
DualGRETEL+: Exploiting Dual Hypergraphs for Path Inference
Applied to Navigation Data

Anastasia-Sotiria Toufa
Aristotle University of Thessaloniki

Thessaloniki, Greece
toufaanast@csd.auth.gr

Ioannis Tsingalis
Aristotle University of Thessaloniki

Thessaloniki, Greece
tsingalis@csd.auth.gr

Constantine Kotropoulos
Aristotle University of Thessaloniki

Thessaloniki, Greece
costas@csd.auth.gr

ABSTRACT
This paper addresses the problem of path inference in GPS naviga-
tion data by enhancing a generative path inference model called
GRETEL. The enhancedmodel, DualGRETEL+, utilizes a dual hyper-
graph for feature extraction to capture more complex interactions
among GPS data. Additionally, a second-order optimizer, the Ada-
Hessian, is employed to enhance the performance of DualGRETEL+.
To evaluate the proposed framework, three distinct datasets were
used. Experiments indicate that the use of hypergraph features and
AdaHessian optimizer contribute to a significant improvement in
performance. Consequently, DualGRETEL+ is a promising solution
for the path inference problem in GPS navigation data.
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1 INTRODUCTION
In recent years, the widespread availability of Global Positioning
System (GPS)-enabled devices has led to an explosion in the avail-
able location data. GPS data are collected from GPS devices, provid-
ing highly accurate information about the movement of vehicles,
people, and other objects. They can be used to obtain insights into
traffic patterns, route planning, and other applications [5].

One approach to analyzing GPS data is to represent them as
a graph, where nodes represent geographic locations, and edges
represent connections between them [18]. This graph-based rep-
resentation allows the application of powerful machine learning
techniques such as Graph Convolutional Networks (GCNs) [4, 9, 12]
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to analyze and predict the movements of objects in space. Path infer-
ence, which involves predicting an object’s future path or trajectory
based on its past movements and other relevant features, is a com-
mon technique in analyzing GPS data to predict the movements of
vehicles, people, or other objects.

In the context of GPS data, the path inference problem has been
addressed by a generative model called GRETEL [3]. The model is
designed to accurately capture the directionality of an observed
path of ordered GPS locations, referred to as a prefix, and generate a
suggested path, known as a suffix. Candidate suffixes are generated
by performing a non-backtracking walk on the modified graph. The
ultimate aim is to predict the upcoming roads the driver will likely
take based on their travel history.

The Dual Hypergraph Transformation (DHT) algorithm trans-
forms a conventional graph into its dual hypergraph, focusing on
edge representation [6]. Hypergraphs are extensions of traditional
graphs. They are capable of modeling higher-order interactions [10].
The edges of the original graph are transformed into the hyper-
graph nodes, and the original graph nodes are transformed into
the hyperedges of the hypergraph. The resulting hypergraph can
be represented using an incidence matrix that captures all the in-
formation. The transformation to dual hypergraph representation
allows for more flexible and expressive modeling of complex rela-
tionships among GPS data, emphasizing edge characteristics. Here,
it is shown that incorporating these new features into the GRETEL
model significantly enhances its performance, enabling more accu-
rate predictions of object movements in space. The improved model
is called DualGRETEL+ and is tested in three different datasets. The
outline of the proposed framework’s major steps at a high level is
summarized next, and they are visually presented in Fig. 1.

(1) Construct the graph using navigation data.
(2) Apply the DHT to the original graph to obtain its correspond-

ing dual hypergraph
(3) Extract novel features from the dual hypergraph
(4) Utilize both the navigation data and the extracted features

within the GRETEL model for path inference

The optimization process greatly influences the performance
of machine learning models [2]. Thus, the choice of the optimizer
can significantly affect the results. In the context of training Du-
alGRETEL+, two popular optimization algorithms, Adam [8], and
AdaHessian [16], are evaluated. Adam uses a combination of the
gradient’s first- and second-order moments to adapt the learning
rate of each weight of the neural network. It is a first-order opti-
mizer that performs well on a diverse set of deep learning tasks.
While Adam is a popular optimization algorithm due to its ability to
converge to a good solution quickly, some research has shown that
in certain cases, it may fail to converge to the optimal solution and
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Figure 1: Algorithmic steps of the proposed framework.

even lead to poorer generalization performance [13]. AdaHessian
is a second-order optimizer that uses the Hessian matrix, which
captures the curvature of the loss function. AdaHessian has been
shown to outperform Adam on some tasks, particularly in terms of
generalizing performance [16]. However, AdaHessian is computa-
tionally more expensive than Adam, as it requires the computation
of the Hessian matrix. The computational cost may be prohibitive
for large neural networks. By conducting experiments on three
different datasets with GPS navigation paths, it is observed that the
original configuration of GRETEL, which uses the Adam optimizer,
can be further improved. Specifically, utilizing the AdaHessian op-
timizer, a better performance associated with higher accuracy is
obtained in the path inference problem.

