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Abstract—This paper presents a novel Convolutional Neural
Network (CNN) architecture for 2D human pose estimation from
RGB images that balances between high 2D human pose/skeleton
estimation accuracy and rapid inference. Thus, it is suitable for
safety-critical embedded AI scenarios in autonomous systems,
where computational resources are typically limited and fast
execution is often required, but accuracy cannot be sacrificed.
The architecture is composed of a shared feature extraction
backbone and two parallel heads attached on top of it: one
for 2D human body joint regression and one for global human
body structure modelling through Image-to-Image Translation
(I2I). A corresponding multitask loss function allows training of
the unified network for both tasks, through combining a typical
2D body joint regression with a novel I2I term. Along with
enhanced information flow between the parallel neural heads
via skip synapses, this strategy is able to extract both ample
semantic and rich spatial information, while using a less complex
CNN; thus it permits fast execution. The proposed architecture is
evaluated on public 2D human pose estimation datasets, achieving
the best accuracy-speed ratio compared to the state-of-the-art.
Additionally, it is evaluated on a pedestrian intention recognition
task for self-driving cars, leading to increased accuracy and speed
in comparison to competing approaches.

Index Terms—2D human pose estimation, Convolutional Neu-
ral Networks, Generative Adversarial Networks, self-driving cars,
autonomous systems.

I. INTRODUCTION

ESTIMATING 2D human poses/skeletons from RGB im-
ages is important in many applications that involve visu-

ally captured human activities. Given the recent developments
in computer vision for autonomous systems (e.g., [1]–[16]), as
well as the rapidly increasing interest in self-driving cars and
human-car interfaces [17]–[19], 2D human pose estimation
[20], [21] is becoming more and more significant for several
relevant tasks. For instance, to monitor the engagement of the
driver [22], to facilitate traffic control gesture recognition [23],
or to recognize pedestrian intention [24]–[26]. The latter task
is of paramount importance for human safety and consists in
deciding whether a visible pedestrian is about to cross the road
or not. 2D human pose estimation is widely employed by state-
of-the-art methods (e.g., [27]–[29]) as a preprocessing step to
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extract 2D pedestrian skeletons from each video frame. Subse-
quently, the skeletons are fed as input to an intention classifier,
which yields the final prediction. Similarly, 2D human pose
estimation is crucial for skeleton-based action/gesture recogni-
tion [30]–[33] in real-world applications, as it is used to extract
and provide 2D skeletons to the action/gesture classifier.

Essentially, 2D skeleton/human pose estimation entails es-
timating the pixel coordinates of a predefined set of human
body joints on a 2D image (typically RGB). It is a challenging
problem, as humans can appear in very different scenes and
scales, under a huge range of body postures. Moreover, occlu-
sion of certain body joints is typical in most cases, rendering
2D human pose estimation even more challenging.

Deep Convolutional Neural Networks (CNNs) are an effec-
tive algorithmic approach for handling the above issues. Many
relevant CNN architectures have been proposed, with the
most successful ones [34]–[36] being those that predict high-
resolution outputs. Typically, a subnetwork first processes the
input to decrease the resolution and extract semantic features,
while a consecutively placed subnetwork is subsequently used
to raise the resolution and produce the final output, from
which the 2D human body joint positions can be obtained.
Overall, a single monolithic network is tasked to encode both
the spatial and the semantic information required for localizing
and identifying each body joint on the 2D input image (e.g., a
CNN encoder-decoder architecture). However, these methods
either demonstrate insufficient accuracy, or only manage to
perform well at the expense of execution speed. Often, the
reason is the large number of convolutional/deconvolutional
layers and downsampling/upsampling calculations that are
necessary to improve performance, rendering these methods
incapable of achieving fast inference due to high computa-
tional load. This issue is especially pronounced in embedded
AI application domains, such as autonomous systems (self-
driving cars, autonomous drones, etc.), where computational
capabilities are typically limited.

Motivated by the difficulties 2D human pose estimators
typically face when trying to offer both high accuracy and
fast execution speed, this research proposes a novel CNN
architecture able to balance well between these competing
demands on embedded hardware.

To this end, an approach orthogonal to previous attempts is
proposed: combining a regular 2D human pose regression head
with an auxiliary Generative Adversarial Network (GAN)-
based [37] Image-to-Image Translation (I2I) [38] head in a
unified multihead architecture, trained in a multitask fashion.
The two parallel neural heads are attached on top of a common
CNN backbone for shared feature extraction. In order to
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accommodate a single set of image features for both tasks, the
overall CNN is trained with a composite loss function, com-
posed of a regular regression term and a novel I2I term. The
latter one is specifically designed to push the auxiliary neural
head towards modelling the global human body structure.
Although the two tasks are essentially distinct formulations of
a single problem, the different learning paradigms of the two
heads (supervised and adversarial) lead to partially different
patterns needed to be extracted from the common RGB image
inputs.

Typically, I2I involves translating an input image to a corre-
sponding output image which has similar general structure but
is not identical with respect to local details (e.g., day-to-night
images, grayscale-to-color images, etc.) [38]. In the proposed
method, I2I is utilized to model the global spatial human
body structure as an additional auxiliary task during training,
by translating an input RGB image to the corresponding
human body structure image. The related ground-truth images
for training purposes are manually constructed by suitably
processing the ground-truth locations of body joints on each
training image. The underlying intuition is that by training the
auxiliary I2I head for this objective in an adversarial manner,
spatial information about the global human body structure
is encoded in its intermediate features. This is due to the
fact that GAN-based I2I demands that the auxiliary neural
head produces realistic outputs that resemble the ground-truth
human body structure images in their overall composition, but
not necessarily match them exactly in their local details. Un-
surprisingly, successful execution of such a task relies mainly
on modelling the global spatial structure of the human body,
instead of localized semantic and 2D positional information
about each joint. Thus, the various subtasks implicitly involved
in 2D body joint estimation are explicitly partitioned among
the two parallel heads: the auxiliary/main head is assigned
global spatial/local semantic+spatial modelling, respectively.
Moreover, the information about global body structure inter-
nally encoded in the layers of the auxiliary I2I head is passed
over to the main 2D human pose regression head, via skip
synapses properly placed to facilitate interhead information
flow, during both the training and the inference stage. Thus, the
main neural head is able to enrich its semantic features before
outputting its final predictions, in order to better identify and
precisely localize each body joint on the 2D image.

The proposed unified network architecture is trained end-to-
end in a multitask setting. This forces the backbone network
to extract features that explicitly facilitate both global spatial
human body structure modelling (by the auxiliary neural head)
and localized 2D body joint regression (by the main neural
head). Thus, rich baseline features for accurate 2D human
pose estimation are extracted, even without the skip synapses.
Thus the proposed method leads to increased 2D human
pose estimation accuracy, which allows us to employ a more
shallow/lightweight (therefore faster) network architecture for
the backbone network and the neural heads, without any reduc-
tions in test accuracy compared to the state-of-the-art. In this
manner a better accuracy-speed ratio is achieved, rendering
the presented approach particularly suitable for embedded AI
applications (such as autonomous systems).

