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Image noise
• White additive noise:

𝑥(𝑖, 𝑗) = 𝑠(𝑖, 𝑗) + 𝑛(𝑖, 𝑗),

• White multiplicative noise:

𝑥(𝑖, 𝑗) = 𝑠(𝑖, 𝑗)𝑛(𝑖, 𝑗),

• White signal-dependent noise:

𝑥(𝑖, 𝑗) = 𝑠𝛾(𝑖, 𝑗)𝑛(𝑖, 𝑗),

• Noise can have various distributions: Gaussian, uniform,

Laplacian.
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Image noise

• Salt-pepper noise consists of black and/or white image

impulses:

𝑔 𝑖, 𝑗 = ቊ
𝑧 𝑖, 𝑗 , with probability 𝑝.

𝑓 𝑖, 𝑗 , with probability 1 − 𝑝.



• Uniform noise has a short-

tailed probability distribution.

• Laplacian noise has a long-

tailed probability distribution.

• Gaussian noise is at the

borderline between long- and

short tailed probability

distributions.

Image noise

from [PIT2000].
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The output of a 2D FIR filter is given by a linear convolution:

  𝑦 𝑛1, 𝑛2 = σ𝑘1=0
𝑀1−1 σ𝑘2=0

𝑀2−1
ℎ 𝑘1, 𝑘2 𝑥(𝑛1 − 𝑘1, 𝑛2 − 𝑘2).

for a filter window (region of support) 0, 𝑀1 − 1 × 0, 𝑀2 − 1 .

• For centered filter window [−𝑣1, 𝑣1] × [−𝑣2, 𝑣2], 𝑀𝑖 = 2𝑣𝑖 + 1,

𝑖 = 1, 2:

  𝑦 𝑛1, 𝑛2 = σ𝑘1=−𝜈1

𝜈1 σ𝑘2=−𝜈2

𝜈2 ℎ 𝑘1, 𝑘2 𝑥(𝑛1 − 𝑘1, 𝑛2 − 𝑘2).

2D FIR Digital Filters



3.9

• Image noise

• 2D FIR filters

• Moving average filters

• Spatial filters

• Median filters

• Digital filters based on order statistics

• Adaptive order statistic filters

• Anisotropic Diffusion

• Image interpolation

• Neural image filtering

Digital Image Filtering



3.10

Moving Average filter:

𝑦 𝑛1, 𝑛2 =
1

𝑀1𝑀2
෍

𝑘1=−𝜈1

𝜈1

෍

𝑘2=−𝜈2

𝜈2

𝑥 𝑛1 − 𝑘1, 𝑛2 − 𝑘2 ,

where 𝑀𝑖 = 2𝑣𝑖 + 1, 𝑖 = 1, 2.

Properties:

• It is a linear FIR low-pass filter.

• It tends to blur edges and image details (e.g., lines, fine texture).

• It degrades image quality, particularly for large filter windows. 

2D FIR Digital Filters
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3 × 3 arithmetic moving average filter structure.

Moving Average Filter
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5 × 5 moving average image filtering [PIT2000].

Moving Average Filter
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Moving average filter properties:

• It is optimal in removing additive white Gaussian noise:

𝑓𝑋 𝑥 =
1

2𝜋𝜎
exp{−

𝑥 − 𝜇 2

2𝜎2
} .

• Arithmetic mean ҧ𝑥 is the optimal estimator of location 𝜇, as it

minimizes the 𝐿2 norm:

෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2 → min.

2D FIR Digital Filters
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𝑦 𝑛1, 𝑛2 =
1

𝑀1𝑀2
( ෍

𝑘1=−𝜈1

𝜈1

෍

𝑘2=−𝜈2

𝜈2

𝑥𝑝 𝑛1 − 𝑘1, 𝑛2 − 𝑘2 )1/𝑝,

where 𝑀𝑖 = 2𝑣𝑖 + 1, 𝑖 = 1, 2.

Properties:

• For large values, it tends to the maximum filter.

• 𝑳𝟐 mean filter is optimal in removing Rayleigh noise (e.g., for

ultrasound images).