The paper’s major contribution is the integration of DHT and
the AdaHessian optimizer into GRETEL, resulting in DualGRETEL+
applied to navigation data. This integration brings significant en-
hancements to the model’s performance. By leveraging DHT, new
features can be extracted that capture complex correlations among
GPS data, leading to better results. Tests are conducted on three
datasets, expanding the scope of [3] where only one dataset was
used. Meanwhile, using the AdaHessian optimizer further improves
DualGRETEL+ overall performance, extending the previous work
for path inference in Wikipedia links [14]. Together, these two ad-
vancements make DualGRETEL+ a highly effective tool for path
inference.

The paper is structured as follows: Section 2 provides an in-depth
discussion of the methods employed in the GRETEL model, along
with the DHT algorithm and themethods used for feature extraction
that leads to DualGRETEL+. Section 3 describes the experimental
setup and compares the Adam and AdaHessian optimizers [16]
using three different datasets. This section also includes a thorough
presentation of the experiments related to feature extraction from
the dual hypergraph. Finally, conclusions are drawn in Section 4.

2 METHODOLOGY
2.1 Path inference with GRETEL
Assume 𝐺 = (V, E) is a graph with 𝑛 nodes and𝑚 edges. We are
interested in finding the shortest path between two nodes. An agent
moves from one node to another only if there exists a directed edge
connecting them. At any given time 𝑡 , the agent’s location is given
by the sequence of nodes 𝑝 = (𝑣1, 𝑣2, . . . , 𝑣𝑡 ), known as the prefix
of the path traversed on 𝐺 . Let ℎ be the prediction horizon. The

aim is to estimate the conditional likelihood Pr(𝑠 | ℎ, 𝑝,𝐺), where
𝑠 = (𝑣𝑡+1, . . . , 𝑣𝑡+ℎ) represents the suffix of the path traversed on
𝐺 . This estimation uses the CRETEL algorithm proposed in [3].

At time 𝑡 , the agent is represented as a sparse vector 𝑥𝑥𝑥𝑡 ∈ R𝑛≥ 0
that has been normalized to have a sum of one. The 𝑖th non-zero
element of 𝑥𝑥𝑥𝑡 represents the probability that the agent is located at
node 𝑣𝑖 at 𝑡 . A trajectory of the agent is defined as 𝜙 Δ

= (𝑥𝑥𝑥𝜏 : 𝜏 ∈ I),
where I is a sub-sequence of 1, 2, . . .. Therefore, estimating the
likelihood Pr(𝑠 | ℎ, 𝑝,𝐺) is equivalent to estimating Pr(𝑠 | ℎ, 𝜙,𝐺).

CRETEL [3] is a generative model for graphs. In other words,
the model can generate a suffix path given a prefix path and a
horizon. To account for the directionality of edges in the graph,
a latent graph is defined as Φ Δ

= (V, E,𝑤𝜙 ), where 𝑤𝜙 = 𝑓𝜃 (𝐺,𝜙)
is a multi-layer perceptron (MLP) network that encodes the edge
directionality in the graph 𝐺 . Specifically, the MLP computes the
non-normalized weights of each edge as follows

𝑧𝑖→𝑗 = MLP(𝑐𝑐𝑐𝑖 ,𝑐𝑐𝑐 𝑗 , 𝑓𝑓𝑓 𝑖 , 𝑓𝑓𝑓 𝑗 , 𝑒𝑒𝑒𝑖→𝑗 ) . (1)

Here,𝑐𝑐𝑐𝑖 and𝑐𝑐𝑐 𝑗 are the pseudo-coordinates of the sender and receiver
node, respectively, while 𝑓𝑓𝑓 𝑖 and 𝑓𝑓𝑓 𝑗 represent the features of the
sender and receiver nodes.

