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ABSTRACT
A robust regression technique known as Huber regression is in-
corporated into the Electric Network Frequency (ENF) detection
task. This novel framework is based on the assumption of a mixture
noise model, which combines Gaussian and Laplacian noise for ENF
detection in short-length audio recordings. The effectiveness of the
proposed ENF detector is assessed through accuracy calculations
and the analysis of the Receiver Operating Characteristic curve
with respect to the Area Under the Curve. Real-world benchmark
data from the ENF-WHU dataset are utilized for this evaluation. The
experimental results indicate that integrating the Huber regression
method leads to a significant enhancement in ENF detection for
short-length audio recordings, outperforming the performance of
existing state-of-the-art techniques.
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1 INTRODUCTION
The Electric Network Frequency (ENF), which originates from the
fluctuations of the power grid frequency, serves as a distinctive and
intrinsic “fingerprint" within multimedia content, such as audio
recordings [2]. ENF holds a nominal value of 50 Hz in Europe and
60 Hz in the United States/Canada, serving as a forensic criterion
in the realm of multimedia forensics [9, 13, 25]. The comparison
of the estimated ENF from a multimedia recording with a ground
truth ENF derived from power mains can find application in tasks
such as time stamp verification [5, 6, 12, 14, 35], geo-localization
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[4, 32, 33], and tampering detection [11, 28, 31, 34]. Additionally, the
integration of ENF analysis with Non-Intrusive Load Monitoring
techniques [3, 21, 30] further expands forensic capabilities, allowing
for the disaggregation of energy consumption patterns that may
corroborate the time and date of a recording.

To achieve optimal performance in the aforementioned appli-
cations, an important prerequisite before ENF estimation is the
detection of ENF signals in multimedia recordings. A significant
contribution that tackles ENF detection is developed in [15]. Six
distinct detectors are developed and assessed, with three of them
specifically tested using real-world data alongside synthetic data.
The detectors are evaluated, encompassing both long-length audio
recordings and short-length audio recordings. For ENF detection in
short-length audio recordings, a detector is proposed to enhance
the Likelihood Ratio Test (LRT) performance employing the Least
Absolute Deviations (LAD) regression [23]. LAD regression op-
erates under the assumption of a Laplacian noise model, solving
for regression weights with fixed frequency estimates and solv-
ing for frequency estimates with constant regression weights until
achieving convergence. In [24], a multi-tone time-frequency detec-
tor is developed employing a combination of multiple harmonics
to identify the presence of valid ENF traces within a recording.
Additionally, this detector provides insights into the overall quality
of the ENF signal and the count of available harmonic components.
An ENF detector employing a superpixel approach for videos is
developed in [29]. This method involves ENF signal estimations
derived from stable superpixel regions to determine the presence
or absence of an ENF signal in brief video clips. In [27], a linear
discriminant is employed to create an automated detector for ENF
disturbances. Prior to assessing the detector, ENF extraction is car-
ried out using the Estimation of Signal Parameters by Rotational
Invariant Techniques.

Significant research is also directed toward the ENF estimation
task. A multi-tone harmonic model for estimating the ENF is in-
troduced in [1]. To enhance the accuracy of ENF signal estimation,
multiple harmonics are combined, and the Cramer-Rao bound is
utilized to restrict the variance of the ENF estimator. In [10], a
spectral estimation method is presented that integrates the ENF
across various harmonics. The extraction of ENF takes into account
the local signal-to-noise ratio at each harmonic. Instead of using
the conventional Short-Time Fourier Transform (STFT) [26], the
process of ENF extraction is approached as a data-dependent fil-
tering issue. A framework for robust extraction of ENF from real
audio recordings, which encompasses multi-tone ENF harmonic
enhancement and the utilization of a graph-based approach to opti-
mize harmonic selection, is introduced in [16]. Drawing insights
from both [7] and [8], the frequency demodulation process in [18]
utilizes the intermediate frequency signal’s spectrum to deduce the
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Figure 1: The proposed Huber-LRT ENF detection architec-
ture.

highest achievable frequency of the ENF. In [19], filter-bank Capon
spectral estimators and non-rectangular temporal windowing are
developed to enhance ENF estimation accuracy for authenticity
verification. Moreover, a non-parametric approach that embeds a
customized lag window into the Blackman-Tukey method is pro-
posed in [20], reducing speech content interference and improving
forensic analysis precision. The evaluation of ENF extraction in-
volves the assessment of non-parametric and parametric spectral
estimation techniques.