𝑳𝒑 mean filter:

𝑳𝒑 Mean Filter
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a) Ultrasound image; b) Output of an 𝐿2 filter [PIT2000].

𝑳𝒑 Mean Filter
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Gaussian smoothing is performed by the 2D filter kernel:

𝑔 𝑥, 𝑦 =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 .

• This kernel has zero mean.

• 𝜎: standard deviation of the Gaussian kernel.

• The Gaussian kernel has low-pass frequency characterics:

𝐺 𝜔𝑥 , 𝜔𝑦 = 𝑒−2𝜋2(𝜔𝑥
2+𝜔𝑦

2)𝜎2
.

• It can be used to blur images and remove detail and noise.

• The degree of smoothing is determined by 𝜎.

Spatial Filters
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5 × 5 discrete approximation of a Gaussian kernel for  𝜎 = 1.

Spatial Filters
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Unsharp Filter enhances image edges and other high

frequency image features, by:

• subtracting a smoothed version of the image from the

original to create an edge image.

• Adding the amplified edge image on the original image.

𝑓𝑢 𝑛1, 𝑛2 = 𝑓 𝑛1, 𝑛2 + 𝑘𝑔 𝑛1, 𝑛2 .

𝑔 𝑛1, 𝑛2 = 𝑓 𝑛1, 𝑛2 − 𝑓𝑠 𝑛1, 𝑛2 ,

• 𝑓(𝑛1, 𝑛2): original image.

• 𝑓𝑠(𝑛1, 𝑛2): smoothed version of 𝑓(𝑛1, 𝑛2).

• 𝑔(𝑛1, 𝑛2): edge image.

• 𝑓𝑢(𝑛1, 𝑛2): output image.

• 𝑘: scaling constant between 0.2 and 0.7.

Spatial Filters
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Block diagram of the unsharp filter.

Spatial Filters
Unsharp Filter
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Conservative smoothing assumes that noise has a

high spatial frequency.

• It can be attenuated by a local operation which ensures

pixel intensity consistency in local image neighborhoods.

• It ensures that pixel intensities are bounded within

the intensity range of its neighbors, defined by

their minimum and maximum intensity values.

• If the central pixel intensity lies within the intensity range of

its neighbors, it remains unchanged.

• If it is greater/smaller than the maximum/minmum value, it is

set equal to the maximum/minimum value, respectively.

Spatial Filters
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Conservative smoothing in a local pixel neighborhood. 

Spatial Filters
Conservative smoothing

• The central pixel intensity is 150, so it will be replaced with the

maximum intensity value (127) of its 8 nearest neighbors.
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Median is the middle sample 𝑥(𝜈+1) of the ordered sample set

𝑥𝑖 , 𝑖 = 1, … , 𝑛, 𝑛 = 2𝜈 + 1:

𝑥 1 < 𝑥(2) < ⋯ < 𝑥 𝑛 ,

• 𝑥(1): minimum, 𝑥(𝑛) maximum data samples.

• Median is a special type of order statistics.

• It minimizes the 𝐿1 norm:

෍

𝑖=1

𝑛

|𝑥𝑖 − med| → min.

Median Filters
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Median Filters
2D median filter:

𝑦(𝑖, 𝑗)=med{𝑥(𝑖 + 𝑟, 𝑗 + 𝑠), (𝑟, 𝑠)  A, (𝑖, 𝑗)  Z2 }.

Median filter properties:

• They have low-pass characteristics and remove additive white

noise.

• They are very efficient in the removal of:

•impulsive noise,

•noise with long-tailed distribution (e.g., having Laplacian

distribution).
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Median filter properties:

• Median becomes corrupted, if more than 50% of the data

samples are outliers.

• Median robustness renders it very suitable for impulse noise

filtering.

• Median filtering preserves and, possibly, enhances image edge

sharpness.

• Median filter smooths noise in homogeneous image regions but

tends to produce regions of constant or nearly constant intensity

(blobs).

Median Filters
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Edge filtering

Median Filters
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Impulsive noise filtering

Median Filters
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a) Baboon image corrupted by mixed impulsive noise;

b) 7 × 7 median filter output; c) 7 × 7 moving average  filter output [PIT2000].