In (1), the feature vector𝑒𝑒𝑒𝑖→𝑗 corresponds to the edge connecting
the sender and receiver nodes. The computed MLP outputs are
normalized using the softmax function, expressed as follows

𝑤𝜙 (𝑒𝑖→𝑗 ) =
𝑧𝑖→𝑗∑

𝑣𝑙 ∈V 𝑧𝑖→𝑙

. (2)

Let 𝑐𝑐𝑐𝑖, 𝑗 denote the 𝑗th element of the row vector 𝑐𝑐𝑐𝑖 ∈ R1×|I | . The
pseudo-coordinates 𝑐𝑐𝑐𝑖 = [𝑐𝑐𝑐𝑖,1, . . . ,𝑐𝑐𝑐𝑖, | I | ] ∈ R1×|I | are computed
using a GNN of𝐾 layers as explained next. For a trajectory of length
|I | given by

𝑋𝑋𝑋 = [𝑥𝑥𝑥I1 , . . . ,𝑥𝑥𝑥I|I | ] ∈ R
𝑛×|I | , (3)

the graph signals of the GNN of size 𝑛 × |I| are formally given by

𝐻𝐻𝐻 (𝑘 ) = 𝜎
(
𝐴𝐴𝐴 𝐻𝐻𝐻 (𝑘−1) 𝑊𝑊𝑊 (𝑘−1)

)
, 𝑘 = 1, 2, . . . 𝐾, (4)

where 𝜎 (·) denotes the logistic function,𝐴𝐴𝐴 ∈ R𝑛×𝑛 is the adjacency
matrix of the graph, and𝑊𝑊𝑊 ∈ R | I |× |I | are the GNN weights. The
recursion in (4) is initialized with𝐻𝐻𝐻 (0) = 𝑋𝑋𝑋 . This way, we have

𝑐𝑐𝑐𝑖 = [𝐻𝐻𝐻 (𝐾 ) ]𝑖: = [𝑐𝑐𝑐𝑖,1, . . . ,𝑐𝑐𝑐𝑖, | I | ] . (5)

Given a target distribution 𝑥𝑥𝑥𝑡+ℎ , the model tries to estimate the
destination distribution 𝑥𝑥𝑥𝑡+ℎ over a horizon ℎ. This is done by the
non-backtracking walk [7]

𝑥𝑥𝑥𝑡+ℎ = 𝐵𝐵𝐵+
𝜙
𝑃𝑃𝑃ℎ
𝜙
𝐵𝐵𝐵𝜙 𝑥𝑥𝑥𝑡 , (6)

where 𝑃𝑃𝑃𝜙 ∈ R𝑚×𝑚 has elements

[𝑃𝑃𝑃𝜙 ]𝑒𝑖→𝑗 ,𝑒𝑘→𝑙
=

{
0 if 𝑗 ≠ 𝑘 or 𝑖 = 𝑙
𝑤𝜙 (𝑒𝑘→𝑙 )

1−𝑤𝜙 (𝑒𝑘→𝑖 ) otherwise
(7)

and 𝐵𝐵𝐵𝜙 a is a 𝑚 × 𝑛 matrix with [𝐵𝐵𝐵𝜙 ]𝑒𝑖→𝑗 ,𝑘 = 0 if 𝑘 ≠ 𝑖 and
𝑤𝜙 (𝑒𝑘→𝑗 ), otherwise. In this case, the dot loss

𝑔(𝑥𝑥𝑥𝑡+ℎ,𝑥𝑥𝑥𝑡 ) = −𝑥𝑥𝑥𝑇
𝑡+ℎ𝑥𝑥𝑥𝑡+ℎ (8)

can be applied to train the model.
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Figure 2: Transformation of a simple graph to its correspond-
ing dual hypergraph. The incidence matrix of the original
graph and the dual hypergraph is presented. A visual repre-
sentation of how the directed edges are computed in the dual
hypergraph is given.

2.2 Dual Hypergraph Transformation (DHT)
A graph𝐺 can be fully described by its node and edge features as
well as the connections among them. Node features are represented
with matrix 𝐹𝐹𝐹 ∈ R𝑛×𝑑 where 𝑛 is the number of nodes, and 𝑑 is
the dimension of a node feature vector. Respectively, edge features
are represented with matrix 𝐸𝐸𝐸 ∈ R𝑚×𝑑 ′ , where𝑚 is the number of
edges, and 𝑑′ is the dimension of an edge feature vector. The adja-
cency matrix𝐴𝐴𝐴 captures node connections. The incidence matrix
of an undirected graph given by𝑀𝑀𝑀 ∈ {0, 1}𝑛×𝑚 or the incidence
matrix of a directed graph given by𝑀𝑀𝑀 ∈ {−1, 0, 1}𝑛×𝑚 , provides
additional information that captures the node-edge relationships
as well as the orientation of the edges. Thus, a graph can be repre-
sented as 𝐺 = (𝐹𝐹𝐹,𝑀𝑀𝑀,𝐸𝐸𝐸).