Here, ENF detection is approached through the perspective of
Huber regression [17]. A robust regression technique is proposed
that combines the strength of the ℓ2 norm in Least Squares (LS) and
the robustness of the ℓ1 norm in LAD regression. The proposed
method incorporates a novel strategy by assuming a combination of
Gaussian and Laplacian noise models within a mixture noise model
framework. This is insightful, as the distribution of the noise model
is similar to a Gaussian distribution in its central tendency while ex-
hibiting a double exponential distribution in its tails. By employing
a mixture noise model, a balance is obtained between the smooth-
ness of Gaussian noise and the heavy-tailed behavior of Laplacian
noise. This approach advances ENF detection, surpassing the robust
ENF detector in [23] and enabling enhanced detection accuracy.
By integrating Huber regression with a Gaussian-Laplacian mix-
ture noise model, the proposed method leads a revolutionary stride
in ENF detection, achieving exceptional accuracy and versatility
compared to state-of-the-art techniques.

The rest of the paper is structured as follows. In Section 2, the
proposed framework is analyzed, while in Section 3, experimental
findings are presented. Section 4 concludes the research approach
while also providing directions for future research.

2 PROPOSED FRAMEWORK
In this Section, the proposed framework, depicted in Figure 1, is
analyzed. A description of the signal model as the formulation of

the problem is described in Section 2.1, while the proposed ENF
detection framework is discussed in Section 2.2.

2.1 Signal Model
The ENF is considered a deterministic signal denoted as 𝑠 [𝑛] in the
presence of noisy observations 𝑥 [𝑛]. The ENF waveform 𝑠 [𝑛] can
be expressed as:

𝑠 [𝑛] = 𝐴[𝑛] cos (2𝜋 𝑇 𝑓 [𝑛] + 𝜙) , 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}, (1)

where𝐴[𝑛] > 0 and 𝑓 [𝑛] represent the time-varying amplitude and
ENF frequency respectively. The parameter𝜙 signifies the unknown
initial phase. Here, 𝑇 = 1/𝑓𝑠 corresponds to the sampling interval,
with 𝑓𝑠 denoting the sampling frequency.

Due to the slow variation of the ENF signal over time, 𝐴[𝑛] and
𝑓 [𝑛] can be approximated by constants 𝐴𝑐 and 𝑓𝑐 𝑛, respectively,
resulting in the simplified expression of the ENF waveform

𝑠𝑐 [𝑛] = 𝐴𝑐 cos(2𝜋 𝑇 𝑓𝑐 𝑛 + 𝜙) . (2)

The task of detecting ENF involves a binary hypothesis scenario.
This binary framework facilitates the precise detection of the ENF
presence within the signal model as follows:

H0 : 𝑥 [𝑛] = 𝑤 [𝑛]
H1 : 𝑥 [𝑛] = 𝑠𝑐 [𝑛] +𝑤 [𝑛], (3)

where𝑤 [𝑛] represents the assumed combined noisemodel resulting
from the aggregation of Gaussian noise 𝑢Gaussian [𝑛] and Laplacian
noise 𝑢Laplacian [𝑛]. Moreover, 𝑥 [𝑛] corresponds to preprocessed
samples of the time-domain signal. The preprocessing stage (see
Section 3.2) consists of a threefold process, each serving a specific
purpose. Bandpass filtering is applied to retain the ENF signal while
removing unwanted noise. Downsampling is performed to reduce
the sample rate, making the data more manageable and efficient
for analysis. Finally, audio trimming is employed to preserve the
short-length audio recordings, each lasting 5 seconds in duration.

2.2 Huber-LRT ENF Detection
The core of the detection problem centers on the assumption of a
mixed noise model. This is where the integration of Huber regres-
sion for ENF detection stands with its alignment to the mixed noise
model’s complexity. By incorporating both ℓ1 norm and ℓ2 norm
elements, Huber regression adapts to the varied noise patterns in-
herent in the mixed noise model. The ℓ1 norm component equips
the method to resiliently manage Laplacian noise, which handles
outliers robustly [36]. Simultaneously, the inclusion of the ℓ2 norm
element empowers Huber regression to handle the Gaussian noise
aspects within the mixture, aligning with the principles of least
squares.

