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Abstract—Distribution Shift Detection (DSD) is utilized when
a pretrained machine learning model deployed in-the-field has
to analyze test-phase inputs drawn from a data distribution that
may differ from that of the training dataset. DSD algorithms
for Deep Neural Networks (DNNs) attempt to identify Out-of-
Distribution (OOD) test samples, so as to avoid incorrect decisions
at the inference stage. However, like effort has been expended
to developing methods for DSD in monocular depth estimation
(MDE), which is a safety-critical task in autonomous systems such
as self-driving cars. This paper presents a novel DSD method
for MDE DNNs. The outputs of a pretrained MDE are used
as ground-truth to train an Image-to-Image Translator (I2I)
that maps intermediate MDE representations to depth maps.
During deployment, both the MDE and the I2I estimate a depth
map from each test-stage image. The underlying intuition is that
the MDE and the I2I outputs are in little agreement for OOD
images, due to their different neural architectures and learning
paradigms. Extensive experimental evaluation on autonomous
driving-compatible datasets showcases that the proposed method
significantly surpasses competing distribution shift detectors for
MDE tasks.

Index Terms—Distribution Shift Detection, Monocular Depth
Estimation, Autonomous Vehicles, Generative Adversarial Net-
work, Self-Supervised Learning

I. INTRODUCTION

Extensive effort is typically expended on pretraining Deep
Neural Networks (DNNs) so that they achieve the best possi-
ble accuracy and performance during deployment. However,
real-world environments are often unpredictable and ever-
changing: there can be factors unconsidered during training, or
slight variations in the inputs, that may lead the DNN to false
conclusions with high confidence [21]. The penalties can vary
greatly, especially in autonomous driving where significant
material losses might occur, or even human harm. In fact, the
rapid emergence of a variety of autonomous systems operating
in the real world [27] [26] [16] [19] [28] [34] [1] [8] has made
this a critical, high-priority issue.

The need for a pretrained system that can maneuver through
unfamiliar inputs has fueled research on Distribution Shift De-
tectors (DSD) [14]. Such methods are expected to successfully

discern In-Distribution (ID) test-stage data points from Out-
of-Distribution (OOD) ones, during model deployment, so as
to avoid erroneous inference for OOD inputs. The underlying
distribution of such OOD test-stage data points essentially
differs from that of the training set. The importance of DSD
in autonomous systems is rather clear, since classifying an
unknown data point into one of the known classes with high
confidence may cause significant negative effects in the real
world.

An example would be dense image segmentation tasks,
where a different label is assigned per-pixel [3], but also other
types of dense image prediction tasks, such as monocular
depth estimation (MDE) [11] [10] [12] [24] [25]. Given that
Deep Neural Networks (DNNs) are becoming more and more
common in depth estimation from visual data, this is a highly
safety-critical area for robotics and autonomous vehicles. In
such applications, the sense of depth plays a major role in
environmental perception and safe navigation. A MDE DNN
typically analyzes an input image (e.g., an RGB video frame
captured on-the-fly from the camera of an autonomous system)
and outputs a depth map with the same spatial resolution in
pixels. Each output pixel value is a normalized distance from
the camera.

Most relevant work up to now handles uncertainty estima-
tion on depth maps by assessing depth prediction confidence
[29] [36] [18]. However, it is not necessary to actually compute
a formal prediction uncertainty score, which is a rather difficult
task, since the only practically useful information is the final
OOD or ID label assigned to the entire image. Thus, this paper
presents a simpler, yet effective method for DSD in MDE
DNNs.

In the proposed approach, the outputs of a pretrained
MDE are used as ground-truth to train an Image-to-Image
Translator (I2I) [15], that maps intermediate/internal MDE
representations of the input images to depth maps. During
deployment, both the MDE and the I2I estimate a depth
map from each test-stage image. The aggregated per-pixel



absolute difference between the two outputs can be viewed
as an informal uncertainty index that increases for unfamiliar
inputs. The underlying intuition is that the MDE and the
I2I outputs are less correlated for OOD images, due to their
different neural architectures and learning paradigms. A final
OOD decision is made by thresholding this index.