A hypergraph is a mathematical structure that generalizes the
concept of a graph. In a hypergraph, edges can connect any number
of vertices, not just two, as in a traditional graph. In this way, higher-
order interactions can be represented. A hypergraph is typically
represented by a set of vertices and a collection of hyperedges that
connect subsets of these vertices. This information can be extracted
by the incidence matrix𝑀𝑀𝑀 . A hypergraph can be defined as 𝐺∗ =
(𝐹𝐹𝐹 ∗,𝑀𝑀𝑀∗, 𝐸𝐸𝐸∗), where 𝐹𝐹𝐹 ∗ and 𝐸𝐸𝐸∗ are the node and hyperedge features
respectively, and𝑀𝑀𝑀∗ is the incidence matrix of the hypergraph.

The Dual Hypergraph Transform (DHT) interchanges the roles
of nodes and edges of the original graph [6]. The features accompa-
nying the nodes and edges are preserved, but they also change
roles. More specifically, an edge in the original graph is trans-
formed into a node in the dual hypergraph. A node in the original
graph is transformed into a hyperedge in the dual hypergraph,
i.e., 𝐹𝐹𝐹 ∗ = 𝐸𝐸𝐸 ∈ R𝑚×𝑑 ′ and 𝐸𝐸𝐸∗ = 𝐹𝐹𝐹 ∈ R𝑛×𝑑 . The incidence matrix
of the dual hypergraph is the transposed incidence matrix of the
original graph, i.e.,𝑀𝑀𝑀∗ = 𝑀𝑀𝑀⊤. The formal representation of this
transformation is given by

𝐺 = (𝐹𝐹𝐹,𝑀𝑀𝑀,𝐸𝐸𝐸) → 𝐺∗ = (𝐸𝐸𝐸,𝑀𝑀𝑀⊤, 𝐹𝐹𝐹 ) . (9)

The DHT is a bijective algorithm, implying that by applying it to
the dual hypergraph𝐺∗, the original graph𝐺 can be reconstructed.
Fig. 2 shows an example of the DHT applied to a simple graph.

2.3 Feature Extraction in Dual Hypergraph
The DHT algorithm [6] transforms a given graph into its dual
hypergraph and extracts features using the incidence matrix in two
ways.

If the original graph G is undirected, the incidence matrix𝑀𝑀𝑀 ∈
{0, 1}𝑛×𝑚 is a binary matrix of size 𝑛 ×𝑚, where 𝑛 and𝑚 are the
numbers of nodes and edges, respectively. Each node 𝑙 is associated
with an incidence row vector 𝑞𝑞𝑞𝑙 ∈ {0, 1}𝑚 with elements indexed
by 𝜅 = 1, 2, . . . ,𝑚, where 𝜅 corresponds to the edge’s id. Applying
the DHT algorithm, the row vector 𝑞𝑞𝑞𝑙 ∈ {0, 1}𝑚 of matrix 𝑀𝑀𝑀 is
transformed into a column vector 𝑞𝑞𝑞∗

𝑙
∈ {0, 1}𝑚 ≡ 𝑞𝑞𝑞⊤

𝑙
of matrix𝑀𝑀𝑀∗.

As a result, the role of 𝜅 changes, and it indexes the ids of the nodes
in the dual hypergraph. Each 1 in column vector 𝑞𝑞𝑞∗

𝑙
corresponds

to a value of 𝜅 indicating which nodes of the dual hypergraph are
connected with the hyperedge 𝑙∗.

For example, if 𝑞𝑞𝑞∗
𝑙
has 1 in positions 𝜅 = 1, 2, 5, it means that

hyperedge 𝑙∗ is associated with the nodes of the dual hypergraph
𝑣∗1 , 𝑣

∗
2 , and 𝑣

∗
5 . The corresponding description for the original graph

indicates that node 𝑙 participates in edges 𝑒1, 𝑒2, and 𝑒5. This is
essentially a one-hot encoding scheme for multi-categorical data,
where the categories correspond to the edges in the original graph.
The extracted feature is the cosine similarity between incidence row
vectors𝑞𝑞𝑞𝑣𝑖 and𝑞𝑞𝑞𝑣𝑗 , where 𝑣𝑖 is the source node, and 𝑣 𝑗 is the target
node of an arbitrary edge 𝑒 . The key name similarity-hyperedge
refers to the experiments that use this feature.