ENF detection initiates with estimating the maximum likelihood
values [22] for the unknown parameters, achieved through solving
the optimization problem depicted as:{

𝑓𝑐 , \̂\\, �̂�

}
= argmin

𝑓𝑐 ,\\\,𝜎

𝐽Huber (𝑓𝑐 , \\\, 𝜎) , (4)
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where \\\ ∈ R2×1 denotes the regression coefficients and 𝜎 > 0
the regression scale. The objective function, grounded in Huber
regression, is articulated as:

𝐽Huber (𝑓𝑐 , \\\, 𝜎) =
2𝑁
2

(`𝜎) + 𝜌

(
𝑥𝑥𝑥 −𝐻𝐻𝐻 (𝑓𝑐 ) \\\

𝜎

)
𝜎. (5)

In (5),𝑥𝑥𝑥 = [𝑥 [0], 𝑥 [1], . . . , 𝑥 [𝑁−1]]⊤,𝑁 is the number of samples in
𝑥𝑥𝑥 , and [·]⊤ denotes the transpose operator. Additionally, 𝜌 : R𝑁 →
R is a convex and differentiable loss function, which embodies a
duality:

𝜌 (𝑘𝑘𝑘) = 1
2

{
∥𝑘𝑘𝑘 ∥2, for ∥𝑘𝑘𝑘 ∥22 ≤ 𝑐2

2𝑐 ∥𝑘𝑘𝑘 ∥1 − 𝑐2, for ∥𝑘𝑘𝑘 ∥1 > 𝑐,
(6)

where 𝑘𝑘𝑘 within 𝜌 corresponds to the term 𝑥𝑥𝑥−𝐻𝐻𝐻 (𝑓𝑐 ) \\\
𝜎 . The Huber

loss function is a hybrid error measure that combines the quadratic
penalty of the ℓ2 norm (i.e., LS loss) for small errors with the linear
penalty of the ℓ1 norm (i.e., LAD loss) for large errors, providing
a robust and balanced approach to error minimization. Moreover,
` > 0 ensures Fisher-consistency of 𝜎 under i.i.d. Gaussian errors,
calculated through:

` =
1
2
𝑐2

(
1 − 𝐹𝜒2

1

(
𝑐2

))
+ 𝐹𝜒2

3

(
𝑐2

)
, (7)

where 𝐹𝜒2
𝑘
is the cumulative 𝜒2

𝑘
distribution, while 𝑐 = 1.345 stands

for a user-defined tuning threshold influencing the robustness level.
In (5), the matrix𝐻𝐻𝐻 (𝑓𝑐 ) = [𝛼𝛼𝛼 |𝛽𝛽𝛽] ∈ R𝑁×1 is composed of columns:

𝛼𝛼𝛼 =
(
1, cos (2𝜋 𝑇, 𝑓𝑐 · 1) , . . . , cos (2𝜋 𝑇, 𝑓𝑐 · (𝑁 − 1))

)⊤
𝛽𝛽𝛽 =

(
0, sin (2𝜋 𝑇, 𝑓𝑐 · 1) , . . . , sin (2𝜋 𝑇, 𝑓𝑐 · (𝑁 − 1))

)⊤
.

(8)

The optimization problem (4) involves iterative estimation of 𝑓𝑐 ,
regression coefficients \\\ , and the scale parameter 𝜎 . The iteration
begins by setting 𝑓𝑐 to the frequency corresponding to the peak of
the periodogram, computed as:

𝑓𝑐 = argmax
𝑓

�����𝑁−1∑︁
𝑛=0

𝑥 [𝑛]𝑒−𝑗2𝜋𝑇 𝑓 𝑛

�����2 . (9)

Then the parameters \\\ and 𝜎 are estimated by solving the Huber
regression problem:{

\̂\\, �̂�

}
= argmin

\\\,𝜎

{
2𝑁
2

(`𝜎) + 𝜌

(
𝑥𝑥𝑥 −𝐻𝐻𝐻 (𝑓𝑐 ) \\\

𝜎

)
𝜎

}
, (10)

where (10) is convex when considering both the regression vector
and the scale parameter jointly. This convexity property is based
on the assumption that the loss function 𝜌 (·) used is itself convex.
The estimated parameters \̂\\ and �̂� result through the utilization
of a block-wise Minimization-Majorization (MM) algorithm [36].
The MM algorithm iteratively seeks to minimize the Huber loss (6)
by constructing a sequence of surrogate functions that majorize
the original Huber loss function. These surrogate functions are
typically chosen to be quadratic approximations near the current
parameter estimates, making the optimization more tractable. At
each iteration, the MM algorithm updates the parameter estimates
by minimizing the surrogate function, with the goal of minimizing
the original Huber loss. This iterative process continues until a

Table 1: Summary of preprocessing steps and values for ENF
detection.