Median Filters
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Separable 2D median filter:

1D median filtering of length 𝑛=2𝑣+1 along image rows and

columns:

𝑦𝑖,𝑗=med(𝑧𝑖,𝑗−𝑣, … ,𝑧𝑖,𝑗 , … ,𝑧𝑖,𝑗+𝑣),

𝑧𝑖,𝑗=med(𝑥𝑖−𝑣,𝑗 , … ,𝑥𝑖,𝑗 , … ,𝑥𝑖+𝑣,𝑗),

• Low computational complexity, compared to non-separable

median filter:

• It sorts n numbers two times, instead of ordering 𝑛2

numbers.

Median Filters
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Median Filters
Recursive median filter:

𝑦𝑖,𝑗=med(𝑦𝑖−𝑣, … , 𝑦𝑖−1,, 𝑥𝑖 , … , 𝑥1+𝑣).

• Its output tends to be much more correlated, than that of the

standard median filter.

• Recursive median filters have higher immunity to impulsive

noise than the non-recursive median filters.

Separable recursive median filter:

𝑦𝑖,𝑗=med(𝑦𝑖,𝑗−𝑣, … , 𝑦𝑖,𝑗−1, 𝑧𝑖,𝑗 , … ,𝑧𝑖,𝑗+𝑣),

𝑧𝑖,𝑗=med(𝑧𝑖−𝑣,𝑗 , … , 𝑧𝑖−1,𝑗 , 𝑥𝑖,𝑗 , … , 𝑥𝑖+𝑣,𝑗).
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Weighted median is the estimator 𝑇 that minimizes the weighted 𝐿1

norm:

෍

𝑖=1

𝑛

𝑤𝑖|𝑥𝑖 − 𝑇| → min.

It is described by:

𝑦𝑖=med{𝑤−𝑣 𝑥𝑖−𝑣, … , 𝑤𝑣𝑥𝑖+𝑣},

where 𝑤𝑥 denotes duplication of 𝑥, 𝑤 times to {𝑥,…, 𝑥}.

Median Filters
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Multistage median filter:

𝑦𝑖,𝑗=med(med(𝑧1, 𝑧2, 𝑥𝑖,𝑗), med(𝑧3, 𝑧4, 𝑥𝑖,𝑗), 𝑥𝑖,𝑗),

𝑧1=med(𝑥𝑖,𝑗−𝑣, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖,𝑗+𝑣),

𝑧2=med(𝑥𝑖−𝑣,𝑗 , … , 𝑥𝑖,𝑗 , … , 𝑥𝑖+𝑣,𝑗),

𝑧3=med(𝑥𝑖+𝑣,𝑗−𝑣, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖−𝑣,𝑗+𝑣),

𝑧4=med(𝑥𝑖−𝑣,𝑗−𝑣, … , 𝑥𝑖,𝑗 , … , 𝑥𝑖+𝑣,𝑗+𝑣).

It preserves edges in horizontal, vertical and diagonal

directions.

Median Filters
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Ranked order filters:

An 𝑟−th ranked filter 𝑦𝑖 output is the 𝑟− th order statistic of

signal 𝑥𝑖 samples {𝑥𝑖−𝑣, … ,𝑥𝑖 , … ,𝑥𝑖+𝑣}, 𝑛 = 2𝜈 + 1 that exist in a

running filter window.

• It introduces a strong bias in the estimation of the mean, when the

rank is small or large (tending to min or max filters).

• The bias is even stronger when the input data have a long-tailed

distribution.

Order Statistics Filters
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Order Statistics Filters
Max/min filters:

Running maximum 𝑥(𝑛) and minimum 𝑥(1) are the two extremes of the 

ranked-order filters.

• Maximum filter effectively removes negative impulses in an image.

• Minimum filter removes positive impulses.

• Both filters fail in the removal of mixed impulse noise.

• Both filters have good edge preservation properties (but shift edges).

• Max/min filters tend to enhance bright and dark image regions,

respectively.