Experiments on two public 2D human pose estimation
datasets show that the proposed method outperforms in terms
of accuracy the baseline architecture, ceteris paribus, as well
as all competing methods. Moreover, its required inference
runtime is equal to or smaller than that of the state-of-
the-art. Thus, overall, the proposed method offers the best
accuracy-speed ratio. As a case study for application in
autonomous systems, the presented architecture is also eval-
uated on a pedestrian intention recognition task for self-
driving cars, given this problem’s importance in ensuring
autonomous vehicle safety. Integrating into the proposed CNN
a simple Long Short-Term Memory (LSTM) classification
head leads to increased accuracy, in comparison to directly
comparable competing approaches. Finally, detailed ablation
studies demonstrate the contribution of each component of the
proposed CNN architecture.

To summarize, the novelties of this work are twofold:
• First, a novel reformulation of the 2D human pose es-

timation problem as an I2I task (global body structure
modelling) is proposed, along with a respective loss term
for training a conditional GAN to solve it.

• Second, a novel CNN architecture is introduced that
consists of a base feature extraction CNN, two parallel
neural heads and a set of skip synapses conjoining them.
It effectively combines regression and I2I to increase
2D human pose estimation performance compared to
the baseline, by partitioning the involved computational
subtasks among the two heads. Thus it offers the best
accuracy-speed ratio.

The rest of the paper is organized as follows. Previous 2D
human pose estimation approaches are discussed in Section II.
The proposed 2D human pose estimation CNN architecture
is described in Section III. The experimental setup and the
extensive evaluation of the proposed CNN compared to state-
of-the-art 2D human pose estimation methods, as well as
detailed ablation studies can be found in Section IV. Finally,
conclusions are drawn in Section V.

The source code and the trained neural models
are available on request, by sending an e-mail to
cpapaionn@csd.auth.gr, imademlis@csd.auth.gr.

II. RELATED WORK

2D human pose estimation approaches vary: pictorial struc-
ture models [39], deformable part models [40] and deep
learning [41] have all been tried. This paper focuses only on
state-of-the-art CNN-based methods.

First, a set of relevant algorithms relies on directly regress-
ing the 2D pixel coordinates of a predefined set of human
body joints [41], [42]. For example, [41] aimed to achieve
high-precision 2D body joint estimates by training a cascade
of pose regressors, where the body joint predictions of a
network stage is refined at each subsequent stage by predicting
a displacement of the joint locations to the true location. In a
similar fashion, the initial body joint location predictions are
progressively changed in [42] to obtain the final predictions
using an Iterative Error Feedback process.

More recent approaches [34]–[36], [43] predict the 2D
body joint locations indirectly. These CNNs output body joint



heatmaps; then, heat maxima indicate 2D body joint locations.
[44] models human body structure using a bidirectional tree
structured CNN-based network, so that the feature channels
at a body joint can receive information from other joints. In
order to predict accurate body joint heatmaps, [45] combined
CNNs with a deformable mixture of parts model in an end-to-
end framework. With the same goal in mind, Stacked Hour-
glass [34] used a CNN architecture consisting of sequential
“hourglass” modules, with features across scales combined
to output high-resolution maps. Stacked hourglass networks
were also adopted in [46] to generate body joint heatmaps
from features at multiple resolutions, which are then utilized
in Conditional Random Fields (CRFs) to refine predictions.
CPN [43] decomposed the 2D human pose estimation problem
into two steps. In the first step, a feature pyramid CNN
is used to localize the “easy” body joints, such as hands.
Then, the multi-scale feature maps are fused and given as
input to a second network tasked to detect the “hard” body
joints using an online hard joint mining loss function. In
addition, a two-stage 2D human pose estimation framework
was proposed in [20], where multiple Independent Losses Pose
Nets (ILPNs) were first employed to infer body joint locations
on a global level, while Convolutional Local Detectors (CLDs)
were subsequently tasked to refine the body joint detections
in the potential image regions indicated by the ILPNs. In
contrast, [47] aimed to learn the human pose quality alongside
2D human pose regression by augmenting typical network
architectures with a pose quality prediction neural block,
resulting in a small increase on 2D human pose estimation
accuracy.

In [35] a very simple CNN architecture based on convolu-
tional and deconvolutional layers was used, to show that the
crucial part of 2D human pose estimation is obtaining high-
resolution feature maps. Similarly, a CNN architecture for
2D human pose estimation was proposed in [36], which was
specifically designed to maintain high-resolution feature maps
through the overall procedure. This was accomplished by con-
necting multiple multi-resolution subnetworks in parallel and
conducting repeated multi-scale fusions, through exchanging
information across these parallel subnetworks.

Certain recent approaches aimed to achieve both increased
2D human pose estimation accuracy and fast inference, sim-
ilarly to the method proposed in this paper, but through
different means. For instance, a Parallel Pyramid Network
(PPNet) was proposed in [48], which utilized deep+wide
and shallow+narrow subnetworks in a parallel configuration.
The deep subnetworks were employed to obtain semantic
information about body joints by processing low-resolution
inputs, while the shallow ones were used to encode spa-
tial information using high-resolution inputs. Then, the final
estimated body joint heatmaps are obtained by fusing the
outputs of all subnetworks. With a similar goal in mind, the
process of maintaining high-resolution feature maps proposed
in [36] was adjusted in [49] so as to increase inference
speed. This was accomplished by introducing a conditional
channel weighting module in the employed shuffle blocks
[50] to efficiently facilitate information exchange between
channels and features of different resolution, resulting in

Fig. 1. Examples of input RGB images (first row), along with the corre-
sponding constructed human body structure images S (second row).

a lightweight network architecture that combines good 2D
human pose estimation performance with low complexity.
Moreover, a single-branch network architecture for real-time
multi-person human pose estimation on mobile platforms was
proposed in [51]. By incorporating a Fusion Deconv Head
and Large Kernel Conv layers in the network architecture,
the network was able to decrease latency while maintaining
increased human pose estimation performance. Finally, [52]
aimed to achieve efficient 2D human pose estimation by
exploiting depth data instead of RGB images and by designing
lightweight CNN architectures that achieved good accuracy-
speed trade-off. In order to further increase the 2D human
pose estimation accuracy of the designed lightweight CNNs,
supplementary domain adaptation and knowledge distillation
algorithms were also explored.

Differently from these approaches, the proposed method
aims to predict accurate body joint heatmaps by jointly training
a main and an auxiliary neural head (for 2D body joint
heatmap regression and for global human body structure
modelling, respectively) under a multitask setting. This con-
figuration efficiently extracts suitable features for 2D human
pose estimation (as shown in Section IV), allowing us to use
a lighter/less complex/faster CNN architecture, if we choose
to do so, without sacrificing accuracy. Compared to existing
methods, the main novelties are:

• an innovative multihead neural architecture, built on top
of a common feature extraction backbone that feeds the
two parallel heads, while a novel configuration of skip
synapses conjoins them.

• an I2I-based loss function for global human body struc-
ture modelling presented for the first time.