In short, this paper contributes the following:
1) It proposes a novel, simple but effective algorithm

to compute informal, pixel-level prediction uncertainty
estimates for pretrained MDE DNNs.

2) It exploits these per-pixel informal uncertainty estimates
to classify the entire input image as OOD or ID, through
aggregation and thresholding.

Experimental evaluation on common autonomous driving
datasets demonstrates the advantages of the proposed method.

II. RELATED WORK

Typical DSD methods for classification tasks fall under
either the discriminative or the generative family. Both ap-
proaches rely on comparing test data points with the training
dataset, irrespective of the actual DNN model being employed
during inference. A more modern approach is to design
model-specific variants of similar discriminative or generative
models, where the representations of the input data points
constructed internally by the classifier DNN may also be used
for distinguishing between ID and OOD data. Additionally,
several different methods have been proposed that rely on
directly or indirectly measuring epistemic uncertainty (i.e.,
uncertainty due to lack of relevant knowledge encoded in the
model parameters) for each test-stage prediction.

DSD [30] [20] [5] [23], which concerns domain/data-space
distributions shifts, can be contrasted with Out-of-Distribution
Detection (OODD): a similar problem that concerns label-
space distribution shifts in classification tasks. In that case,
the OOD data points belong to classes unseen during training
(e.g., training with images of people and testing with images
of animals). In contrast, in domain shifts the OOD data points
come from classes encountered at the training stage but altered
due to test-stage noise patterns (e.g., training with sunny
images and testing with foggy ones).

One notable DSD method for semantic segmentation DNNs
is [22], which proposes MetaSeg: a DNN designed to suc-
cessfully detect OOD samples in semantic segmentation tasks.
MetaSeg is tasked to detect segments of high-interest classes
but of low Intersection-over-Union (IoU) values. Alternatively,
[4] relies on spatial entropy heatmaps and pixel-level disper-
sion metrics for identifying OOD images. During training, the
softmax output of the DNN is considered to be a set of pixel-
wise probability distributions that express per-class affiliation
for each pixel of an input image. Then, by combining neigh-
boring pixels that their normalized entropy exceeds a theshold,
OOD segments/ojects are formed.

Moving on to Monocular Depth Estimation (MDE), only
few published methods specifically target DSD/DSD; instead
attempt to quantify depth prediction uncertainty. For example
[2] exploits visual odometry data to train an autoencoder (AE)

alongside a depth estimator. Training consistency is enforced
by using two instances of the AE, for both left and right stereo
images, to produce denser depth maps than the input ones. The
depth estimator, with the appropriate loss functions, produces
the final depth maps using the autoencoder’s output.

In [29] two instances of the same MDE DNN, i.e., Mon-
odepth2 [11], are optimized in a teacher-student manner: the
teacher is trained regularly on its own, while its outputs are
employed as ground-truth for optimizing the student with a
directly supervised learning approach. Uncertainty estimation
can then proceed by decoupling depth estimation from the
camera pose.

A different DSD detection method is the Self-Oracle Auto-
Encoder, which detects distributional shifts by comparing the
input and the output of a Variational Auto-Encoder (VAE),
so as to assess the reconstruction error [33]. Then, [35] put
forward the Likelihood-Regret (LR) metric, which estimates
the log-likelihood model improvement that maximizes the
likelihood of one sample over the model configuration that
maximizes the likelihood across all samples, deeming anoma-
lous samples that cause large LR fluctuations. Alternatively,
the Self-Supervised outlier Detection (SSD) framework [32]
uses a self-supervised generative model to extract latent feature
representations from depth maps, using Mahalanobis distance
to compare test samples against established ID ones. Finally,
[13] evaluates the three previous methods with respect to their
DSD performance on a MDE DNN. Experiments involve syn-
thetic autonomous vehicle footage with various degrees of fog
causing distribution shift. SSD proved to perform best, with its
output scores reflecting the actual level of distributional shift.