Order Statistics Filters
Max/min filters

a) Baboon image corrupted by mixed impulsive noise;

b) The output of a cascade of max and min filters [PIT2000].
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Order Statistics Filters
Running implementation of max filter:

𝑦𝑖 = ൞

𝑥𝑖 , if 𝑥𝑖 ≥ 𝑦𝑖−1,
𝑦𝑖−1, if 𝑥𝑖 < 𝑦𝑖−1 and 𝑥𝑖−𝑛 < 𝑦𝑖−1,

)max(𝑥𝑖 , . . . , 𝑥𝑖−𝑛+1 , if 𝑥𝑖 < 𝑦𝑖−1 and 𝑥𝑖−𝑛 = 𝑦𝑖−1.

• In average, only 3 comparisons are needed. 

• A similar algorithm exists for min filtering.
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α-trimmed mean filters:

𝑦𝑖 =
1

)𝑛(1 − 2α
෍

𝑗=α𝑛+1

𝑛−α𝑛

𝑥 𝑗 .

• It rejects α% of the smaller and  α% of the larger observation data.

• It is a compromise between the median filter and the moving 

average filter for varying α.

• Its performance is poor for short-tailed distributions.

Order Statistics Filters
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Midpoint filter: 

𝑀𝑃 =
1

2
𝑥 1 + 𝑥 𝑛

is optimal for uniform noise.

Order Statistics Filters
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Order Statistics Filters
Modified trimmed mean filter (𝑴𝑻𝑴):

𝑦𝑖𝑗 =
Σ Σ

Α
𝑎𝑟𝑠𝑥𝑖+𝑟,𝑗+𝑠

Σ ΣΑ𝑎𝑟𝑠
,

𝑎𝑟𝑠 = ቊ
1, |𝑥𝑖+𝑟,𝑗+𝑠 − med{𝑥𝑖𝑗}| ≤ 𝑞

0, otherwise.

• MTM trims out pixels deviating strongly from the local median. 

• It removes outliers.



3.42

Order Statistics Filters
Double window modified trimmed mean (DW MTM):

• A variation of MTM, it uses two different sized filter windows to

achieve good robustness and edge preservation.

Modified nearest neighbour filter (MNN):

𝑎𝑟𝑠 = ቊ
1, |𝑥𝑖+𝑟,𝑗+𝑠 − 𝑥𝑖𝑗| ≤ 𝑞

0, otherwise.

• MNN trims out pixels deviating strongly from the central pixel value.

• It has good edge preservation properties.
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Order Statistics Filters
L-filter (or L-order statistic) definition:

𝑦𝑖 = ෍
𝑗=1

𝑛

𝑎𝑗𝑥 𝑗 .

Location Invariance constraint:

෍

𝑗=1

𝑛

𝑎𝑗 = 𝐚𝑇𝐞 = 1, 𝐞 = 1, … , 1 𝑇 .
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Order Statistics Filters
In the case of additive noise:

𝑥𝑖 = 𝑠𝑖 + 𝑛𝑖 ,
the coefficient vector 𝐚 can be obtained after 𝑀𝑆𝐸
minimization:

𝑀𝑆𝐸 = 𝐸 𝑠𝑖 − 𝑦𝑖
2 = 𝐸 ෍

𝑗=1

𝑛

𝑎𝑗𝑥 𝑗 − 𝑠𝑖

2

= 𝐚 𝐑𝑇𝐚,

𝐚 =
𝐑−1𝐞

𝐞𝑇𝐑−1𝐞
.

• 𝐑: 𝑛 × 𝑛 correlation matrix of vector 𝐧 = 𝑛 1 , … , 𝑛 𝑛
𝑇

.
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• The optimal L-filter:

• for Gaussian noise is the moving average.

• for Laplacian noise is the median filter.

• for uniform noise is the midpoint.

• L-filter has no streaking effects, provided that its coefficients are

not similar to those of the median filter.

• It has greater computational complexity than both the median

and the moving average filter.

Order Statistics Filters
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• Midpoint filters optimal estimators in the case of additive

white uniform noise.

• Arithmetic moving average filters are optimal estimators in

the case of additive white Gaussian noise 𝑁(0,1):

𝑓𝑋 𝑥 =
1

2𝜋
exp{−

𝑥2

2
} .