The advantage of the proposed network architecture over
previous approaches that also aim to simultaneously achieve
increased accuracy and fast inference is that it explicitly
partitions the subtasks implicitly involved in 2D human pose
estimation among different neural heads. Thus, they can all
be executed more efficiently, while the integration of their
outcomes before obtaining the final predictions from the main
head ensures high accuracy.

III. PROPOSED ARCHITECTURE

In order to capture rich semantic and spatial information
for 2D human pose estimation, a novel CNN architecture is



Fig. 2. The proposed unified neural architecture during training and testing. The human body structure modelling neural head S and the 2D body joint
regression neural head J act on feature maps extracted by the shared CNN backbone F to predict the corresponding human body structure image and 2D
body joint heatmaps, respectively. In addition, S is able to enrich the semantic features extracted by J through skip synapses.

proposed that consists of two parallel neural heads attached
on a shared feature extraction backbone. The auxiliary neural
head is trained under the GAN framework to encode the global
human body structure and provide this information to the main
2D body joint regression neural head. The latter’s purpose is
to accurately locate a predefined set of body joints on the 2D
image. Information flow is facilitated by placing skip synapses
between neurons of the auxiliary and the main body joint
regression subnetworks, conjoining the two parallel heads.

This is not an ad hoc design, but rather a targeted archi-
tecture. It explicitly partitions the subtasks that are implicitly
involved in 2D body joint estimation among the two heads,
while still keeping the main head aware of all relevant infor-
mation during inference. The use of I2I for the auxiliary head
is instrumental for ensuring that the latter’s assigned subtask
will mainly be to model spatial global body structure.

A. Human Body Structure modelling

The auxiliary neural head aims to encode the coarse spatial
human body structure and provide this information to the
main body joint regression neural head; the latter is the one
responsible for the final, localized 2D human pose predictions.
The underlying idea is that the main 2D body joint regression
head is thus exempt from encoding global spatial human
body structure information. Therefore, it can better focus
on accurately identifying and precisely localizing each body
joint on the 2D image. Human body structure modelling is
essentially a reformulation of the desired task, complementary
to the traditional fine-grained (i.e., at the body joint level)
skeleton estimation objective.

Let X ∈ RM×N×3 be a cropped input RGB image (of
height M and width N in pixels) of an already localized
person, S be the human body structure modelling subnetwork,
F be the shared CNN backbone acting as a feature extractor
and Ml = F (X), l = 1, 2, 3, 4, be the extracted image feature
maps of resolution M

2l × N
2l , respectively derived from the l-

th layer block of F . We also define the coarse human body
structure to be represented by an RGB image S ∈ RM×N×3,
which is constructed using the ground-truth locations of body
joints on the 2D image. S is carefully selected to ensure
that the auxiliary neural head, trained for GAN-based I2I
(where the main training signal is provided indirectly by the
Discriminator, i.e., a binary classifier of “reals” and “fakes”),

captures information that is indeed beneficial for the main
2D human pose estimation task, in order to later provide it
to the main neural head. Thus, S is manually constructed
so as to concurrently satisfy two constraints: a) S should
represent the global spatial human body structure and also
contain semantic information identical to the target of the
main 2D body joint regression neural head, ensuring that the
encoded information will be beneficial for the latter one, and
b) S should be discriminant enough to facilitate training of
the GAN’s Discriminator, thus providing improved training
signal for S. Therefore, S is constructed by centering a 2D
Gaussian function at the ground-truth location of each body
joint, while assigning a specific RGB value to it, resulting
in a coarse representation of the human body with each
joint marked using a different color. The choice of having
each body joint uniquely identified by a respective color
was made to ensure proper modelling of the global human
body structure, as well as to distinguish between ambiguous
body joint representations in S (e.g., left and right wrists),
in order to ensure that it also contains identical information
to the target of the main 2D body joint regression neural
head. The color assignment conventions can be arbitrary, as
long as different colors are used to represent different body
joints. Examples of constructed ground-truth coarse human
body structure images S, along with the corresponding input
RGB images, are depicted in Fig. 1.

S is trained under the GAN-based I2I learning framework
[38], which relies on the interaction between a Generator
and a Discriminator. The reason behind selecting the GAN-
based approach for training this subnetwork is their well-
known resistance to overfitting [37]; we expect this to be
imparted to the overall architecture. Since S is tasked to
predict human body structure images S from the extracted
features, it is designed as a decoding CNN [53]. This can
be seen as a GAN Generator, acting on the feature maps
M4 extracted by the last block of F , in order to produce
human body structure images S(M4) that fit the respective
input images. Subsequently, a predicted human body structure
image obtained from S and the corresponding input image
are jointly fed to the Discriminator D, which processes the
pair and decides whether the human body structure image is a
“fake” one produced by the Generator, or a ground-truth one.
As a result of this process, S learns to output realistic human



body structure images that match the human body depicted in
the input image. As is typically the case with GANs, S and D
are trained via the minimax game, minSmaxDLGAN (S,D),
where the objective function LGAN (S,D) is given by [38]:

LGAN (S,D) = E(X,S)[logD(X,S)]+

EX[log(1−D(X, S(M4(X))))], (1)

where M4(X) denotes the final output of the last block of
F , as a function of raw input X. It is common in GAN-
based I2I [38], [54] to also explicitly push the Generator
towards producing outputs close to the target images, using
a supervised objective complementary to the adversarial one.
To this end, an additional L1 distance-based similarity loss
function is employed for training the human body structure
image modelling network:

Lsim(S) = E(X,S)[∥S− S(M4(X))∥1]. (2)

In order to further strengthen S and help it handle difficult
cases where humans appear in abnormal postures or with
occluded body joints, the Discriminator D is trained with an
additional task. That is, given the concatenation of the input
RGB image and the predicted human body structure RGB
image, D is additionally tasked to predict which body joints
are visible in a multi-label classification manner. As a result,
the human body structure modelling subnetwork S is forced
to produce more accurate human body structure images that
allow body joint visibility estimation by the Discriminator.
Directly training S on this task is avoided, in order to prevent
it from losing focus from the human body structure modelling
task. The final objective function of the human body structure
modelling neural head in the proposed architecture is therefore
defined as follows:

LS = min
S

max
D

LGAN (S,D)+γ1Lsim(S)+γ2Lvis(D), (3)

where Lvis(D) is a cross-entropy loss function used to train
the Discriminator for predicting body joint visibility and γ1,
γ2 are scaling hyperparameters.

B. Backbone and Body Joint Regression

The CNN backbone along with the 2D body joint regression
neural head constitute the main neural pathway of the proposed
network architecture, from which the final 2D human pose
estimations are obtained. The 2D human pose is defined as
the 2D pixel locations of a predefined set of body joints in
the input image, which are regressed in the form of 2D body
joint heatmaps {H1,H2, . . . ,HK}. K is the number of body
joints in the set, while Hk ∈ RM×N is the 2D body joint
heatmap that encodes the 2D location of the k-th body joint.
Each heatmap is constructed in a fashion similar to human
body structure image S, only this time each Hk is a grayscale
image representing a single body joint.

