between pixels in two co-row sets: SL,R

i,t =
{
pL,R
i,1 ,pL,R

i,2

}
and SL,R

i,b =
{
pL,R
i,3 ,pL,R

i,4

}
, as

illustrated in Fig. 2. The subscripts t and b denote the sets on the top and bottom rows, respectively. Following the intra-scale
decisive disparity diffusion criteria stated in Sect. III-B, we first analyze the reliability of the given patch pair based on the
following hypotheses:

(1) disparities and matching costs within the patch are similar in continuous regions;
(2) the average of matching costs within the patch is lower than the minimum matching costs on the two sides of the patch,

which is inherited from the match proposals that satisfy the local minima constraint.

We denote two sets that store the pixels on the left and right sides of SL,R
i,t and SL,R

i,b as GL,R
i,t = {pL,R

i,1 −[1, 0]⊤,pL,R
i,2 +[1, 0]⊤}

and GL,R
i,b = {pL,R

i,3 − [1, 0]⊤,pL,R
i,4 + [1, 0]⊤}, respectively, as visualized in Fig. 1. SL,R

i is considered reliable when it satisfies
the following patch reliability constraint (PRC):

mean
{
Θ(SL

i,t,SR
i,t),Θ(SL

i,b,SR
i,b)

}
<

min
{
Θ(SL

i,t,GR
i,t),Θ(SL

i,b,GR
i,b)

}
,

(6)
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Algorithm 2: Inter-Scale Decisive Disparity Inheritance
Input: Cost volume Ci and disparity map Di+1

Output: Disparity map DS
i

1 for pL,R
i+1 corresponding to a decisive disparity in Di+1 do

2 Initialize SL,R
i and GL,R

i ;
3 if SL,R

i and GL,R
i satisfy the patch reliability constraint stated in (6) then

4 for co-row pixels pL
i ∈ SL

i and pR
i ∈ SR

i do
5 if pL

i and pR
i satisfy the local minima constraint stated in (8) then

6 DS
i (p

L
i )← ∥pL

i − pR
i ∥1

where
Θ(VL

i ,VR
i ) =

⋃
pL
i ∈VL

i

min
{
Ci(p

L
i , ∥pL

i − pR
i ∥1)|pR

i ∈ VR
i

}
, (7)

in which VL,R
i denotes two input pixel sets. Otherwise, the given match proposal is considered unreliable and all pixels within

SL,R
i are abandoned. We then identify decisive disparities within the reserved SL,R

i , if it satisfies the following local minima
constraint:

Ci(p
L
i , d) <min

{{
Ci(p

L
i , d+ s)|s ∈ {−1, 1}

}
∪

min
{
Θ(SL

i,t,GR
i,t),Θ(SL

i,b,GR
i,b)

}}
.

(8)

The combined use of patch-based local minima constraint and search range propagation [7] in (8) ensures a more critical
determination for inter-scale decisive disparity inheritance, resulting in improved accuracy at the cost of reduced quantity. A
sparse disparity map DS

i is then obtained. It is noteworthy that both the patch reliability and local minima constraints are
bidirectional as in the LRDC [7], and we only provide the left-to-right expressions in (6) and (8) for brevity. Additional details
on our proposed inter-scale decisive disparity inheritance strategy are provided in Algorithm 2.

IV. EXPERIMENTAL RESULTS

A. Datasets, Implementation Details, and Evaluation Metrics

Three datasets are used in our experiments:
(1) UDTIRI-Stereo: Our proposed UDTIRI-Stereo dataset consists of 3,000 pairs of stereo images (resolution: 720 × 1,280

pixels), along with their disparity ground truth, collected across 12 scenarios under different illumination conditions
(middle sunlight, intense sunlight, and street lighting at dark), weather conditions (tidy and watered), and road materials
(asphalt and cement). To better simulate the roughness of actual roads, we introduce random 2D Perlin noise to the road
data. In addition, we integrate digital twins of potholes acquired from the real world in our previously published work
[7] into the road data.