Preprocessing Parameter Value

Duration Range 5 to 10 seconds

Downsampling 44.1 to 8 kHz

Resampling 400 Hz

Bandpass Filtering

- Center Frequency 100 Hz

- Cut-off Frequencies [99.9, 100.1] Hz

- Transition Bandwidth 0.1 Hz

- Pass-Band Alignment 2𝑛𝑑 ENF harmonic (100 Hz)

convergence criterion is met, resulting in parameter estimates that
minimize the Huber loss criterion (10). Subsequently, after obtain-
ing the parameter estimates \̂\\ and
𝑠𝑖𝑔𝑚𝑎, these values are held fixed, and the estimation of the fre-
quency 𝑓 is pursued through a separate optimization problem:

𝑓 = argmin
𝑓

{
2𝑁
2

(`�̂�) + 𝜌

(
𝑥𝑥𝑥 −𝐻𝐻𝐻 (𝑓 ) \̂\\

�̂�

)
�̂�

}
. (11)

The minimization of (11) is achieved by implementing a dense grid
search methodology around the ENF center frequency 𝑓𝑐 . Following
the completion of the grid search and upon obtaining the initial
solution for the frequency 𝑓 , the optimization problem specified in
(10) is subjected to further refinement. This refinement is achieved
through an iterative alternating optimization approach. The pri-
mary objective of this iterative process is to attain convergence of
the frequency parameter to its optimal value 𝑓 , while concurrently
optimizing the parameters \\\ and 𝜎 using the Huber regression
method. While the optimization problem in (10) is inherently con-
vex and can be efficiently solved, the grid search in (11) may lead
to suboptimal results.

Once the unknown parameters 𝑓 , \̂\\ , and �̂� have been estimated,
a Huber-LRT detector is established to assess whether 𝑥𝑥𝑥 falls into
the H1 scenario relative to a threshold denoted as [, i.e.,

𝑇Huber (𝑥𝑥𝑥) =
𝑥𝑥𝑥⊤𝐻𝐻𝐻 (𝑓 ) \̂\\

𝑥𝑥𝑥⊤𝑥𝑥𝑥
> [. (12)

The threshold for the Huber-LRT detector is determined, following
the process in [23], by computing the median of the test statistic
values for each duration across all recordings under bothH0 and
H1. Let 𝑀 be the number of recordings for each duration, which
in this case is 𝑀 = 100. This is in accordance with the 100 audio
recordings available for analysis, which are divided into two groups,
each containing 50 recordings (see Section 3.1). When 𝑀 is even,
the threshold is calculated as follows:

[ =
1
2

(
𝑇Huber, (𝑀2 ) +𝑇Huber, (𝑀2 +1)

)
, (13)
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(a) Detection accuracy across different recording durations. (b) ROC curves and corresponding AUC values for 5-second duration recordings.

Figure 2: Performance comparison of the Huber-LRT detector with existing ENF detectors.

where 𝑇Huber, ( ·) represents the order statistics of the test statistic
values. By employing the median, the threshold value is less influ-
enced by anomalous observations, making it a more reliable and
robust choice for detecting deviations such as extreme values or
outliers in the data.

3 EXPERIMENTAL EVALUATION
In this Section, the experimental evaluation is conducted to compare
the proposed method with the state-of-the-art detectors developed
in [15, 23]. A comprehensive description of the real-world audio
recordings within the ENF-WHU dataset, followed by a detailed
account of the preprocessing steps undertaken and the experimental
results, is presented.

3.1 Dataset
The evaluation of the Huber-LRT detector utilizes the ENF-WHU
dataset [15], which comprises 100 real-world audio recordings.
These recordings are captured at a sampling rate of 44.1 KHz on
the Wuhan University campus. Among these 100 recordings, 50
are placed under the folder labeled H1 as they contain the ENF
signal, while the remaining 50 recordings, characterized by severe
corruption or the absence of the ENF signal, are placed in the H0
folder.