For a directed original graph 𝑀𝑀𝑀 ∈ {−1, 0, 1}𝑛×𝑚 has size 𝑛 ×
𝑚, where 𝑛 and 𝑚 are the numbers of nodes and edges, respec-
tively. Each node 𝑙 is associated with an incidence row vector
𝑞𝑞𝑞𝑙 ∈ {−1, 0, 1}𝑚 . Examining the corresponding row vector𝑞𝑞𝑞𝑙 of the
node 𝑙 , a value of −1 in position 𝜅 indicates that node 𝑙 is a source
node in edge 𝜅 . In contrast, a value of 1 in position 𝜅 indicates that
node 𝑙 is a target node in edge 𝜅 since 𝜅 represents the id of edges.
If 𝑞𝑞𝑞𝑙 consists only of {−1, 0} values, then there are no outgoing
edges from node 𝑙 , and if it consists only of {1, 0} values, there are
no incoming edges to node 𝑙 . To extract new features related to the
input and output edge degrees of the dual hypergraph nodes, the
edges’ direction must be determined. In this case, the key name for
experiments is DHnode-in-out-degree. This is accomplished by
examining the column vectors𝑞𝑞𝑞∗

𝑙
of matrix𝑀𝑀𝑀∗ and considering the

combinations between the associated nodes of the dual hypergraph
for each hyperedge 𝑙∗. Each node 𝑣∗

𝑖
with 𝑖 = 1, 2, . . . ,𝑚 in the

dual hypergraph corresponds to an edge 𝑒𝑖 with 𝑖 = 1, 2, . . . ,𝑚 in
the original graph. For every combination (𝑣∗

𝑖
, 𝑣∗
𝑗
), the existence

of the path 𝑒𝑖 → 𝑒 𝑗 in the original graph that passes through the
examined node 𝑙 is verified.

For example, consider hyperedge 𝐵𝐵𝐵 in Fig. 2, which connects
nodes 𝑣1, 𝑣2, and 𝑣3. The corresponding values in the incidence
matrix𝑀𝑀𝑀∗ is the column vector 𝑞𝑞𝑞2 with values [1,−1, 1, 0, 0]⊤. We
check each combination of participating nodes, which are (1 −
2), (1 − 3), (2 − 1), (2 − 3), and (3 − 1), (3 − 2). The original graph
has a path for edges 𝑒1 → 𝑒2 through node 𝑣𝐵 and a path for edges
𝑒3 → 𝑒2 through node 𝑣𝐵 .

2.4 Optimizer Selection
Neural network optimization typically involves updating themodel’s
weights using gradient-based algorithms such as Gradient Descent
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Table 1: Performance of GRETEL model when the Lausanne dataset is used.

Dataset Optimizer Feature Target-probability Choice-accuracy Choice-accuracy_deg3 Precision-top1 Precision-top5 Path-nll Path-nll-deg3

Lausanne

Adam

Primal 15.5 ± 0.1 90.22 ± 0.1 52.28 ± 1.1 20.32 ± 0.5 49.5 ± 0.8 3.80 ± 1.27 3.32 ± 1.16
Similarity-hyperedge 15.5 ± 0.08 90.5 ± 0.08 53.7 ± 0.2 20.72 ± 0.2 49.38 ± 0.6 3.48 ± 0.83 3.03 ± 0.78
DHnode-in-out-degree 15.39 ± 0.01 90.6 ± 0.03 54.18 ± 0.1 20.32 ± 0.3 50.28 ± 1.32 2.23 ± 0.06 1.88 ± 0.05

Similarity-hyperedge-DHnode-
in-out-degree

15.44 ± 0.1 90.46 ± 0.04 53.56 ± 0.1 20.72 ± 0.2 49.9 ± 1.3 3.04 ± 0.80 2.65 ± 0.74

AdaHessian

Primal 23.8 ± 0.1 94.6 ± 0.2 72.04 ± 1.8 32.58 ± 0.4 65.72 ± 0.1 2.06 ± 0.07 1.62 ± 0.06
Similarity-hyperedge 23.2 ± 0.1 94.0 ± 0.1 72.56 ± 0.4 30.4 ± 0.5 66.32 ± 0.7 1.90 ± 0.01 1.51 ± 0.01
DHnode-in-out-degree 24.0 ± 0.2 94.0 ± 0.1 72.9 ± 1.0 30.14 ± 1.0 67.46 ± 0.3 2.36 ± 0.11 1.86 ± 0.1