(2) Stereo-Road [7]: This dataset provides 71 pairs of well-rectified stereo road images (resolution: 609 × 1, 240 pixels),
collected in Bristol, UK. As disparity ground truth is unavailable, we quantify the performance of stereo matching
algorithms by measuring the similarity between the original left image and the warped right image generated using
the estimated disparity maps.

(3) Middlebury [51]: As our proposed D3Stereo strategy can also be employed to adapt any pre-trained DCNN to new
scenarios, we further use this publicly available dataset (containing 15 pairs of stereo images along with their disparity
ground truth) to evaluate the performance of the D3Stereo strategy in terms of general stereo matching, where substantial
discontinuities are present.

We first validate the effectiveness of adapting stereo matching DCNNs (without any model fine-tuning), including PSMNet
[10], AANet [52], BGNet [53], LacGwc [54], GMStereo [55], CreStereo [23], and two domain generalization-aimed networks,
GraftNet [28] and HVTStereo [26], pre-trained on the KITTI Stereo dataset [56] and SceneFlow dataset [57], using our
proposed D3Stereo strategy for road disparity estimation. Additionally, we compare our proposed D3Stereo matching algorithm
(abbreviated as PT-D3Stereo), which employs NCC along with PT for cost volume pyramid construction, with three state-of-
the-art (SoTA) explicit programming-based stereo matching algorithms: PT-SRP [7], PT-FBS [13], and PT-SGM [14], developed
specifically for road surface 3D reconstruction. The above two experiments were conducted on the UDTIRI-Stereo and Stereo-
Road datasets. Moreover, we employ the same experimental setups to conduct additional experiments on the Middlebury dataset
to further demonstrate the effectiveness of our proposed D3Stereo strategy for general stereo matching. Finally, D3Stereo is
applied to backbone DCNNs pre-trained on the ImageNet database for demonstrating its compatibility with general-propose
backbone DCNNs. All experiments were conducted on an NVIDIA RTX 4090 GPU and an Intel i7-12700K CPU.

Since the UDTIRI-Stereo and Middlebury datasets provide disparity ground truth, we adopt end-point error (EPE) and
percentage of error pixels (PEP) with a tolerance of δ pixels for performance quantification. For experiments conducted on the
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Fig. 3. Experimental results regarding hyperparameter selection for decisive disparity diffusion.

TABLE I
ABLATION STUDY ON THE ESSENTIAL COMPONENTS OF D3STEREO STRATEGY. ↓ REPRESENTS THAT LOWER VALUES CORRESPOND TO BETTER

PERFORMANCE. ↑ REPRESENTS THAT HIGHER VALUES CORRESPOND TO BETTER PERFORMANCE. THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

(a) Experimental results on the UDTIRI-Stereo dataset.

PT PRC RBF ARS
PEP (%) ↓

EPE (pixel)↓ Runtime (s)↓
δ=0.5 δ=1

10.5 3.57 0.48 0.79
✔ 9.15 3.27 0.38 0.62
✔ ✔ 9.13 3.22 0.37 0.64
✔ ✔ 9.22 2.51 0.29 0.91
✔ ✔ 9.60 3.64 0.44 0.59
✔ ✔ ✔ 4.54 2.23 0.28 0.94
✔ ✔ ✔ 3.64 1.37 0.26 0.90
✔ ✔ ✔ 8.31 2.75 0.35 0.61
✔ ✔ ✔ ✔ 3.53 1.20 0.21 0.84

(b) Experimental results on the Middlebury dataset.

PRC RBF ARS
PEP (%) ↓

EPE (pixel)↓ Runtime (s) ↓
δ=1 δ=2

34.3 24.0 4.07 1.11
✔ 34.2 23.8 3.75 1.03

✔ 25.2 17.6 3.41 1.89
✔ 34.4 23.8 4.17 0.94

✔ ✔ 25.2 17.4 3.15 1.90
✔ ✔ 25.4 17.8 3.46 1.77

✔ ✔ 33.1 22.8 3.39 0.96
✔ ✔ ✔ 24.9 17.1 2.97 1.58

Stereo-Road dataset, we first warp the right images into the left view using the estimated disparity maps, and then calculate the
structure similarity index measure (SSIM), mean squared error (MSE), and peak signal-to-noise ratio (PSNR) metrics between
the original left images and generated images to quantify the accuracy of the stereo matching algorithms.