• Median filters are optimal estimators in the case of additive

white Laplacian noise:

𝑓𝑋 𝑥 =
1

2
𝑒−|𝑥|.

Order Statistics Filters
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Minimal Mean Square Error (MMSE) filter:

Ƹ𝑠𝑖𝑗 = 1 −
𝜎𝑛

2

𝜎𝑥
2 𝑥𝑖𝑗 +

𝜎𝑛
2

𝜎𝑥
2 ෝ𝑚𝑥,

𝑥𝑖𝑗=𝑠𝑖𝑗+𝑛𝑖𝑗 .

• It is an adaptive filter:

• It performs like arithmetic mean in homogeneous image

regions.

• It performs no filtering close to edges.

• It preserves edges, as it does not filter the noise in edge regions.

• Various choices of the local measures of ෝ𝑚𝑥, 𝜎𝑥
2, 𝜎𝑛

2.

Adaptive Order Statistic Filters
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Adaptive Order Statistic Filters
Decision-directed filters:

• They take into account both edge and noise information.

• Impulses, when detected, can be removed from the estimation of

the local mean, median and standard deviation.

• When an edge is detected, the window of the filter can become

smaller, so that edge blurring is minimized.

• Adaptive window edge detection (AWED) filter:

• AWED filter window size/shape can be adapted.
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Adaptive Order Statistic Filters
Signal-adaptive median (SAM) filter:

• It is an adaptive filter based on the

two-component image model:

൯𝑦1𝑖𝑗 = ෝ𝑚𝑥 + 𝑏𝑖𝑗(𝑥𝑖𝑗 − ෝ𝑚𝑥 .

൯𝑦𝑖𝑗 = 𝑟−1(𝑦1𝑖𝑗 .

• It has excellent performance in noise

filtering, edge and image detail

preservation.
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a) Original  image; 

b) Image corrupted by Gaussian noise (variance=100) and mixed 

impulsive noise; c) SAM filter output [PIT2000].

Two-component model filters

Adaptive Order Statistic Filters
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Image intensity 𝑓(𝑖, 𝑗) can be considered as pixel temperature that

can be diffused over the entire image domain, in an iterative process

described by 𝑓 𝑖, 𝑗, 𝑡 over various steps 𝑡.

Isotropic diffusion filtering can perform image smoothing:

𝜕𝑓

𝜕𝑡
= 𝑐div ∇𝑓 = 𝑐

𝜕2𝑓

𝜕𝑥2
+

𝜕2𝑓

𝜕𝑦2
.

• 𝑐: diffusion coefficient.

• Diffusion is also used for image segmentation.

Anisotropic Diffusion
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Limitations:

• While it smooths noise, isotropic diffusion filtering also blurs

important image features, such as edges.

• As iteration number increases, the image will tend to a constant

mean average image, hence destroying all image information.

• It dislocates edges, when moving from finer to coarser scales

(correspondence problem).

• Some smoothing properties of linear diffusion filtering are only

suitable for 1D filtering.

Anisotropic Diffusion
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Anisotropic diffusion depends on local image properties, e.g.,

local image edges.

• It reduces diffusion at image edges:
𝜕𝑓

𝜕𝑡
= div((𝑐(𝑓)∇𝑓).

• div: divergence operator.

• ∇𝑓: image 𝑓 𝑖, 𝑗, 𝑡 differentiation (edge detection) at iteration 𝑡.

• Diffusion close to edges is reduced, because of the form of 𝑐(𝑓):

𝑐(𝑓) =
1

1+
∇𝑓 2

𝜆2

 , λ > 0.

Anisotropic Diffusion
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Anisotropic image diffusion equation:

𝑑𝑓 𝑖,𝑗,𝑡

𝑑𝑡
= 𝑑𝑖𝑣(𝑐 𝑖, 𝑗, 𝑡 ∇𝑓) = 𝑐 𝑖, 𝑗, 𝑡 Δ𝑓 + ∇𝑐∇𝑓.

• Δ: Laplacian operator.

It performs simultaneous noise reduction and contrast

enhancement across image regions, while deriving consistent

deterministic scale-space image descriptions.