Similarity-hyperedge-DHnode-
in-out-degree

23.8 ± 0.2 93.78 ± 0.08 71.18 ± 0.6 32.2 ± 0.7 65.46 ± 0.5 2.41 ± 0.08 1.92 ± 0.07

Table 2: Performance of GRETEL model when the Geolife dataset is used

Dataset Optimizer Feature Target-probability Choice-accuracy Choice-accuracy_deg3 Precision-top1 Precision-top5 Path-nll Path-nll-deg3

Geolife

Adam

Primal 6.04 ± 0.3 82.84 ± 0.7 64.98 ± 1.7 6.1 ± 0.4 29.76 ± 0.2 3.58 ± 0.69 1.33 ± 0.26
Similarity-hyperedge 5.94 ± 0.3 81.88 ± 0.1 63.64 ± 0.7 6.04 ± 0.4 30.06 ± 0.5 3.85 ± 0.930 1.406 ± 0.32
DHnode-in-out-degree 5.52 ± 0.04 81.34 ± 0.2 63.22 ± 0.3 5.56 ± 0.1 28.94 ± 0.2 3.39 ± 0.31 1.17 ± 0.07

Similarity-hyperedge-DHnode-
in-out-degree

5.6 ± 0 82.0 ± 0.1 62.8 ± 0.1 5.56 ± 0.05 29.42 ± 0.1 2.81 ± 0 1.041 ± 0

AdaHessian

Primal 11.7 ± 0.1 84.32 ± 0.1 74.88 ± 0.2 14.72 ± 0.2 33.98 ± 0.2 7.69 ± 0.373 1.97 ± 0.04
Similarity-hyperedge 11.92 ± 0.2 85.36 ± 0.2 76.88 ± 0.5 15.44 ± 0.4 35.0 ± 0.2 7.52 ± 0.35 1.93 ± 0.06
DHnode-in-out-degree 11.6 ± 0.02 84.0 ± 0.08 73.78 ± 0.2 14.3 ± 0.1 33.1 ± 0.3 7.72 ± 0.12 2.14 ± 0.03

Similarity-hyperedge-DHnode-
in-out-degree

12.22 ± 0.03 85.52 ± 0.01 77.02 ± 0.04 15.68 ± 0.06 34.62 ± 0.08 8.83 ± 0.10 2.47 ± 0.02

or Stochastic Gradient Descent [13]. However, these methods can
slowly converge and tend to overfit the training data, resulting in
poor generalization performance on unseen data [8]. To address
these issues, researchers have proposed second-order optimization
methods that utilize information from the Hessian matrix of the
loss function. In addition to the Hessian information, gradient infor-
mation can improve convergence and generalization performance.
AdaHessian [16] is one such method that modifies the update rule
of the popular Adam optimizer [8] to include second-order infor-
mation, resulting in improved convergence and generalization per-
formance on various tasks. Specifically, AdaHessian uses a Hessian
diagonal matrix approximator [1] to estimate the second-order
information and updates the model parameters as follows

𝜃𝜃𝜃𝑡+1 = 𝜃𝜃𝜃𝑡 − 𝜂𝑡 𝑝𝑝𝑝𝑡 ⊘𝑚𝑚𝑚𝑡 , (10)

where ⊘ defines the element-wise division operator between two
vectors. Here, 𝜃𝜃𝜃𝑡 and 𝜂𝑡 are the model parameters and the learn-
ing rate at time step 𝑡 , respectively.𝑚𝑚𝑚𝑡 and 𝑝𝑝𝑝𝑡 are the first and
second moments of the AdaHessian, respectively, computed using
exponential moving averages, i.e., for 0 ≤ 𝑘 < 1:

𝑚𝑚𝑚𝑡 =
(1 − 𝛽1)

∑𝑡
𝑖=1 𝛽

𝑡−𝑖
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Here, 𝛽1 and 𝛽2 stand for the exponential decay rates for the first and
second-moment estimations, respectively. Typical values are 𝛽1 =
0.9 and 𝛽2 = 0.999. Moreover, in (11), 𝑔𝑔𝑔𝑖 is the gradient of the loss
function while in (12)𝐷𝐷𝐷𝑖 is the spatially averaged Hessian diagonal
approximation of the loss function at time step 𝑖 [16]. It should be
noted that Adam applies similar formulas for modifying the model
parameters. However, it differs in the aspect that instead of using
the averaged Hessian diagonal𝐷𝐷𝐷𝑖 as in (12), it utilizes the gradient
𝑔𝑔𝑔𝑖 in the second-order moment calculation. DualGRETEL+ uses the

Adahessian optimizer in contrast to the original GRETEL model,
which resorts to the Adam optimizer [3]. Experiments are reported
in Section 3, which demonstrate the effectiveness of AdaHessian in
path inference.