B. Hyperparameter Selection in Decisive Disparity Diffusion

We provide details on the selection of disparity search bound τ and diffusion neighborhood radius κd used in the intra-scale
decisive disparity diffusion process. The EPE and runtime of stereo matching with respect to different τ and κd are given in
Fig. 3. It can be observed that setting τ = κd = 1 results in the best overall performance in stereo matching, and increasing τ
and κd leads to a noticeable increase in both the EPE and runtime. This phenomenon can be attributed to the introduction of
more unreliable disparity candidates, when using higher τ and κd during decisive disparity diffusion. Moreover, the weighting
parameters σ1,2 and the maximum iteration tmax in our RBF are determined through a brute-force search on the Middlebury
2014 dataset [51].

C. Ablation Study

We first conduct an ablation study to evaluate the cost aggregation efficiency between RBF and BF, and their impacts on
stereo matching accuracy. As discussed in Sect. III-A, BF with κa = 4 has an identical receptive field compared to RBF with
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Fig. 4. Comparisons between RBF and RF when having identical computational complexity or an identical receptive field.

tmax = 4, and has identical theoretical computational complexity compared to RBF with tmax = 9. Therefore, we compare
the performance of eight stereo matching networks using RBF and BF with these three parameter settings, as presented in
Fig. 4. It can be observed that with an identical receptive field, our RBF with tmax = 4 witnesses significantly improved cost
aggregation efficiency while leading to slightly decreased stereo matching accuracy, compared to BF with κa = 4. We attribute
this accuracy gap to the low effectiveness of small filtering kernels in RBF to aggregate matching costs between long-distance
pixels. Specifically, the small kernels are unable to establish direct interactions between pixels with similar disparities and
intensities but at long distances, thus making RBF less effective in areas with intense texture variations compared to BF.
However, with identical theoretical computational complexity, BRF with tmax = 9 exhibits superiority in both cost aggregation
efficiency and stereo matching accuracy. These improvements can be attributed to RBF’s recursive filtering process, which
expands the receptive field to aggregate matching costs from more related pixels. Additionally, the smaller filtering kernel in
RBF results in decreased computations in the weighting initialization process compared to BF. In general, our proposed RBF
strikes a better balance between stereo matching accuracy and cost aggregation efficiency compared to BF.

We conduct another ablation study to determine the essential components of D3Stereo strategy. The baseline setup includes
the PKRN-based hierarchical refinement constraint and linear hierarchical refinement structure used in the DFM [18], and the
traditional BF. As shown in Table I, D3Stereo with all these components achieves the highest stereo matching accuracy on
both datasets. Secondly, as expected, PT significantly improves both the stereo matching accuracy and efficiency, which is
consistent with the findings in [7]. Additionally, RBF improves stereo matching when combined with any of the components.
Specifically, EPE decreases by 23.7-40.9% on our UDTIRI-Stereo dataset and 5.7-16.2% on the Middlebury dataset. Although
RBF increases the runtime of D3Stereo by over 50% on the Middlebury dataset, this increase is lower to 35% on our UDTIRI-
Stereo dataset when used in conjunction with PT, which significantly reduces the stereo matching search range. Finally, the
collaboration between our introduced PRC and the ARS leads to improvements in both the stereo matching accuracy and
efficiency. However, when used alone, they either improve only disparity estimation accuracy or efficiency while decreasing
the other.