• It smooths homogeneous image regions while retaining image

edges.

Anisotropic Diffusion
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The 4-nearest North, South, East and West neighbors of the

Laplacian operator can be used:

𝑓 𝑖, 𝑗, 𝑡 + 1 = 𝑓 𝑖, 𝑗, 𝑡 + 𝜆 𝑐𝑁∇𝑁𝑓 + 𝑐𝑠 ∇𝑆𝑓 + 𝑐𝐸 ∇𝐸𝑓 + 𝑐𝑊 ∇𝑊𝑓 𝑖, 𝑗, 𝑡 .

• 0 ≤ 𝜆 ≤
1

4
: ensures numerical stability.

• ∇𝑁, ∇𝑆, ∇𝐸, ∇𝑊 are nearest-neighbor differences:

∇𝑁𝑓 𝑖, 𝑗, 𝑡 ≜ 𝑓 𝑖 − 1, 𝑗, 𝑡 − 𝑓 𝑖, 𝑗, 𝑡 ,

∇𝑆𝑓 𝑖, 𝑗, 𝑡 ≜ 𝑓 𝑖 + 1, 𝑗, 𝑡 − 𝑓 𝑖, 𝑗, 𝑡 ,

∇𝐸𝑓 𝑖, 𝑗, 𝑡 ≜ 𝑓 𝑖, 𝑗 + 1, 𝑡 − 𝑓 𝑖, 𝑗, 𝑡 ,

∇𝑊𝑓 𝑖, 𝑗, 𝑡 ≜ 𝑓 𝑖, 𝑗 + 1, 𝑡 − 𝑓 𝑖, 𝑗, 𝑡 .

Anisotropic Diffusion
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• Iterating this scheme can be thought as moving towards coarser

image resolutions in scale-space.

• Diffusion coefficients are updated at every iteration as a function

of the image intensity gradient:

𝑐𝑁 𝑖, 𝑗, 𝑡 = 𝑔 ∇𝑓 𝑖 +
1

2
, 𝑗, 𝑡

2

2

,

𝑐𝑆 𝑖, 𝑗, 𝑡 = 𝑔 ∇𝑓 𝑖 −
1

2
, 𝑗, 𝑡

2

2

,

𝑐𝐸 𝑖, 𝑗, 𝑡 = 𝑔 ∇𝑓 𝑖, 𝑗 +
1

2
, 𝑡

2

2

,

𝑐𝑊 𝑖, 𝑗, 𝑡 = 𝑔 ∇𝑓 𝑖, 𝑗 −
1

2
, 𝑡

2

2

.

Anisotropic Diffusion
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a) Original image; b-d) Various anisotropic diffusion iterations.

Anisotropic Diffusion
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a) Original Byzantine painting with cracks.

b) Localized cracks.

c) Filled cracks using anisotropic diffusion.

Anisotropic Diffusion
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• Image noise

• 2D FIR filters

• Moving average filters

• Spatial filters

• Median filters

• Digital filters based on order statistics

• Adaptive order statistic filters

• Anisotropic Diffusion

• Image interpolation

• Neural image filtering

Digital Image Filtering
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Image interpolation is an important operation with many

applications:

• Image zooming (e.g., for video games)

• Image upsampling (e.g., in neural autoencoders or in neural
semantic region segmentation.

• Image magnification/upsampling.

• Video format conversion.

Image Interpolation
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Zero-order (hold) interpolation: pixel (𝑥, 𝑦) is assigned the value

of the geometrically closest pixel in the image array:

𝑓𝑖 𝑛1, 𝑛2 = 𝑓 Τ𝑛1 2], [ Τ𝑛2 2 .

• Repeated application: zooming by a factor of 2𝑛 × 2𝑛.
• For large 𝑛, regions of constant intensity (image blobs) are

visible.

• It is sometimes used in video effect creation.