3.2 Data Preprocessing
Prior to the evaluation process, a four-step pre-processing proce-
dure summarized in Table 1 is applied to the audio recordings in the
ENF-WHU dataset. Initially, the recordings are cropped into audio
clips, with duration ranging from 5 to 10 seconds. Subsequently,
the cropped audio clips undergo downsampling to 8 KHz using
appropriate antialiasing filtering, followed by resampling at 400 Hz.
Finally, a bandpass filter is implemented with the passband centered

at the second harmonic of ENF (i.e., 100 Hz), and the cut-off frequen-
cies are set at 99.9 Hz and 100.1 Hz. The transition bands have a
width of 0.1 Hz. This pass-band choice aligns with the methodology
outlined in [15], which centers around the second harmonic of ENF
due to its robustness and prominence.

3.3 Experimental Results
In Figure 2, a comparative performance analysis of the proposed
Huber-LRT detector against the existing methods [15, 23] is pre-
sented. Figure 2a displays the detection accuracy across different
recording durations, spanning from 5 to 10 seconds. Notably, higher
accuracy is achieved by the Huber-LRT detector, which is defined
as the ratio of correctly detected instances to the total number
of recordings. Notably, the Huber-LRT detector outperforms its
competitors in terms of accuracy, which is defined as the ratio
of correctly detected instances to the total number of recordings.
More specifically, the Huber-LRT detector achieves an accuracy
of 80% for 5-second audio durations and surpasses 90% for audio
recordings lasting 7 seconds. However, a decline in accuracy is
noticeable for all competing methods when dealing with 8-second
audio segments. Nevertheless, the Huber-LRT detector maintains a
satisfactory detection accuracy of 85%. In Figure 2b, the Receiver Op-
erating Characteristic (ROC) curves for the proposed detector and
its competitors are illustrated, accompanied by their corresponding
Area Under the Curve (AUC). The AUC for the Huber-LRT detector
is calculated to be 0.942, achieving a higher performance compared
to other methods.

The improved performance of the Huber-LRT detector is attrib-
uted to the incorporation of robust statistical techniques in the ENF
detection problem. By utilizing Huber regression for the estimation
of the unknown parameters and assuming a mixture noise model,
the ENF detection task is reinforced with greater strength. This
assumption represents a significant departure from the LAD-LRT
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detector [23], which centered around the assumption of a Laplacian
noise model. The Huber-LRT provides a more efficient and robust
method for modeling noise within the ENF-WHU dataset by com-
bining elements of the Gaussian distribution in the middle and the
Laplacian distribution in the tails. Consequently, the Huber-LRT,
in conjunction with the previous methods [15, 23], contributes to a
deeper understanding of ENF detection by leveraging the power of
robust statistical methods.

4 CONCLUSION AND FUTUREWORK
Here, a novel ENF detector termed Huber-LRT has been proposed,
incorporating robust statistical techniques into the ENF detection
task. This innovative framework is built upon the assumption of
a mixture noise model, combining Gaussian and Laplacian noise
components to enhance ENF detection accuracy in short-length
audio recordings. The effectiveness of this proposed ENF detec-
tor has been assessed through the accuracy and analysis of ROC
curves with respect to AUC. Real-world benchmark data from the
ENF-WHU dataset has been employed for this evaluation. The ex-
perimental findings have indicated a significant enhancement in
ENF detection for short-length audio recordings, outperforming the
performance of state-of-the-art techniques. Further research will
consider the integration of other robust regression methods in the
ENF detection task aiming at further improvements in detection
accuracy.

ACKNOWLEDGMENTS
This research was supported by the Hellenic Foundation for Re-
search and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Re-
search Projects to support Faculty Members & Researchers" (Project
Number: 3888).

REFERENCES
[1] D. Bykhovsky and A. Cohen. 2013. Electrical network frequency (ENF) maximum-

likelihood estimation via a multitone harmonic model. IEEE Transactions on
Information Forensics and Security 8, 5 (2013), 744–753.

[2] A. J. Cooper. 2009. An automated approach to the Electric Network Frequency
(ENF) criterion: Theory and practice. International Journal of Speech, Language
& the Law 16, 2 (2009), 193–218.