3 EXPERIMENTS
Experiments have been conducted on three different datasets with
two main objectives. Firstly, to demonstrate the effectiveness of
incorporating novel hypergraph features into the GRETEL model.
Secondly, to evaluate the impact of using the AdaHessian optimizer
on model performance and generalization ability. The experimental
findings indicate that the AdaHessian optimizer has resulted in
better performance and higher accuracy in path inference problems
than the Adam optimizer.

All three datasets use navigation paths derived from GPS data,
which can be prone to errors due to GPS noise, signal loss, or other
factors. Therefore, a pre-processing step is required to align the
GPS data to a known road network, enabling the determination of
the vehicle’s route. This process is known as map matching and
aims to improve the accuracy and usefulness of the location data.

The first dataset is the same as in [3], which includes food deliv-
eries occurring over the OpenStreetMap road network of Lausanne.
The map graph includes 18, 156 nodes and 32, 468 edges.The sec-
ond dataset, Geolife [17], contains GPS trajectories recorded by
Microsoft Research Asia from April 2007 to August 2012 in Beijing,
China. The dataset includes additional data, such as timestamps, al-
titude, user speed, and GPS coordinates. Geolife consists of 32, 442
nodes and 53, 050 edges. The third dataset, iWet, includes tourist
itineraries for buses in the Central Macedonia region of Greece.
iWet comprises 18, 317 nodes and 43, 787 edges. Both Geolife and
iWet use the Fast Map Matching algorithm [15], a graph-based ap-
proach that leverages a probabilistic model and dynamic program-
ming to match GPS points to road segments. In contrast, Lausanne
dataset uses a Hidden Markov Model (HMM) as a map matching
algorithm [11].
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Table 3: Performance of GRETEL model when the iWet dataset is used.

Dataset Optimizer Feature Target-probability Choice-accuracy Choice-accuracy-deg3 Precision-top1 Precision-top5 Path-nll Path-nll-deg3

iWet

Adam

Primal 1.32 ± 0 63.52 ± 0 50.93 ± 0.02 3.31 ± 0 5.2 ± 0 5.09 ± 0 2.63 ± 0
Similarity-hyperedge 1.32 ± 0 63.52 ± 0 50.93 ± 0.02 3.31 ± 0 5.2 ± 0 5.09 ± 0 2.63 ± 0
DHnode-in-out-degree 1.32 ± 0 63.52 ± 0 50.93 ± 0.02 3.31 ± 0 5.2 ± 0 5.09 ± 0 2.63 ± 0

Similarity-hyperedge-DHnode-
in-out-degree

1.32 ± 0 63.52 ± 0 50.93 ± 0.02 3.31 ± 0 5.2 ± 0 5.09 ± 0 2.63 ± 0

AdaHessian

Primal 5.07 ± 0.1 86.16 ± 0.3 88.01 ± 0.9 11.17 ± 0.03 18.38 ± 0.4 4.40 ± 0.23 1.51 ± 0.06
Similarity-hyperedge - - - - - - -
DHnode-in-out-degree 6.29 ± 0.06 80.94 ± 0.3 75.68 ± 0.5 17.02 ± 0.6 22.83 ± 0.6 14.87± 0.5 7.36 ± 0.39

Similarity-hyperedge-DHnode-
in-out-degree

5.81 ± 0.1 81.19 ± 0.6 76.8 ± 0.8 15.91 ± 0.6 21.45 ± 0.8 13.0 ± 0.98 6.12 ± 0.53

(a) (b)

(c) (d)

Figure 3: Prediction examples in Geolife dataset, using similarity-hyperedge and DHnode-in-out-degree features. Each row
showcases different examples. The left-column images (a) and (c) display 5 historical trajectory prefixes, visually represented
with markers that transition from blue to purple, with the green circle signifying the actual target location. Red markers
indicate the predicted trajectory suffix reflecting the target distribution. In the right-column images (b) and (d), the direction of
the predicted trajectory is presented along with the 5 trajectory prefixes.