The 2D body joint regression head J is fed the downsam-
pled input image along with the feature maps M3 and M4,
extracted by the CNN backbone. It outputs the 2D body joint
heatmaps, from which the final 2D body joint locations can
be obtained by choosing the location of the maximum value

in the corresponding heatmap. Therefore, J is also designed
as a decoding CNN. Also, since the target of J in this case
has a form very similar to the one used in semantic image
segmentation [55], almost any such CNN architecture can
be adopted for the baseline 2D body joint regression neural
pathway. It can be trained via the following loss function:

LJ = Lp + α

3∑
i=2

Lai
, (4)

where Lp is the principal loss that is used to supervise the
entire main neural pathway, while Lai , i = 1, 2, are similar
loss terms used for intermediate supervision at stage i. Both
Lp and Lai

are standard Softmax loss functions. α is a
hyperparameter employed to weight the contribution of the
intermediate losses in the total loss.

C. Overall Architecture

The 2D body joint regression head J acts both on the
downsampled input image and feature maps extracted by the
shared CNN backbone F , while the human body structure
modelling head S acts only on the features maps M4 extracted
by the last block of F . In the latter case, F plays the role of the
encoder and S the role of the decoder in an encoder-decoder
network architecture [53], which is typically used for the
Generator in GAN-based I2I. In order to augment information
flow between the two neural heads, skip synapses are placed
between neurons of two intermediate stages of S and J . This
allows the global human body structure information that is
encoded by S to flow towards J , providing complementary
semantic context for 2D human pose estimation.

The overall network is jointly trained for both human body
structure modelling and for 2D body joint regression, using
the following multitask loss:

L = (1− λ)LJ + λLS , (5)

where λ is a hyperparameter meant to tune the contribution of
the human body structure modelling loss function to the total
loss. The training framework of the proposed unified CNN
architecture ensures that:

• the parallel neural head S learns to compute features
that capture auxiliary information about the global spatial
human body structure and passes it to the main neural
pathway via the added skip synapses. Thus it alleviates
the latter from this subtask and allows it to focus on
identifying and precisely localizing each body joint,

• the inherent resistance of GANs (training of S) to over-
fitting [37] is imparted to the overall architecture,

• F extracts rich features that are explicitly suitable both
for global human body structure modelling (spatial sub-
task) and for localized 2D body joint regression (a
semantic subtask and a spatial subtask),

• F ’s training is regularized, according to a well-known
relevant side-effect of multitask training in general [56],
[57].

Importantly, after training has been completed, the entire
Discriminator D and the two last convolutional layers of



S can be safely discarded at the inference stage, to reduce
computational costs. The overall neural architecture of the
proposed method is depicted in Fig. 2.

IV. EXPERIMENTAL EVALUATION

The proposed network architecture was evaluated both for
pure 2D human pose estimation and for pedestrian intention
recognition, thus showcasing its general performance and its
applicability as a modular component in computer vision sys-
tems for autonomous systems. The latter task was selected due
to its significance in ensuring human safety when deploying
self-driving cars.

A. Implementation Details

All components of the proposed CNN’s implementation uti-
lize either lightweight or not overly complex neural architec-
tures, so as to promote fast execution speed during inference.
Thus, ResNet-50 [58] is employed as the CNN backbone F . S
consists of three convolutional and two deconvolutional layers,
in order to increase the feature map resolution, while main-
taining a relatively low number of parameters. D is based on a
standard PatchGAN [38] classifier, which was extended by an
extra fully connected layer for the joint visibility classification
task. J utilizes an architecture similar to the one used in [59],
i.e., a state-of-the-art semantic image segmentation CNN with
real-time processing capabilities, but without its downsampling
network, since feature extraction for both J and S is performed
by F . In principle, the decoding part of any other fast dense
image prediction CNN could be alternatively adopted in J
as a building block. Each convolutional and deconvolutional
layer of S is followed by a Batch Normalization and a ReLu
layer. Finally, for simplicity, all convolutional layers use 3×3
kernels with stride 1, while deconvolutional ones use 3 × 3
kernels with a stride equal to 2.

The subnetworks F , J , S, D were jointly trained using
the proposed multitask loss function (5) for 200 epochs using
the Adam optimizer [60]. The learning rate for training F , J ,
S subnetworks was initialized to 0.01 and is reduced in each
epoch using the “poly” learning rate strategy with the power of
0.9, while for D the learning rate is kept constant to 0.00002.
Batch size was set to 64. Hyperparameter λ was empirically
set to λ = 0.3, favouring the 2D human pose estimation task
over human body structure modelling. α was set to 1 in order
to enable full intermediate supervision of the main neural
pathway, while γ1 and γ2 were set to 1 and 0.1, respectively,
in order to scale the corresponding loss terms in Eq. (3)
accordingly and ensure smooth training of the auxiliary neural
head S. In addition, similarly to previous methods [35], [36],
the backbone was pretrained on the ImageNet classification
task [61] in all cases, unless otherwise specified.

B. Evaluation Details

The proposed network architecture was evaluated on the
COCO keypoints [62] and the MPII Human Pose [63] datasets.
The COCO dataset consists of 250K person instances anno-
tated with 17 body joints. We use the COCO train2017 set

TABLE I
COMPARISON BETWEEN THE PROPOSED NETWORK ARCHITECTURE AND

DIFFERENT VARIANTS OF THE BASELINES BISENET [59] AND
LITE-HRNET [49] ON COCO [62] val2017 SET AND MPII [63]
VALIDATION SET, IN TERMS OF AVERAGE PRECISION (AP) AND

PCKH@0.5, RESPECTIVELY. LITE-HRNET BACKBONES ARE TRAINED
FROM SCRATCH.

Method Backbone

COCO val2017 MPII val
AP PCKh@0.5

Input Res. Input Res.
256×192 384×288 256×256

BiSeNet [59] ResNet-18 68.4 71.4 87.3
proposed ResNet-18 70.2 72.5 88.2
BiSeNet [59] ResNet-50 71.4 71.6 88.1
proposed ResNet-50 73.7 74.0 89.7
BiSeNet [59] ResNet-101 72.5 74.7 89.8
proposed ResNet-101 74.3 75.6 90.2
BiSeNet [59] ResNet-152 73.4 75.4 90.0
proposed ResNet-152 74.7 76.2 90.5
Lite-HRNet [49] Lite-HRNet-18 64.8 67.6 86.1
proposed Lite-HRNet-18 65.3 70.5 87.1
Lite-HRNet [49] Lite-HRNet-30 67.2 70.4 87.0
proposed Lite-HRNet-30 68.0 71.7 88.3

consisting of 118K images, while the corresponding val2017
and test-dev2017 sets contain 5K and 20K images, respec-
tively. The MPII dataset contains 40K person samples labeled
with 16 body joints, where there are 3K samples for validation
and 12K samples for testing. The training data augmentation
policy was adopted from [36]. First, using the ground-truth
human detection boxes provided with the datasets, the image is
cropped and resized to a fixed size, 256×192 or 384×288 for
the COCO dataset and 256× 256 for the MPII dataset. Then,
random rotation ([−45◦, 45◦]), random scaling ([0.65, 1.35]),
flipping and half body data augmentation [64] is applied online
on the extracted image patch. Training on four GeForce GTX
1080 Ti GPUs takes approximately one/three days for an input
resolution of 256×192/384×288, respectively, in the COCO
dataset. It requires approximately half a day for the MPII
dataset.