We further validate the effectiveness of our introduced PRC and the alternating hierarchical refinement structure. The
percentage of error pixels and invalid pixels of decisive disparities in DS

1 yielded using different hierarchical refinement
strategies are provided in Fig. 5, where γ represents the PKRN threshold in the decisive disparity initialization process at the
k-th layer. Our observations indicate that the alternating structure considerably increases the quantity of decisive disparities
while leading to decreased accuracy. In contrast, our introduced PRC significantly enhances the accuracy of the decisive
disparities, albeit with a decrease in their quantity. However, when these two components are used jointly, both the quantity
and reliability of decisive disparities are significantly improved. While the quantity of decisive disparities obtained using
our alternating hierarchical refinement strategy is lower than that achieved by DFM, our structure ensures a more uniform
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Fig. 5. Quantitative results of DS
1 yielded with different hierarchical refinement structures and constraints.
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Fig. 6. Examples of disparity estimation results on our created UDTIRI-Stereo dataset.

distribution of decisive disparities, resulting in improvements in both disparity estimation accuracy and efficiency in D3Stereo.
Moreover, our hierarchical refinement strategy is significantly less sensitive to the impact of γ, demonstrating better adaptivity,
compared to DFM.

D. Comparisons with SoTA Algorithms for Road Surface 3D Reconstruction

The quantitative and qualitative experimental results on our created UDTIRI-Stereo dataset are presented in Table II and Fig.
6, respectively. It is noticeable that when applying our proposed D3Stereo strategy to the existing stereo matching algorithms,
EPE and PEP decrease by up to 63.10% and 83.26%, respectively. Although CreStereo demonstrates comparable performance
in PEP with δ = 1 when adapted to the UDTIRI-Stereo dataset using D3Stereo strategy, it shows dramatic improvement in
PEP with δ = 0.5 and EPE. Moreover, PT-D3Stereo diffuses decisive disparities across the entire image in a multi-directional
fashion. This results in significantly improved disparity estimation results and a more uniform distribution of errors compared
to other explicit programming-based stereo matching algorithms.
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Fig. 7. Examples of stereo image reconstruction results on the Stereo-Road dataset.

TABLE II
EXPERIMENTAL RESULTS ON THE UDTIRI-STEREO DATASET. THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

(a) Comparison among SoTA explicit programming-based disparity estimation algorithms developed specifically for road surface 3D reconstruction.

Method
PEP (%) ↓

EPE (pixel) ↓ PSNR (dB) ↑ MSE ↓ SSIM ↑
δ=0.5 δ=1

PT-SRP [7] 43.2 33.0 1.27 33.01 52.12 0.867
PT-FBS [13] 33.7 10.2 0.75 32.87 48.80 0.895
PT-SGM [14] 7.17 4.13 0.72 32.50 41.12 0.932
PT-D3Stereo (Ours) 5.90 2.99 0.65 33.14 42.58 0.951

(b) Comparisons of SoTA stereo matching networks without and with our proposed D3Stereo strategy applied.

Method
PEP (%) ↓

EPE (pixel) ↓ PSNR (dB) ↑ MSE ↓ SSIM ↑
δ=0.5 δ=1

PSMNet [10] 46.7 13.2 0.84 32.36 55.51 0.894
PSMNet+D3Stereo (Ours) 4.81 2.21 0.31 34.75 32.80 0.953

AANet [52] 35.4 8.69 0.56 34.01 38.14 0.932
AANet+D3Stereo (Ours) 11.1 1.79 0.43 34.21 36.49 0.948

BGNet [53] 12.7 1.51 0.26 34.59 36.10 0.948
BGNet+D3Stereo (Ours) 3.53 1.20 0.21 34.72 34.07 0.954

LacGwc [54] 18.6 2.87 0.36 34.45 36.91 0.945
LacGwc+D3Stereo (Ours) 4.61 2.01 0.37 34.61 34.28 0.953

GMStereo [55] 23.6 4.12 0.43 32.66 47.39 0.937
GMStereo+D3Stereo (Ours) 3.91 1.46 0.31 34.66 33.48 0.953

CreStereo [23] 6.02 1.41 0.40 34.77 34.85 0.950
CreStereo+D3Stereo (Ours) 4.58 1.50 0.34 34.60 33.87 0.952

GraftNet [28] 20.9 2.78 0.33 34.72 36.69 0.943
GraftNet+D3Stereo (Ours) 4.25 1.34 0.22 35.17 32.35 0.951