The proposed method is most closely related to [29], which
also employs teacher-student training. However, instead of
utilizing two architecturally identical instances of a single
MDE and exploiting the difference of their test-stage outputs
to construct a formal prediction uncertainty estimation model,
our method operates in a very different manner. It exploits
two entirely different architectures, i.e., a regular MDE and an
I2I, in order to directly use the difference of their test-stage
outputs as an informal uncertainty index. This index is then
thresholded to decide whether the input test image is OOD or
ID. The underlying intuition differs significantly from that of
[29]: our DSD method relies on the idea that the MDE and the
I2I outputs are less correlated for OOD images, due to their
different neural architectures and learning paradigms. This is
simpler, more intuitive and more effective for DSD in MDE
DNNs, as shown by the experimental evaluation.

III. PROPOSED METHOD

The proposed method exploits an Image-to-Image Transla-
tor (I2I) in order to achieve DSD during the inference stage
of a Monocular Depth Estimator (MDE). Thus, MDE and first
briefly reviewed, before our novel algorithm itself is presented.

A. Monocular Depth Estimation

MDE is typically achieved by simple supervised image
regression, when ground-truth depth maps are available, or



by self-supervised learning that exploits geometric relations
inherent in consecutive video frames or in stereoscopic 3D
image pairs. Below, the self-supervised setting is briefly re-
viewed.

A typical loss function [11] for training a self-supervised
MDE DNN mainly involves a photometric reprojection error
Lp:

Lp = min
t′

pe(It, It′−→t) (1)

It′−→t = It′⟨proj(Dt,Tt′−→t,K)⟩ (2)

where pe is a photometric reconstruction error, and can be
calculated as:

pe(IA, IB) =
a

2
(1−SSIM(IA, IB))+(1−a)∥IA−IB∥1 (3)

where a ∈ [0, 1] is a weight coefficient. The projection in Eq.
2 refers to the projection of depth map Dt in It′ , ⟨·⟩ represents
a bilinear sampling operator, while K is the camera intrinsic
parameters matrix. Additionally, It is the target image pose, It′
the source image pose, and Tt′−→t the relative pose of It′ with
respect to It. This loss metric allows regions that are occluded
in one frame but visible in an adjacent one to be brought
up, hence the minimum operation. This per-pixel photometric
reprojection loss is computed over all source images, meaning
a frame window.

This pivotal loss term is typically combined with various
smoothness terms, in order to train a DNN for self-supervised
MDE. The most common architectural choice is a Convo-
lutional Neural Network (CNN) arranged according to an
Encoder-Decoder approach [12].

B. Image-to-Image Translation

Generative Adversarial Networks (GANs) are generative
models that learn a mapping G : z 7→ Y from a random
noise vector z ∈ Rn to output image Y ∈ Rk×l or a tensor
Y ∈ Rk×l×m. In contrast, conditional GANs learn a mapping
G : {X, z} 7→ Y from observed input image X ∈ Rp×r and
random noise vector z, to Y.

The Generator G is trained to produce outputs that can-
not be distinguished from “real” images by an adversarially
trained Discriminator D, which gradually learns to discern the
synthetically generated images from real ones. The objective
of a conditional GAN can be expressed as:

LcGAN (G,D) = EX,Y [logD (X,Y )] +

+ aEX,z [log (1−D (X, G (X, z)))] ,

where G tries to minimize this objective against an adversary
D that tries to maximize it:

G∗ = argmin
G

max
D

LcGAN (G,D) . (4)

In the unconditional variant, where the Discriminator does
not observe X, it holds that:

LcGAN (G,D) = EY [logD (Y)] +

+ EX,z [log (1−D (G (X, z)))] .

It is best practice to augment the GAN objective with
a more traditional loss, such as L1 or L2 norm. Although
the Discriminator’s job remains unchanged, the Generator
is additionally constrained to stay near the corresponding
ground-truth output as follows:

L (G) = EX,Y,z [∥Y −G (X, z)∥] . (5)

The overall training objective is:

G∗ = argmin
G

max
D

LcGAN (G,D) + λL (G) . (6)

C. Proposed DSD Method

Assume a pretrained MDE DNN. Let X0 be an input image
for which the MDE must estimate a final depth map XN .
Since the MDE is a DNN, several intermediate representations
will also be constructed while mapping X to XN during
inference. Thus, overall, a sequence of tensors Xi, 0 ≤ i ≤ N
is defined for each input image X0, where N is the number
of consecutive layer blocks in the MDE neural architecture:
fMDE(X0) = {X1,X2, ...,XN}.