Results are reported both on the val2017 and the test-
dev2017 set of COCO, as well as on the validation set of MPII,
after training on the respective training sets. For evaluating
on the MPII test set, both train and validation set images of
MPII were utilized for model training, similarly to [35], [36].
The common two-stage top-down evaluation paradigm [35],
[36], [43] was followed for both datasets, where each person
in the input image is first detected using a person detection
algorithm and body joints are subsequently predicted for each
detection. In COCO, the person detection algorithm provided
by [35], [36] was used both for val2017 and test-dev2017
sets to ensure a fair comparison, while in MPII each person
location is provided with the dataset.

Finally, in all cases, the final body joint heatmap is com-
puted by averaging the heatmaps of the original and the
flipped input images. For COCO, the average precision (AP)
and average recall (AR)1 is reported, similarly to [36], while

1https://cocodataset.org/#keypoints-eval



TABLE II
EVALUATION RESULTS ON THE COCO [62] val2017 SET. BEST RESULT IN EACH CATEGORY IS IN BOLD. FPS-D AND FPS-M DENOTE FRAMES PER
SECOND (INFERENCE SPEED) USING A GEFORCE GTX 1080 TI GPU AND A NVIDIA JETSON XAVIER COMPUTING BOARD, RESPECTIVELY. OHKM

MEANS ONLINE HARD KEYPOINTS MINING [43]. “PRETRAIN” INDICATES WHETHER THE BACKBONE IS PRETRAINED ON THE IMAGENET [61]
CLASSIFICATION TASK.

Method Backbone Pretrain Input Res. FPS-D FPS-M AP AP50 AP75 APM APL AR
small models

8-stage Hourglass [34] 8-stage Hourglass N 256×192 — — 66.9 — — — — —
CPN [43] ResNet-50 Y 256×192 — — 68.6 — — — — —
CPN + OHKM [43] ResNet-50 Y 256×192 — — 69.4 — — — — —
Lite-HRNet [49] Lite-HRNet-18 N 256×192 28.9 15.5 64.8 86.7 73.0 62.1 70.5 71.2
Lite-HRNet [49] Lite-HRNet-30 N 256×192 18.1 11.4 67.2 88.0 75.0 64.3 73.1 73.3
BiSeNet [59] ResNet-50 Y 256×192 45.4 22.8 71.4 89.5 78.6 67.4 78.5 76.8
SB [35] ResNet-50 Y 256×192 41.7 20.3 70.4 88.6 78.3 67.1 77.2 76.3
proposed ResNet-50 Y 256×192 41.9 20.4 73.7 90.2 80.7 69.8 80.7 79.0
CPN [43] ResNet-50 Y 384×288 — — 70.6 — — — — —
CPN + OHKM [43] ResNet-50 Y 384×288 — — 71.6 — — — — —
Lite-HRNet [49] Lite-HRNet-18 N 384×288 22.2 9.8 67.6 87.8 75.0 64.5 73.7 73.7
Lite-HRNet [49] Lite-HRNet-30 N 384×288 13.6 7.6 70.4 88.7 77.7 67.5 76.3 76.2
BiSeNet [59] ResNet-50 Y 384×288 42.3 17.1 71.6 89.5 79.4 67.9 78.4 77.3
SB [35] ResNet-50 Y 384×288 31.3 11.9 72.2 89.3 78.9 68.1 79.7 77.6
proposed ResNet-50 Y 384×288 37.7 13.4 74.0 90.0 81.3 70.0 80.9 79.2

large models
SB [35] ResNet-101 Y 256×192 28.2 15.0 71.4 89.3 79.3 68.1 78.1 77.1
BiSeNet [59] ResNet-101 Y 256×192 29.3 16.3 72.5 89.9 80.7 68.8 79.5 78.2
proposed ResNet-101 Y 256×192 27.1 11.9 74.3 90.3 81.4 70.4 81.4 79.6
SB [35] ResNet-152 Y 256×192 21.3 10.1 72.0 89.3 79.8 68.7 78.9 77.8
BiSeNet [59] ResNet-152 Y 256×192 21.2 10.1 73.4 90.4 81.5 69.7 80.4 79.0
HRNet-W32 [36] HRNet-W32 Y 256×192 11.4 5.5 74.4 90.5 81.9 70.8 81.0 79.8
proposed ResNet-152 Y 256×192 20.3 9.9 74.7 90.4 82.1 71.0 81.4 79.9
SB [35] ResNet-101 Y 384×288 23.5 10.3 73.6 89.6 80.3 69.9 81.1 79.1
BiSeNet [59] ResNet-101 Y 384×288 27.6 13.8 74.7 90.1 81.8 70.8 81.8 79.8
proposed ResNet-101 Y 384×288 25.1 10.4 75.6 90.4 82.2 71.6 82.7 80.6
SB [35] ResNet-152 Y 384×288 18.9 8.7 74.3 89.6 81.1 70.5 79.7 79.7
BiSeNet [59] ResNet-152 Y 384×288 20.5 9.4 75.4 90.6 82.4 71.6 82.3 80.4
HRNet-W32 [36] HRNet-W32 Y 384×288 8.8 5.3 75.8 90.6 82.7 71.9 82.8 81.0
proposed ResNet-152 Y 384×288 19.0 8.7 76.2 90.8 82.9 72.2 83.3 81.1

for MPII, the head-normalized probability of correct keypoint
(PCKh@0.5) metric is used as a measure of 2D human
pose estimation performance. Inference speed is measured in
Frames Per Second (FPS), including the flipping and heatmap
averaging calculations that are necessary to obtain the final
estimations. Note that in the context of this work and in
contrast to previous methods [35], [36], inference speed in
FPS, measured in the same machine, is reported as a fair model
complexity measurement, instead of the number of trainable
model parameters and/or the number of flops. This is due to the
fact that the reported numbers of model parameters and flops
typically involve only convolutional and linear layers of the
model, ignoring any extra layers and/or calculations required
by other operations (e.g., resizing, addition, multiplication,
flipping, etc.).