[3] S. Dash and N. C. Sahoo. 2022. Electric energy disaggregation via non-intrusive
load monitoring: A state-of-the-art systematic review. Electric Power Systems
Research 213 (2022), 108673.

[4] R. Garg, A. Hajj-Ahmad, andM.Wu. 2013. Geo-location estimation from electrical
network frequency signals. In Proceedings of the 2013 IEEE International Conference
on Acoustics, Speech, and Signal Processing. IEEE, Vancouver, Canada, 2862–2866.

[5] R. Garg, A. L. Varna, and M. Wu. 2011. "Seeing" ENF: natural time stamp for
digital video via optical sensing and signal processing. In Proceedings of the 19th
ACM International Conference on Multimedia. ACM, Scottsdale, AZ, 23–32.

[6] R. Garg, A. L. Varna, and M. Wu. 2012. Modeling and analysis of electric network
frequency signal for timestamp verification. In Proceedings of the 2012 IEEE
International Workshop on Information Forensics and Security. IEEE, Tenerife,
Spain, 67–72.

[7] G.-O. Glentis. 2008. A fast algorithm for APES and Capon spectral estimation.
IEEE Transactions on Signal Processing 56, 9 (2008), 4207–4220.

[8] G.-O. Glentis and A. Jakobsson. 2011. Efficient implementation of iterative
adaptive approach spectral estimation techniques. IEEE Transactions on Signal
Processing 59, 9 (2011), 4154–4167.

[9] C. Grigoras. 2007. Applications of ENF criterion in forensic audio, video, computer
and telecommunication analysis. Forensic Science International 167, 2-3 (2007),
136–145.

[10] A. Hajj-Ahmad, R. Garg, and M. Wu. 2013. Spectrum combining for ENF signal
estimation. IEEE Signal Processing Letters 20, 9 (2013), 885–888.

[11] H.-P. Hsu, Z.-R. Jiang, L.-Y. Li, T.-C. Tsai, C.-H. Hung, S.-C. Chang, S.-S. Wang,
and S.-H. Fang. 2023. Detection of Audio Tampering Based on Electric Network
Frequency Signal. Sensors 23, 16 (2023), 7029.

[12] G. Hua. 2018. Error analysis of forensic ENF matching. In Proceedings of the 2018
IEEE International Workshop on Information Forensics and Security. IEEE, Honk
Kong, 1–7.

[13] G. Hua, G. Bi, and V. L. L. Thing. 2017. On practical issues of electric network
frequency based audio forensics. IEEE Access 5 (2017), 20640–20651.

[14] G. Hua, J. Goh, and V. L. L. Thing. 2014. A dynamic matching algorithm for
audio timestamp identification using the ENF criterion. IEEE Transactions on
Information Forensics and Security 9, 7 (2014), 1045–1055.

[15] G. Hua, H. Liao, Q. Wang, H. Zhang, and D. Ye. 2020. Detection of electric
network frequency in audio recordings–from theory to practical detectors. IEEE
Transactions on Information Forensics and Fecurity 16 (2020), 236–248.

[16] G. Hua, H. Liao, H. Zhang, D. Ye, and J. Ma. 2021. Robust ENF estimation based
on harmonic enhancement and maximum weight clique. IEEE Transactions on
Information Forensics and Security 16 (2021), 3874–3887.

[17] P. J. Huber. 1992. Robust estimation of a location parameter. In Breakthroughs in
statistics: Methodology and distribution. Springer, New York, NY, 492–518.

[18] G. Karantaidis and C. Kotropoulos. 2018. Assessing spectral estimation methods
for electric network frequency extraction. In Proceedings of the 22nd Pan-Hellenic
Conference on Informatics. ACM, Athens, Greece, 202–207.

[19] G. Karantaidis and C. Kotropoulos. 2019. Efficient Capon-based approach exploit-
ing temporal windowing for electric network frequency estimation. In Proceedings
of the 2019 IEEE International Workshop on Machine Learning for Signal Processing.
IEEE, Pittsburgh, PA, USA, 1–6.

[20] G. Karantaidis and C. Kotropoulos. 2021. Blackman–Tukey spectral estimation
and electric network frequency matching from power mains and speech record-
ings. IET Signal Processing 15, 6 (2021), 396–409.