The first step of the proposed method is to train a I2I model,
under the conditional Generative Adversarial Network (GAN)
paradigm [15], so that the Generator learns to map tensors Xi,
for a specific i, 0 ≤ i < N , to corresponding dense targets XN

(predicted final depth maps). The training dataset is derived
by feeding images to the pretrained fMDE model. Thus, the
I2I learns to mimic the predicted depth map by producing an
estimate fI2I(Xi) = X̃N .

During inference, the pretrained MDE is deployed in-the-
field along with the trained I2I. When a test-stage image/data
point comes along, the two models output the predicted depth
map XN and the estimated depth map X̃N , respectively.
Obviously, X̃N is an estimation of XN . Moreover, with the
sole exception of the scenario where i = 0, an intermediate-
layer image representation formed during the inference stage
of the MDE is exploited as the input to the I2I model.

Given the two depth maps, the next step is to compute the
per-pixel absolute difference between them:

Y = |XN − X̃N | = |fMDE(X0)− fI2I(Xi)|. (7)

Subsequently, the scalar absolute differences contained in
matrix Y are combined via an aggregation strategy (e.g., aver-
aging), in order to derive a single scalar informal uncertainty
estimate for the entire image. Finally, by simply thresholding
this estimate, the image can be categorized as ID or OOD.
This pipeline is graphically depicted in Fig. 1.

The MDE has been pretrained (under a supervised or self-
supervised setting) on the dataset Din, while the I2I has been
optimized to mimic its predictions (under an adversarial set-
ting). Hence, during inference, X̃N ≈ XN in Din. However,



this approximate equality does not hold on images from a
different, OOD dataset Dout. This is because it is highly
unlikely that the two DNNs, which are architecturally different
and have been trained under different learning settings, will
respond similarly to test images they are both unfamiliar with.
Thus, the informal uncertainty estimate is expected to be
significantly larger for OOD images.

The inference flowchart of the proposed method is depicted
in Algorithm 1:

Algorithm 1 Distribution Shift Detection
X0 ← RGBimage

[X1,X2, ...,XN ]← fMDE(X0)
X̃N ← fI2I(Xi)
U = abs(XN − X̃N )
for u ∈ U : do

if u < t then
u← 0 ▷ Marked as OOD

else
u← 1 ▷ Marked as ID

end if
end for
return U

IV. EXPERIMENTAL EVALUATION

This Section discusses implementation details of the pro-
posed method, as well as the followed evaluation process.

A. Datasets

Three datasets were employed for training and evaluation,
with the prospect that one will serve as the ID dataset (Din),
and the other two as the OOD datasets (Dout). This is an
evaluation protocol similar to the ones typically utilized for
assessing OODD methods [32] [31] [17]. In the MDE scenario,
where there is only domain shift and no label-space shift,
such a protocol implies a very large shift in image appearance
between the training and the test dataset; this is the case where
DSD is most critical (since MDE is most likely to fail).

The datasets employed were KITTI RAW [9], Cityscapes
[7] and DDAD [12]; all of them collected by driving a car.
The first two have been derived using stereo rigs on the front
side of the vehicle, while the latter one has only one on
the driver’s side (corresponding to the “left” camera of the
former two). The DDAD configuration has more cameras for
360◦ information, but this paper only utilized videos from the
front-facing one. All three datasets were collected using RGB
cameras, with KITTI RAW and DDAD leveraging LiDAR
sensors to generate ground-truth depth maps. In Cityscapes,
depth maps were generated by stereoscopic 3D analysis.

B. Training

The selected MDE neural architecture was Monodepth2
[11], also used in [29]. This DNN is comprised of a ResNet-18
encoder analyzing the input RGB image and a decoder that
outputs the final depth map prediction. The feature tensors

Xi, 1 ≤ i ≤ K, as defined in Section III, refer to the outputs
of the i-th layer of the encoder. X0 refers to the raw input
RGB image.