First, a comparison between the proposed network ar-
chitecture and the baseline BiSeNet [59] for both COCO
val2017 and MPII validation sets, as well as for backbones
of different complexity (ResNet-18, ResNet-50, ResNet-101,
ResNet-152) is conducted and presented in Table I, in order

to evaluate the effectiveness of the proposed architecture in
terms of 2D human pose estimation accuracy. This is because
the differences between the two architectures are only the
auxiliary neural head and the additional skip synapses of the
proposed CNN. The comparison results show that the latter
one outperforms BiSeNet for all backbone variants in both
datasets. The proposed architecture increased AP score on
the COCO val2017 set and PCKh@0.5 score on the MPII
validation set by a margin up to 2.4 and 1.6 (in the ResNet-
50 backbone case), respectively, proving that the information
encoded by the auxiliary neural head and passed to the main
neural head through the skip synapses, which conjoin the
two heads, enabled the main 2D body joint regression neural
pathway to predict more accurate 2D human poses. Besides
BiSeNet, the proposed method is also compared against the
Lite-HRNet [49] baseline. That is, the stem network of Lite-
HRNet is employed as the backbone F of the proposed
network architecture, while the three remaining stages of
Lite-HRNet were utilized in J . S utilizes the same network
architecture as in the previous case. As in [49], the unified



TABLE III
EVALUATION RESULTS ON THE COCO [62] test-dev2017 SET. THE BEST METHOD IS IN BOLD. † DENOTES THAT THE MODEL IS TRAINED FROM SCRATCH.

Method Backbone Input Res. AP AP50 AP75 APM APL AR
small models

OpenPose [21] — — 61.8 84.9 67.5 57.1 68.2 66.5
Associative Embedding [65] — — 65.5 86.8 72.3 60.6 72.6 70.2
PersonLab [66] — — 68.7 89.0 75.4 64.1 75.5 75.4
MultiPoseNet [67] — — 69.6 86.3 76.6 65.0 76.3 73.5
Mask-RCNN [68] ResNet-50-FPN — 63.1 87.3 68.7 57.8 71.4 —
Lite-HRNet [49]† Lite-HRNet-18 384×288 66.9 89.4 74.4 64.0 72.2 72.6
Lite-HRNet [49]† Lite-HRNet-30 384×288 69.7 90.7 77.5 66.9 75.0 75.4
SB [35] ResNet-50 384×288 71.5 91.1 78.7 67.8 78.0 76.9
RMPE [69] PyraNet [70] 320×256 72.3 89.2 79.1 68.0 78.6 —
proposed ResNet-50 384×288 73.3 92.1 81.3 70.0 79.0 78.6

large models
G-RMI [71] ResNet-101 353×257 64.9 85.5 71.3 62.3 70.0 69.7
Integral Pose Regression [72] ResNet-101 256×256 67.8 88.2 74.8 63.9 74.0 —
G-RMI + extra data [71] ResNet-101 353×257 68.5 87.1 75.5 65.8 73.3 73.3
CPN [43] ResNet-Inception 384×288 72.1 91.4 80.0 68.7 77.2 78.5
proposed ResNet-101 384×288 74.9 92.3 82.5 71.2 81.1 80.1
SB [35] ResNet-152 384×288 73.7 91.9 81.1 70.3 80.0 79.0
BiSeNet [59] ResNet-152 384×288 74.5 92.4 82.6 71.1 80.6 79.8
HRNet-W32 [36] HRNet-W32 384×288 74.9 92.5 82.8 71.3 80.9 80.1
OKS-Net [47] HRNet-W32 384×288 75.2 92.7 83.0 71.7 81.2 80.4
proposed ResNet-152 384×288 75.6 92.5 83.3 71.9 81.7 80.6

network architecture is trained from scratch in this case. The
comparisons between the Lite-HRNet-based implementation
of the proposed method and the baseline Lite-HRNet model
for both Lite-HRNet-18, Lite-HRNet-30 variants and for both
COCO val2017, MPII validation sets are presented in Table
I. They show that the proposed method increased 2D human
pose estimation accuracy in all cases, proving the efficiency
of the proposed method for baselines/backbones of different
network architectures as well. Overall, the results reported in
Table I indicate that the proposed method is able to increase
the 2D human pose estimation accuracy of different baseline
network architectures, with different backbones of varying
complexity. Moreover, it can also be seen that small/low-
complexity models enjoy the most benefits in 2D human
pose estimation accuracy. This is the property that renders the
proposed method most suitable for embedded AI scenarios.

Comparisons between the proposed and competing methods
[34]–[36], [43], [49], [59] in terms of 2D human pose esti-
mation accuracy and inference speed on the COCO val2017
set are depicted in Table II, for input image resolutions of
256×192 and 384×288 pixels. Inference speed in FPS is mea-
sured for all available competing methods using both a high-
end desktop PC equipped with a GeForce GTX 1080 Ti GPU
and an Nvidia Jetson Xavier embedded AI computing board.
When relying on a ResNet-50 as the feature extraction CNN
backbone, the proposed architecture is able to outperform all
competing methods that use feature extraction backbones of
similar complexity for both input resolutions, while maintain-
ing increased inference speed. It achieves higher accuracy
than the best performing competing methods BiSeNet and
SB for low (256×192) and high (384×288) input resolution,

respectively, increasing AP score by a margin up to 2.3 in
the first case and 1.8 in the latter case. When compared to
SB, the proposed architecture is faster by 6.4 FPS and 2.5
FPS in the high input resolution case when using a desktop
GPU and an embedded computing board, respectively, while
it runs at the same speed in the low input resolution case. The
AP score increase of the proposed architecture in these two
cases is 1.8 and 3.3, respectively. Similarly, the comparison
between the proposed architecture and BiSeNet shows that the
proposed architecture consistently increases AP score, while
being slower only by 4.6 FPS in the worst case scenario (high
input resolution), where it increased AP score by 2.4.

Moreover, the ResNet-50 variant of the proposed archi-
tecture is able to achieve highly competitive 2D human
pose estimation performance when compared to methods that
use larger and more complex/slower feature extraction CNN
backbones (ResNet-101, ResNet-152, HRNet-W32). Notably,
it demonstrates increased AP score when compared to both
deep variants of SB in the low input resolution case, while
running faster up to 20.6 FPS and 10.3 FPS on a desktop
GPU and an embedded computing board, respectively. In
comparison to HRNet-W32, our small variant is less accurate
but up to 4x and 3x faster at the inference stage for high-
end GPU and embedded execution, respectively. However, as
it can also be seen in Table II, by employing the ResNet-152
CNN for F in the proposed network architecture, the latter
manages to outperform all competing methods for both input
resolutions, while also being 1.5x-2x faster than the second-
best method (HRNet-W32). Overall, Table II shows that the
proposed network architecture offers the best accuracy-speed
ratio among all competing methods.



TABLE IV
EVALUATION RESULTS ON THE MPII [63] VALIDATION SET. THE BEST METHOD IS IN BOLD. † DENOTES THAT THE CORRESPONDING MODEL IS TRAINED

FROM SCRATCH. INPUT RESOLUTION IS 256×256 IN ALL CASES.