Image Interpolation
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Linear interpolation:

𝑓 𝑥, 𝑦 = (1 − Δ1) 1 − Δ1 𝑓 𝑛1, 𝑛2 + 1 − Δ1 Δ2𝑓 𝑛1, 𝑛2 + 1
+Δ1 1 − Δ2 𝑓 𝑛1 + 1, 𝑛2 + Δ1Δ2𝑓 𝑛1 + 1, 𝑛2 + 1 ,

where:

Δ1 =
𝑥−𝑛1𝑇1

𝑇1
,         Δ2 =

𝑦−𝑛2𝑇2

𝑇2
. 

• It is a first-order polynomial interpolation. 

• It produces smoother interpolated images.

Image Interpolation
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In 𝒑-order interpolation, the image is interpolated with zeros:

𝑓′(𝑛1, 𝑛2) =
ቇ𝑓(

𝑛1

𝑝
,
𝑛2

𝑝
if 𝑛1 = 𝑝𝑘, 𝑛2 = 𝑝𝑙

0
otherwise.

• Then, image 𝑓′ is convolved 𝑝 times with convolution matrix 𝐇.

• Example of a convolution matrix 𝐇:

𝐇 =

Τ1 4 Τ1 2 Τ1 4
Τ1 2 1 Τ1 2
Τ1 4 Τ1 2 Τ1 4

.

• 𝑝 = 3 for cubic spline interpolation.

Image Interpolation
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Zero-order

interpolation.

BABOON

Image.

Linear

Interpolation.

Cubic spline

Interpolation.

Image Interpolation
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• Image noise

• 2D FIR filters

• Moving average filters

• Spatial filters

• Median filters

• Digital filters based on order statistics

• Adaptive order statistic filters

• Anisotropic Diffusion

• Image interpolation

• Neural image filtering

Digital Image Filtering
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A classic autoencoder 
consists of:

• Encoder layers

• Latent View Representation 
(code)

• Decoder layers

Autoencoder architecture.



Neural image filtering
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In general…
𝝋 ∶ 𝐱 → 𝐲
𝝍 ∶ 𝐲 → 𝐱

𝝋, 𝝍 =  𝑎𝑟𝑔𝑚𝑖𝑛𝝋,𝝍 𝐱 − 𝝍 ∘ 𝝋 𝐱

In the simplest case…
𝐲 = 𝜎 𝐖𝐱 + 𝐛

𝐱′ = 𝜎′ 𝐖𝐱 + 𝐛
𝐿 𝐱, 𝐱′ = 𝐱 − 𝐱′ 2 = 𝐱 − 𝜎′𝐖′(𝜎 𝐖𝐱 + 𝐛 + 𝐛′) 2

Where:
• 𝐱 is the input vector
• 𝐲 is the latent vector

• 𝝋 is the encoding function
• 𝝍 is the decoding function
• 𝝍 ∘ 𝝋: function synthesis

Where:
• 𝐱’ is the reconstructed input

• 𝐖 & 𝐖’ are the weight matrixes
• σ & σ’ are the activation functions

• 𝐛 & 𝐛’ are bias factors

1

2
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More complex 
datasets require 
more complex 
architectures

A deep 
autoencoder 

consists of two, 
symmetrical deep-

belief
networks

Deep Autoencoder.



Neural image filtering

Tries to:
1. Encode the input 

from a corrupted 
version of it

2. Undo the effect 
of the corruption 
process

Data corruption 
typically in 30-50% of 

the pixels 

In the loss function the output values are compared with the original 
input & not the corrupted output!

Denoising Autoencoder.



Neural image filtering

Medical image denoising using convolutional denoising 

autoencoders.

Objective:

• Denoise medical images as a preprocessing step in medical 

image analysis

Methodology: 

• Combination of convolutional, denoising & stacked autoencoder

• 2 datasets used, consisting of 722 high resolution images

• Gaussian & Poisson distribution introduced, with various noise 

proportion.



Neural image filtering
Medical image denoising using convolutional denoising autoencoders

R
es

u
lt

s:
Real Images

Noiser version with minimal noise

Denoising result of NL (Non-local 
mean filtering) means

Results of median filter

CNN DAE using smaller dataset 
(300 training samples)

CNN DAE using larger 
combined dataset

Source [MIN2017].
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Image de-raining [DER2023].

Neural image filtering



Neural image filtering
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Image de-fogging.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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