HVTStereo [26] 6.83 1.95 0.36 34.75 35.65 0.937
HVTStereo+D3Stereo (Ours) 4.91 1.67 0.26 34.79 31.11 0.951

Secondly, the quantitative and qualitative experimental results on the Stereo-Road dataset are presented in Table III and Fig.
7, respectively. It is observed that the D3Stereo strategy can improve all algorithms across different evaluation metrics, with
increases ranging from 0.41% to 10.63% in PSNR and 0.97% to 13.15% in SSIM, as well as a decrease ranging from 4.19% to
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TABLE III
EXPERIMENTAL RESULTS ON THE STEREO-ROAD DATASET [7]. THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

(a) Comparison among SoTA explicit programming-based disparity estimation
algorithms developed specifically for road surface 3D reconstruction.

Method PSNR (dB) ↑ MSE ↓ SSIM ↑

PT-SRP [7] 30.82 68.91 0.909
PT-FBS [13] 30.83 68.14 0.911
PT-SGM [14] 30.08 74.80 0.906
PT-D3Stereo (Ours) 31.00 63.37 0.930

(b) Comparisons of SoTA stereo matching networks without and with our
proposed D3Stereo strategy applied.

Method PSNR (dB) ↑ MSE ↓ SSIM ↑

PSMNet [10] 28.68 122.5 0.829
PSMNet+D3Stereo (Ours) 31.73 55.15 0.938

AANet [52] 29.79 90.49 0.885
AANet+D3Stereo (Ours) 31.34 60.50 0.931

BGNet [53] 31.46 59.67 0.928
BGNet+D3Stereo (Ours) 31.65 56.17 0.937

LacGwc [54] 31.32 62.02 0.923
LacGwc+D3Stereo (Ours) 31.70 55.43 0.938

GMStereo [55] 30.98 67.10 0.915
GMStereo+D3Stereo (Ours) 31.61 56.34 0.937

CreStereo [23] 31.44 60.25 0.927
CreStereo+D3Stereo (Ours) 31.57 57.05 0.936

GraftNet [28] 30.88 65.91 0.917
GraftNet+D3Stereo (Ours) 31.71 55.50 0.937

HVTStereo [26] 31.43 59.10 0.933
HVTStereo+D3Stereo (Ours) 31.63 56.32 0.938

TABLE IV
EXPERIMENTAL RESULTS OF SOTA DCNNS ON THE MIDDLEBURY DATASET. THE BEST RESULTS ARE SHOWN IN BOLD TYPE.

Method
PEP (%) ↓

EPE (pixel) ↓
δ=1 δ=2

PSMNet [10] 53.5 25.7 5.33
PSMNet+D3Stereo (Ours) 34.1 23.6 4.01

AANet [52] 38.9 27.2 6.62
AANet+D3Stereo (Ours) 31.8 21.2 4.39

BGNet [53] 27.1 19.8 4.28
BGNet+D3Stereo (Ours) 24.9 17.1 2.97

LacGwc [54] 27.4 17.1 4.35
LacGwc+D3Stereo (Ours) 25.9 18.2 4.07

GMStereo [55] 29.7 19.3 3.39
GMStereo+D3Stereo (Ours) 27.3 18.8 3.27

CreStereo [23] 31.2 22.1 3.77
CreStereo+D3Stereo (Ours) 28.6 19.5 3.33

GraftNet [28] 22.7 12.3 2.67
GraftNet+D3Stereo (Ours) 23.1 15.6 3.01

HVTStereo [26] 21.1 11.8 2.16
HVTStereo+D3Stereo (Ours) 30.5 21.4 3.35

54.98% in MSE. Additionally, we observe that by using the D3Stereo strategy, disparity estimation near or on discontinuities
can be significantly improved, as highlighted with green dashed boxes in Fig. 7.