Method Backbone Head Shoulder Elbow Wrist Hip Knee Ankle Total
small models

Lite-HRNet [49]† Lite-HRNet-18 — — — — — — — 86.1
Lite-HRNet [49]† Lite-HRNet-30 — — — — — — — 87.0
Integral Pose Regression [72] ResNet-50 — — — — — — — 87.3
BiSeNet [59] ResNet-50 96.5 94.8 88.2 83.2 88.1 83.1 79.2 88.1
SB [35] ResNet-50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5
proposed ResNet-50 96.8 95.5 89.6 85.6 88.9 85.9 82.1 89.7

large models
SB [35] ResNet-101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1
BiSeNet [59] ResNet-101 97.0 95.8 90.2 85.2 89.1 85.9 81.9 89.8
proposed ResNet-101 96.8 95.9 90.3 85.9 89.6 86.4 83.1 90.2
SB [35] ResNet-152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6
BiSeNet [59] ResNet-152 97.0 95.8 90.5 85.7 88.8 86.2 82.3 90.0
HRNet-W32 [36] HRNet-W32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
proposed ResNet-152 97.1 96.4 90.8 86.4 90.0 86.8 82.9 90.5

TABLE V
EVALUATION RESULTS ON THE MPII [63] TEST SET. THE BEST METHOD IS IN BOLD. INPUT RESOLUTION IS 256×256 IN ALL CASES.

Method Backbone Head Shoulder Elbow Wrist Hip Knee Ankle Total
small models

CPMs [73] — 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
SB [35] ResNet-50 98.2 96.4 91.0 86.0 90.4 86.3 82.3 90.5
8-stage Hourglass [34] — 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Integral Pose Regression [72] ResNet-50 — — — — — — — 91.0
GLN [74] 8-stage hourglass 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0
SA-GCN [75] ResNet-50 97.1 96.1 91.5 86.8 90.7 87.6 84.3 91.1
proposed ResNet-50 98.3 96.3 91.7 87.6 90.3 88.0 84.5 91.3

large models
DeeperCut [76] ResNet-152 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Part Heatmap Regression [77] ResNet-152 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
DU-Net [78] U-Net 97.4 96.4 92.1 87.7 90.2 87.7 84.3 91.2
BiSeNet [59] ResNet-152 98.2 96.4 91.7 87.5 90.5 87.5 83.5 91.2
SB [35] ResNet-152 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
proposed ResNet-101 98.4 96.6 92.1 88.1 90.7 88.5 84.4 91.6
proposed ResNet-152 98.4 96.7 92.4 88.7 91.4 89.1 85.2 92.1
HRNet-W32 [36] HRNet-W32 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3

The 2D human pose estimation accuracy of the proposed
architecture is also evaluated on the COCO test-dev2017
set. Comparisons are presented in Table III and indicate
similar behaviour. The ResNet-50 variant of the proposed
architecture outperforms all competing methods which use
CNN backbones of similar complexity, while its accuracy
in 2D human pose estimation remains highly competitive
against methods with much more complex/slow backbones.
Finally, the ResNet-152 variant of the proposed method again
yields the best 2D human pose estimation accuracy among all
competing methods.

Comparisons against competitors [34]–[36], [49], [59],
[72]–[78] in the MPII validation and test sets are reported
in Tables IV and V, respectively. An input resolution of
256×256 pixels is used in all cases for a fair comparison.

As it can be seen, the ResNet-50 variant of the proposed
architecture yielded increased 2D human pose estimation ac-
curacy compared to competitors of similar complexity, while it
lags only by 1.0 PCKh@0.5 score against the best-performing
method (HRNet-W32 on MPII test set) that uses the more com-
plex and significantly slower (as shown in Table II) HRNet-
W32 backbone. Most remarkably, it manages to outperform
(DeeperCut, Part Heatmap Regression, DU-Net) or achieve
highly-competitive accuracy (SB) to approaches utilizing very
complex feature extraction backbones (U-Net, ResNet-152),
while it only employs the much lighter and faster ResNet-50
architecture. Finally, our ResNet-152 variant outperforms all
competing methods on the MPII validation set and is only
behind HRNet-W32 by 0.2 PCKh@0.5 score on the MPII test
set. However, since it is 1.5x-2x faster than HRNet-W32 as



Fig. 3. Proposed method predictions for random test images. First row: test
images from COCO and MPII datasets. Second row: unseen UAV-captured
images. The first/last two columns show the output of our model trained on
COCO/MPII train sets, respectively.

presented in Table II, the proposed architecture offers the best
accuracy-speed ratio in this case as well.

Quantitative comparisons in Tables I - V show the effi-
ciency of the proposed approach, which demonstrates the best
accuracy-speed ratio. A complementary qualitative evaluation
can be seen in Fig. 3, which depicts random test images
from the MPII test set and the COCO test-dev2017 set,
as well as random, previously unseen UAV-captured images
for a real-world human-UAV visual interaction scenario. The
proposed method is able to yield accurate predictions, even
when humans appear in abnormal poses and different scenes.
Its performance under challenging conditions (e.g., cluttered
scenes, occlusion) is qualitatively evaluated by inspecting the
final outputs of both the auxiliary and the main neural heads
of the proposed method (global human body structure images
S and 2D skeletons, respectively) when using inputs that
depict the person of interest in such conditions. The results
presented in Fig. 4 show that the proposed method manages to
estimate accurate 2D human poses (rightmost image of each
triplet), despite the fact that the person of interest appears
in complicated scenes (top-left, top-right) or under occlusion
(top-right, bottom-left). In addition, the bottom-right triplet
once again demonstrates the ability of the proposed method to
handle weird postures. Finally, as it can be seen in the middle
image of each triplet, the auxiliary neural head of the proposed
method successfully predicts human body structure images in
all cases.

Finally, the proposed architecture is utilized as the 2D
pedestrian skeleton extraction stage of a common two-step
pedestrian intention recognition approach, in order to prove
its effectiveness and generalization ability. To this end, the
ResNet-50 variant of the proposed architecture was first pre-
trained on COCO (256×192 input resolution) and subse-
quently used to extract the 2D skeletons of all pedestrians
in the JAAD dataset [79], which is commonly used for the
cross/no-cross prediction problem. Following [27], a simple
LSTM classifier with a hidden dimension equal to 64 was
adopted, followed by a fully connected layer. The pedestrian
intention recognition results in Table VI demonstrate that when

TABLE VI
EVALUATION OF THE PROPOSED NETWORK ARCHITECTURE AS A 2D

PEDESTRIAN POSE ESTIMATION COMPONENT OF A TWO-STEP PEDESTRIAN
INTENTION RECOGNITION APPROACH USING THE JAAD DATASET [79]

AND A SINGLE NVIDIA GTX 1080 TI GPU. † DENOTES THAT AN NVIDIA
TITAN X GPU WAS USED INSTEAD.