[21] M. Kaselimi, E. Protopapadakis, A. Voulodimos, N. Doulamis, and A. Doulamis.
2022. Towards trustworthy energy disaggregation: A review of challenges, meth-
ods, and perspectives for non-intrusive load monitoring. Sensors 22, 15 (2022),
5872.

[22] S. M. Kay. 1993. Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice-Hall, Inc., Upper Saddle River, NJ.

[23] C. Korgialas and C. Kotropoulos. 2023. Electric Network Frequency Detection
Using Least Absolute Deviations. In Proceedings of the 2023 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, Rhodes, Greece, 1–5.

[24] H. Liao, G. Hua, and H. Zhang. 2021. ENF detection in audio recordings via
multi-harmonic combining. IEEE Signal Processing Letters 28 (2021), 1808–1812.

[25] E. Ngharamike, L.-M. Ang, K. P. Seng, and M. Wang. 2023. ENF Based Digital
Multimedia Forensics: Survey, Application, Challenges and Future Work. IEEE
Access 11 (2023), 101241–101272. https://doi.org/10.1109/ACCESS.2023.3312181

[26] O. Ojowu, J. Karlsson, J. Li, and Y. Liu. 2012. ENF extraction from digital record-
ings using adaptive techniques and frequency tracking. IEEE Transactions on
Information Forensics and Security 7, 4 (2012), 1330–1338.

[27] P. M. G. I. Reis, J. P. C. L. da Costa, R. K. Miranda, and G. Del Galdo. 2016. Audio
authentication using the kurtosis of ESPRIT based ENF estimates. In Proceedings
of the 2016 International Conference on Signal Processing and Communication
Systems. IEEE, Gold Coast, Australia, 1–6.

[28] P. M. G. I. Reis, J. P. C. L. da Costa, R. K. Miranda, and G. Del Galdo. 2016. ESPRIT-
Hilbert-based audio tampering detection with SVM classifier for forensic analysis
via electrical network frequency. IEEE Transactions on Information Forensics and
Security 12, 4 (2016), 853–864.

[29] S. Vatansever, A. E. Dirik, and N. Memon. 2017. Detecting the presence of ENF
signal in digital videos: A superpixel-based approach. IEEE Signal Processing
Letters 24, 10 (2017), 1463–1467.

[30] A. Verma, A. Anwar, M. A. Mahmud, M. Ahmed, and A. Kouzani. 2021. A
comprehensive review on the NILM algorithms for energy disaggregation.
arXiv:1312.5602

[31] Z.-F. Wang, J. Wang, C.-Y. Zeng, Q.-S. Min, Y. Tian, and M.-Z. Zuo. 2018. Digi-
tal audio tampering detection based on ENF consistency. In Proceedings of the
2018 International Conference on Wavelet Analysis and Pattern Recognition. IEEE,
Chengdu, China, 209–214.

[32] C.-W. Wong, A. Hajj-Ahmad, and M. Wu. 2018. Invisible geo-location signature
in a single image. In Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech, and Signal Processing. IEEE, Calgary, AB, Canada, 1987–1991.

[33] W. Yao, J. Zhao, M. J. Till, S. You, Y. Liu, Y. Cui, and Y. Liu. 2017. Source location
identification of distribution-level electric network frequency signals at multiple
geographic scales. IEEE Access 5 (2017), 11166–11175.

[34] C. Zeng, S. Kong, Z. Wang, K. Li, and Y. Zhao. 2023. Digital Audio Tamper-
ing Detection Based on Deep Temporal–Spatial Features of Electrical Network
Frequency. Information 14, 5 (2023), 253.

[35] L. Zheng, Y. Zhang, C. E. Lee, and V. L. L. Thing. 2017. Time-of-recording
estimation for audio recordings. Digital Investigation 22 (2017), S115–S126.

[36] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma. 2018. Robust Statistics for
Signal Processing. Cambridge University Press, Cambridge, MA.

https://doi.org/10.1109/ACCESS.2023.3312181
https://arxiv.org/abs/1312.5602

	Abstract
	1 Introduction
	2 Proposed Framework
	2.1 Signal Model
	2.2 Huber-LRT ENF Detection

	3 Experimental Evaluation
	3.1 Dataset
	3.2 Data Preprocessing
	3.3 Experimental Results

	4 Conclusion and Future Work
	Acknowledgments
	References