The popular Pix2Pix C-GAN [15] was selected as the I2I
Translator. Training on Monodepth2 is done using the KITTI
RAW dataset for 20 epochs using a batch size of 12 and a
learning rate of 10−4, in a self-supervised monocular scenario.
Since Monodepth2 produces sharp, high quality depth maps
in this training setting [11], we chose to use a feature vector
derived from its intermediate layers as training input for our
novel method.

The resulting depth maps, as well as the original RGB
images just before entering Monodepth2 are scaled down to
640× 192 spatial resolution.

For each training image, the I2I was trained with the
Monodepth2-predicted depth map XN as target and a tensor
Xi, 0 ≤ i ≤ K as input, for a specific i that was empirically
chosen. Since K = 4, there are 5 possible types of inputs and 5
corresponding trained I2I instances (for i ∈ N, i ∈ [0, . . . , 4]).
In all cases, training proceeded for 200 epochs, with 100 of
them having a stable learning rate of 2 · 10−4 and the rest
decaying it towards zero.

C. Metrics

To evaluate the proposed method and compare it with MDE
uncertainty estimation methods in DSD, standard performance
metrics were used [6]. Having an informal uncertainty index,
which can also be viewed as a confidence by taking its
complement (confidence = 1− uncertainty), the following
common metrics can be utilized:

1) False Positive Rate (FPR) at 95% True Positive Rate
(lower is better).

2) The Detection Error (DERR), which illustrates the min-
imum probability to misdetect an OOD sample for all
possible thresholds (lower is better).

3) The Area Under the Receiver Operating Characteristic
(AUROC) curve, which represents the chance for a
positive sample to be given a higher detection score than
a negative one (higher is better).

4) The Area Under the Precision Recall (AUPR) curve,
which measures the precision and recall curves against
each other. So for TP being True Positive, FP False
Positive, and FN False Negative:

precision =
TP

TP + FP
& recall =

TP

TP + FN

The AUPR metric is used in two variants, one where the
ID samples are considered positive (AUIN), and another
with the OOD samples considered so (AUOUT) (higher
is better).

For each test image, the uncertainty map Y was aggregated
into a single scalar informal uncertainty index. Empirical
investigation revealed simple averaging to be the best aggre-
gation strategy amongst the ones that were tried.



RGB Image

Fe
at
ur

e
Ve

ct
or

Actual Depth
Map

Predicted Depth
Map

X0

Xi

XN
~I2I

Translator

XNMDE

Absolute Difference
Uncertainty metric

Fig. 1. The proposed DSD pipeline when analyzing a test-stage image. The aggregated absolute difference between the MDE-predicted depth map and the
I2I-derived one can be used as an informal uncertainty index. Its thresholding provides an effective OOD indicator.

TABLE S1
DSD PERFORMANCE RESULTS FOR DIFFERENT i VALUES. Din : KITTI

RAW, Dout : DDAD, CITYSCAPES.

Din: KITTI RAW - Dout: DDAD
FPR↓ DTERR↓ AUROC↑ AUIN↑ AUOUT↑

X0 84,07 28,34 78,03 80,48 71,77
X1 95,27 27,76 75,73 80,19 65,93
X2 52,8 17,93 88,63 90,19 83,72
X3 36,01 13,34 93,90 94,65 92,13
X4 74,32 19,94 85,8 88,27 79,86

Din: KITTI RAW - Dout: CITYSCAPES
FPR↓ DTERR↓ AUROC↑ AUIN↑ AUOUT↑

X0 57,82 23,46 84,94 85,82 84,24
X1 63,56 22,09 85,57 87,66 83,38
X2 46,48 16,21 90,56 91,5 88,55
X3 46,34 18,29 89,84 90,21 88,77
X4 75,75 27,19 78,94 79,29 76,58

D. Results

DSD performance was independently measured for different
values of i and for both possible dataset combinations. The
results are shown in Table S1. Best results in each metric are
in bold; second best are underlined.

By examining the evaluation results, it seems that the
empirically optimal value of i across dataset combinations
is i = 3. This implies using the intermediate representation
produced by the third layer of the MDE’s encoder, i.e., X3, as
I2I input. A different choice of i, 0 ≤ i ≤ K may sporadically
lead to slightly higher performance in some metrics, but i = 3
gives consistently good results.