It is noteworthy that GraftNet and HVTStereo achieve similar stereo matching accuracy on road scenes compared to
stereo matching networks without additional domain generalization designs. Additionally, applying D3Stereo to both GraftNet
and HVT-Stereo yields improved stereo matching accuracy in all metrics on both the UDTIRI-Stereo and Stereo-Road
datasets. These results indicate a considerable domain gap between road scenes and other common indoor/outdoor scenes,
and further demonstrate the superiority of D3Stereo in solving the road surface 3D reconstruction task. Additionally, we notice
from the above experimental results that explicit programming-based algorithms developed specifically for road surface 3D
reconstruction yield comparable performance to the DCNNs pre-trained on the KITTI Stereo 2015 dataset. Specifically, PT-
D3Stereo outperforms most DCNNs without applying D3Stereo strategy in the majority of cases. These results suggest that the
generalizability of SoTA DCNNs is still not sufficiently satisfactory for road disparity estimation. When applying our proposed
D3Stereo strategy to DCNNs, a SoTA performance is achieved.
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TABLE V
EXPERIMENTAL RESULTS OF FOUR BACKBONE DCNNS PRE-TRAINED ON THE IMAGENET [20] DATABASE. H AND W DENOTE THE HEIGHT AND WIDTH

OF THE INPUT IMAGE, RESPECTIVELY.

Backbones Sizes of the selected feature maps
UDTIRI-Stereo dataset Middlebury dataset

EPE (pixel)↓ Runtime (s)↓ EPE (pixel)↓ Runtime (s)↓

VGG [45]
[( H

2 , W
2 ,128), ( H

4 , W
4 ,256)] 0.261 0.92 3.95 1.50

[( H
2 , W

2 ,128), ( H
4 , W

4 ,256), ( H
8 , W

8 ,512)] 0.241 0.96 3.75 1.52
[( H

2 , W
2 ,128), ( H

4 , W
4 ,256), ( H

8 , W
8 ,512), ( H

16 , W
16 ,512)] 0.242 0.91 3.77 1.37

ResNet [58]
[( H

2 , W
2 ,64), ( H

4 , W
4 ,64)] 0.314 0.84 4.02 1.22

[( H
2 , W

2 ,64), ( H
4 , W

4 ,64), ( H
8 , W

8 ,128)] 0.309 0.81 3.88 1.06
[( H

2 , W
2 ,64), ( H

4 , W
4 ,64), ( H

8 , W
8 ,128), ( H

16 , W
16 ,256)] 0.309 0.82 4.07 1.08

MobileNetV3 [59]
[( H

2 , W
2 ,16), ( H

4 , W
4 ,24)] 0.672 0.87 4.67 1.17

[( H
2 , W

2 ,16), ( H
4 , W

4 ,24), ( H
8 , W

8 ,40)] 0.573 0.84 4.54 1.12
[( H

2 , W
2 ,16), ( H

4 , W
4 ,24), ( H

8 , W
8 ,40), ( H

16 , W
16 ,112)] 0.562 0.81 4.48 1.08

MobileNetV3-S [59]
[( H

2 , W
2 ,16), ( H

4 , W
4 ,16)] 1.412 0.89 7.23 1.05

[( H
2 , W

2 ,16), ( H
4 , W

4 ,16), ( H
8 , W

8 ,24)] 1.357 0.82 6.44 0.96
[( H

2 , W
2 ,16), ( H

4 , W
4 ,16), ( H

8 , W
8 ,24), ( H

16 , W
16 ,48)] 1.366 0.81 6.29 1.01

E. Generalizability Evaluation for General Stereo Matching
We further evaluate the generalizability of D3Stereo strategy for general stereo matching using the Middlebury dataset. The

quantitative and qualitative experimental results are presented in Table IV and Fig. 1 in the supplementary material, respectively.
The quantitative results suggest that domain generalization-aimed networks, GraftNet and HVTStereo, achieve higher stereo
matching accuracy on the Middlebury dataset. However, for stereo matching networks without any domain generalization
functionality incorporated, applying D3Stereo strategy to these DCNNs results in significantly improved stereo matching
accuracy. Specifically, the EPE decreases by 3.54-33.69%, while the PEP with δ = 1 and δ = 2 decreases by 2.59-36.26%
except for LacGwc, which achieves slightly lower PEP with δ = 2 compared with LacGwc without using D3Stereo strategy.
The qualitative results indicate that these pre-trained DCNNs perform poorly in ambiguous regions where color intensities are
similar, without any further model fine-tuning. In contrast, their performance improves with the use of D3Stereo strategy.