Method Runtime (ms) Accuracy (%)

RMPE + LSTM [27] 50+1.6 78.0
Res-EnDec [80] 116.4 81.0
ST-DenseNet [81]† 50.0 84.8
autoencoder + Prediction [82]† 102.5 86.7
proposed + LSTM 22.2+0.9 87.0

using the proposed method for pedestrian skeleton extraction,
a simple LSTM classifier outperforms all directly comparable
competing methods. Apart from pedestrian intention recogni-
tion accuracy, Table VI also shows speed comparisons between
all competing methods by considering a real-world pedestrian
intention recognition scenario: if d denotes the length of the
sequence that is required to predict a pedestrian intention
label (cross/no-cross), a prediction is made for each new
video frame that becomes available, while all previous d − 1
video frames are assumed to have already been processed
and stored in a buffer. The reported runtime for the proposed
method and [27] includes both the estimation of the 2D
pedestrian skeleton from a new video frame and the prediction
of the pedestrian intention label from the full 2D skeleton
sequence. For methods [80]–[82] only pedestrian intention
label prediction is considered, since they act directly on a
video frame sequence of length d. Also, all reported runtimes
have been measured using high-end desktop GPUs in order
to ensure a fair comparison, since code for [81], [82] is not
publicly available and thus their runtime is directly cited from
the corresponding sources. For similar reasons, d was set to
16. The comparison shows that the proposed method is at
least 2x faster than all competing methods, thus experimentally
verifying that it offers the best accuracy-speed ratio in the
pedestrian intention recognition task as well. The average time
required by the proposed network architecture for extracting
a 2D pedestrian skeleton was measured at 22.2 ms, while
the processing of the 2D skeleton sequence by the employed
LSTM classifier requires only 0.9 ms. Given these results,
the proposed method seems especially suitable for embedded
applications such as self-driving cars.

C. Ablation Study

In order to show the importance of each component of the
proposed method, detailed ablation studies were performed. In
all cases, the ResNet-50-based variant of the proposed network
architecture was evaluated on the COCO val2017 set for input
resolution of 256×192.

First, an ablation study on the different building blocks of
the proposed CNN architecture is presented in Table VII, in
order to demonstrate their effect on overall 2D human pose
estimation accuracy. The first column of Table VII lists the
components of the presented network architecture that are
utilized in each case, while the second column indicates the



Fig. 4. Qualitative evaluation of the ResNet-50 variant of the proposed method on challenging images from the COCO [62] val2017 set, where the person
of interest appears in complicated scenes (top-left, top-right), under occlusion (top-right, bottom-left), or under weird postures (bottom-right). In each triplet,
the left image shows the input image, while the middle and right images show the output of the auxiliary neural head and the final 2D pose estimation,
respectively. In all cases the proposed method manages to estimate accurate 2D poses, while the auxiliary neural head is also able to successfully predict
global human body structure images according to its objective.

TABLE VII
ABLATION STUDY ON THE PROPOSED NETWORK ARCHITECTURE USING

THE COCO [62] val2017 SET. THE FIRST COLUMN SHOWS THE
COMPONENTS OF THE PRESENTED NETWORK ARCHITECTURE THAT ARE
UTILIZED IN EACH CASE, WHILE THE SECOND COLUMN INDICATES THE

MODIFICATION APPLIED TO THE PROPOSED METHOD IN THE
CORRESPONDING EXPERIMENT.

Modification AP
CNN (BiSeNet [59]) baseline 71.4
CNN + S + D without skip synapses 72.1
CNN + S + syn without Discriminator 73.1
CNN + S + syn person segmentation as auxiliary task 73.3
CNN + S + syn + D input image as S target 73.0
CNN + S + syn + D 2D body joint heatmaps as S target 73.1
CNN + S + syn + D (proposed) — 73.7

modification applied to the proposed method. By completely
removing the skip synapses that conjoin the two parallel
neural heads J and S (CNN + S + D) AP score dropped to
72.1, since information exchange between the auxiliary human
body structure modelling and main 2D body joint regression
heads S and J is not possible during training and inference.
Subsequently, an experiment where the Discriminator network
D of the proposed method is absent during training was con-
ducted to demonstrate the effectiveness of the GAN training
framework in the human body structure modelling task. Omit-
ting the Discriminator during training (i.e., transforming the
GAN training objective to a typical unsupervised one) led to
decreased performance compared to the proposed method (AP
score dropped by 0.6), since the utilization of GANs enables
S to model the global human body structure more efficiently
and introduces additional regularization to the overall model,
due to their overfitting-resistant nature.

The importance of selecting the RGB image representation
of the human body structure S as the target of the auxiliary
neural head S was also evaluated by utilizing two alternative
targets for S in its place. In the first case, the input image

Fig. 5. Ablation study on hyperparameter λ, used in the overall multitask
loss function (Eq. (5)) to balance the two tasks during training.

X was used as target, essentially tasking S with an image
reconstruction objective, while in the second case, S is tasked
to predict a set of 2D body joint heatmaps {H1,H2, . . . ,HK}
(similar to J). As it can be seen in the fifth and sixth rows
of Table VII, AP score dropped in both cases, proving that
the objective selected for S by the proposed method is more
effective in increasing 2D human pose estimation performance
compared to the two alternatives. This can be possibly ex-
plained by the fact that S was manually designed to be
discriminant enough for the GAN training framework, while
simultaneously containing semantic information identical to
the target of J (2D body joint heatmaps). Thus, it enables the
Discriminator network of the GAN framework to introduce a
strong supervision signal during training, helping S provide
rich information to the main 2D body joint regression neural
head. For completeness, an experiment where S was tasked
to perform person instance segmentation was also conducted
(fourth row of Table VII). Despite the fact that the 2D human



pose estimation accuracy in this case is slightly increased
compared to the previous two alternative approaches, it is
again outperformed by the proposed method. Moreover, in
contrast to the global human body structure modelling task and
the two other approaches presented in the fifth and sixth row of
Table VII, training S for person instance segmentation requires
additional, pixel-level annotated person instance segmentation
maps, which are very hard to obtain (costly, time-consuming).

Finally, experiments were also conducted to evaluate the
importance of the hyperparameter λ in (5), which is used to
balance focus between the 2D body joints regression and the
human body structure modelling tasks during training. Results
are presented in Fig. 5, using a step of 0.1 for λ. As it can
be seen, the best AP score was achieved for λ = 0.3 (73.7),
with λ = 0.2 (73.2) to follow. λ = 0.1 and λ = 0.4 yielded a
slightly decreased AP score (73.1), while for λ ≥ 0.5 AP score
dropped below 73.0. Getting increased performance for λ <
0.5 is expected, since the primary goal of the training stage is
to ensure that the model performs as well as possible on the
main 2D body joints regression task, while the human body
structure modelling task acts as an auxiliary one, assisting the
main task.

V. CONCLUSIONS

This paper proposed a novel, multihead CNN architecture
for fast 2D human pose estimation, suitable for embedded
execution in autonomous systems. It consists of two neural
heads, i.e., an auxiliary I2I-based global human body structure
modelling head S and a main 2D body joint regression head
J , on top of a common feature extraction backbone F . The
proposed architecture is trained in a unified multitask manner
and allows information to flow from S to J through skip
synapses, in order to enrich features extracted by J with
information about the global body structure encoded by S.
The end-result is that the different subtasks implicitly involved
in 2D body pose estimation are explicitly partitioned among
the different heads, with their outcomes properly integrated
before obtaining the final predictions. The increased accuracy
allows us to use comparatively lightweight CNN components,
resulting in fast execution without sacrificing precision. Eval-
uation on common datasets showed that the proposed method
achieves the best accuracy-speed ratio when compared to the
state-of-the-art, rendering it a good candidate for autonomous
systems employing embedded AI computational hardware.
This result was validated by further evaluation on a pedestrian
intention recognition dataset for self-driving cars.
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