The GRETEL model utilizes specific features for nodes and edges,
referred to as primal, including the distance between nodes and the
average speed limit. These features are combined with all features
extracted from the dual hypergraph to serve as edge features. The
metrics provided by [3] are used. The average probability of the
model selecting a node with non-zero likelihood is measured by
the target-probability. In contrast, choice accuracy evaluates the
accuracy of an algorithm’s decisions at each intersection of the

ground-truth path between nodes 𝑣𝑡 and 𝑣𝑡+ℎ , where ℎ represents
the prediction horizon. This metric is calculated for nodes with
at least 3 and 1 degrees. The metrics precision-top1 and precision-
top5 calculate the accuracy of the model’s prediction against the
actual target by considering the best predictions, where the number
of best predictions ranges from 1 to 5. The path-nll measures the
negative log-likelihood. All results presented here are based on five
independent executions, including the mean and standard deviation.
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(e) (f)

(g) (h)

Figure 3: (cont.) The left-column images (e) and (g) display 5 historical trajectory prefixes, visually represented with markers
that transition from blue to purple, with the green circle signifying the actual target location. Red markers indicate the
predicted trajectory suffix reflecting the target distribution. In the right-column images (f) and (h), the direction of the predicted
trajectory is presented along with the 5 trajectory prefixes.

The experimental analysis is performed for each dataset, where
the model’s performance is compared when using the hypergraph
features and AdaHessian optimizer. The baseline case involves
using the primal features and Adam optimizer.

Table 1 presents the results of applying GRETEL to the Lausanne
dataset. Incorporating dual hypergraph features improves perfor-
mance across all metrics when the Adam optimizer is used, with
the DHnode-in-out-degree feature achieving the highest perfor-
mance. Similar results are observed when using the AdaHessian
optimizer, except for choice accuracy and precision-top1. Both simi
larity-hyperedge and DHnode-in-out-degree features outper-
form the primal features. Of particular interest is the substantial
increase in the overall performance of GRETEL with the AdaHes-
sian optimizer. The most significant increase is observed in target-
probability and precision-top1, with a percentage increase of 54.8%
and 57.2%, respectively. The same percentage increase around 34%
is observed for choice-accuracy-3 and precision-top5. For path-nll

and path-nll-3, the percentage increase is 14.8% and 19.6% respec-
tively, while the smallest increase is observed for choice-accuracy,
but the value is already high.

The corresponding results using Geolife dataset are presented
in Table 2.When using theAdamoptimizer, the dual hypergraph fea-
tures outperform the baseline case only in metrics such as precision-
top5, path-nll, and path-nll-3. In other metrics, the primal features
show slightly better results. However, when using the AdaHes-
sian optimizer, the dual hypergraph features improve the model’s
performance in all metrics. The similarity-hyperedge-DHnode-
in-out-degree and Similarity-hyperedge features exhibit the
best performance. In this case, the impact of the two optimizers
on the results is mixed, with both positive and negative effects.
Specifically, there is a significant increase in precision-top1 and
target-probability of 157.04% and 102.3%, respectively. The differ-
ence in precision-top5 and choice-accuracy-3 is similar, around 17%
while in path-nll and path-nll-3, there is a decrease of 167.6% and
85.57% respectively.
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The experimental results for the iWet dataset can be found in
Table 3. When the Adam optimizer was utilized, the model exhib-
ited behavior indicative of being stuck in a local minimum and
showed no progress during training. This behavior can sometimes
occur with the Adam optimizer when training deep learning mod-
els, mainly when dealing with non-convex optimization problems.
The optimizer may fail to converge to the global minimum. In
contrast, while the model’s performance with AdaHessian was
notably lower than in the other datasets, the use of dual hyper-
graph features has still improved the model’s performance. The
use of DHnode-in-out-degree feature increases the model’s per-
formance.

Figure 3 presents 4 instances of GPS trajectory prediction in the
Geolife dataset. Themodel used for the prediction uses similarity-
hyperedge and DHnode-in-out-degree features.

4 CONLCUSION
GPS navigation data can be represented as graphs, where each node
corresponds to a location, and each edge represents a route or a
path between locations. Such representation enables the modeling
of complex relationships between GPS points. In this work, we pre-
sented DualGRETEL+, an enhanced version of the GRETEL model,
for accurate predictions of object movement in space. DualGRETEL+
utilizes a dual hypergraph to extract additional features, allowing
for a more flexible and expressive representation of relationships
within GPS data. The resulting hypergraph can be represented us-
ing an incidence matrix, which captures all the information. By
incorporating these new features into GRETEL, we significantly
improved its performance on three datasets. We also demonstrated
the efficacy of the AdaHessian optimizer for further enhancing
the model’s performance. This study highlights the potential of
hypergraphs and second-order optimization methods for analyzing
and predicting object movement in GPS data.
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