However, our proposed D3Stereo strategy suffers from the edge-fattening issue [52], [60] and exhibits limited stereo matching
accuracy near/on extensive disparity discontinuities. Specifically, large disparities from foreground objects are diffused to
background objects in the intra-scale decisive disparity diffusion process. This phenomenon primarily occurs at the overlaps
between different objects. Therefore, we are motivated to explicitly leverage semantic segmentation results to constrain the
intra-scale disparity propagation process within each spatially continuous region in our future work, thereby exploring broader
applications of our proposed D3Stereo for general stereo matching.

F. Performance Evaluation on Backbone DCNNs
Additional experiments are conducted on the UDTIRI-Stereo and Middlebury datasets with backbone DCNNs pre-trained

on the ImageNet database. The quantitative and qualitative experimental results are presented in Table V and Fig. 2 in the
supplementary material, respectively. Surprisingly, these backbone DCNNs demonstrate the capability to perform accurate dense
correspondence matching, when utilizing our proposed D3Stereo strategy. Specifically, when employing the D3Stereo strategy,
VGG [45] and ResNet [58] achieve competitive results in comparison to stereo matching networks, and outperform explicit
programming-based algorithms on the UDTIRI-Stereo dataset. Their achieved EPE values are even comparable to those obtained
by the best-performing stereo matching networks, BGNet and CreStereo, on the Middlebury dataset. These results strongly
suggest that our approach is effective in extending the capabilities of backbone DCNNs for solving the dense correspondence
matching problem. Moreover, as shown in Table V, MobileNetV3 [59] has fewer feature channels compared to VGG and
ResNet, resulting in less satisfactory stereo matching accuracy. We further validate this viewpoint with additional experiments
using MobileNetV3-S [59], a lighter version of MobileNetV3. As expected, MobileNetV3-S underperforms MobileNetV3 on
both UDTIRI-Stereo and Middlebury datasets. This reinforces our belief that the number of feature channels is a crucial factor
that significantly impacts the accuracy of stereo matching. Finally, it is noteworthy that these backbone DCNNs consistently
achieve improved efficiency and accuracy when employing three or four feature layers instead of two feature layers.

These results suggest that deep features obtained at 1/8 and 1/16 of the full image resolution exhibit similar performance
in aggregating global information and eliminating stereo matching ambiguities. Consequently, these comparable intermediate
results enable the subsequent decisive disparity diffusion and hierarchical refinement processes in D3Stereo to ultimately
produce dense disparity maps with similar accuracy. Additionally, performing nearest neighbor search at 1/16 of the full image
resolution significantly reduces the computational complexity compared to 1/8 of the full image resolution, which offsets the
additional computational demands of decisive disparity diffusion and hierarchical refinement processes at 1/16 of the full image
resolution, thereby maintaining the overall efficiency of D3Stereo.
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V. CONCLUSION

This article introduces D3Stereo, a novel decisive disparity diffusion strategy. Our technical contributions include (1) a
recursive bilateral filtering algorithm for efficient and adaptive cost aggregation, (2) an intra-scale disparity diffusion algorithm
for sparse disparity map completion, and (3) an inter-scale disparity inheritance algorithm for fine-grained disparity estimation
at higher resolution. Additionally, we also developed a new dataset to address the need for comprehensive performance quan-
tification of stereo matching-based road surface 3D reconstruction algorithms. Through extensive experiments, we demonstrate
the compatibility of D3Stereo with both explicit programming-based algorithms and pre-trained deep learning models for road
disparity estimation. Furthermore, D3Stereo is also capable of adapting pre-trained networks to address stereo matching task
in general scenes, as validated on the Middlebury dataset. In the future, we aim to further improve the accuracy of estimated
disparities near/on disparity discontinuities and explore broader applications of D3Stereo for general stereo matching. This
includes restraining the disparity diffusion process with each instance and investigating the integration of D3Stereo for self-
supervised stereo matching.
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