Table S2 compares our method for i = 3 against competing
methods, properly adapted to our evaluation setup. The pro-
posed algorithm surpasses the competition on both datasets, by
a substantial margin across all metrics, with the KITTI dataset
as Din. The FPR at 95% TPR shows the biggest advantage
margin: a considerable and consistent lead of approximately
25% to 26% from the best competing method when we use
either DDAD or Cityscapes as the Dout.

TABLE S2
DSD PERFORMANCE COMPARISONS.

Din: KITTI RAW - Dout: DDAD
FPR↓ DTERR↓ AUROC↑ AUIN↑ AUOUT↑

[29] 82,93 34,86 69,62 68,43 68,24
[35] 63,6 21,9 84,37 84,95 81.24
[32] 77,63 29,41 76,87 75,47 73,12
[33] 61,49 19,8 87,76 88,90 84,42
Ours 36,01 13,34 93,90 94,65 92,13

Din: KITTI RAW - Dout: CITYSCAPES
FPR↓ DTERR↓ AUROC↑ AUIN↑ AUOUT↑

[29] 83,64 34,65 69,75 69,57 67,42
[35] 98,00 43,00 51,40 48,90 51,16
[32] 97,41 45,62 53,13 52,29 51,30
[33] 73,88 26,97 78,61 75,00 76,77
Ours 46,34 18,29 89,84 90,21 88,77

V. CONCLUSIONS

This paper proposed a novel method for Distribution Shift
Detection (DSD) in Deep Neural Networks (DNNs) for
Monocular Depth Estimation (MDE). This is an important task
in safety-critical applications such as autonomous driving. The
method operates by pretraining an Image-to-Image Translator
(I2I) to mimic the depth maps generated by the MDE model
and eventually, discriminate between OOD and ID inputs
during deployment, by exploiting the difference between the
two depth map predictions for a test-stage input image, as
an informal scalar uncertainty index. Such an approach relies
on the insight that the outputs of the MDE and the I2I are
less correlated for OOD images, due to their different neural
architectures and learning paradigms. Experimental evaluation
on autonomous driving-compatible datasets showcased that,
by exploiting the feature extraction capabilities of a high-
accuracy MDE model and using an intermediate representation
produced by its encoder as input, considerably higher DSD
performance is obtained, compared to training an independent
uncertainty estimator. Thus, our method is shown to be si-
multaneously simpler and more effective than state-of-the-art



competing algorithms.
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et al., A multiple-UAV architecture for autonomous media production,
Multimedia Tools and Applications (2022), 1–30.

[20] M. Markou and S. Singh, Novelty detection: a review, Signal Processing
83 (2003), no. 12, 2481–2497.

[21] A. Nguyen, J. Yosinski, and J. Clune, Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[22] P. Oberdiek, M. Rottmann, and G. A. Fink, Detection and retrieval
of out-of-distribution objects in semantic segmentation, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2020.

[23] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. V.
Dillon, B. Lakshminarayanan, and J. Snoek, Can you trust your model’s
uncertainty? evaluating predictive uncertainty under dataset shift, Pro-
ceedings of the Advances in Neural Information Processing Systems
(NIPS), 2019.

[24] S. Papadopoulos, I. Mademlis, and I. Pitas, Neural vision-based semantic
3D world modeling, Proceedings of the ieee/cvf winter conference on
applications of computer vision (wacvw), 2021.

[25] , Semantic image segmentation guided by scene geometry, Pro-
ceedings of the ieee international conference on autonomous systems
(icas), 2021.

[26] C. Papaioannidis, I. Mademlis, and I. Pitas, Autonomous UAV safety by
visual human crowd detection using multi-task deep neural networks,
Proceedings of the ieee international conference on robotics and au-
tomation (icra), 2021.

[27] , Fast CNN-based single-person 2D human pose estimation for
autonomous systems, IEEE Transactions on Circuits and Systems for
Video Technology (2022).

[28] N. Passalis and A. Tefas, Continuous drone control using deep reinforce-
ment learning for frontal view person shooting, Neural Computing and
Applications 32 (2020), no. 9, 4227–4238.

[29] M. Poggi, F. Aleotti, F. Tosi, and S. Mattoccia, On the uncertainty of self-
supervised monocular depth estimation, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
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