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Abstract—Non-maximum suppression (NMS) is a post-
processing step in almost every visual object detector. NMS aims
to prune the number of overlapping detected candidate regions-
of-interest (RoIs) on an image, in order to assign a single and
spatially accurate detection to each object. The default NMS
algorithm (GreedyNMS) is fairly simple and suffers from severe
drawbacks, due to its need for manual tuning. A typical case of
failure with high application relevance is pedestrian/person de-
tection in the presence of occlusions, where GreedyNMS doesn’t
provide accurate results. This paper proposes an efficient deep
neural architecture for NMS in the person detection scenario,
by capturing relations of neighboring RoIs and aiming to ideally
assign precisely one detection per person. The presented Seq2Seq-
NMS architecture assumes a sequence-to-sequence formulation
of the NMS problem, exploits the Multihead Scale-Dot Product
Attention mechanism and jointly processes both geometric and
visual properties of the input candidate RoIs. Thorough experi-
mental evaluation on three public person detection datasets shows
favourable results against competing methods, with acceptable
inference runtime requirements.

Index Terms—Non-Maximum Suppression, Object Detection,
Scaled-Dot Product Attention, Sequence-to-Sequence Learning,
Person Detection, Deep Neural Networks

I. INTRODUCTION

Non-Maximum Suppression (NMS) is a final refinement
step incorporated to almost every visual object detection
framework, assigned the duty of merging/filtering any spatially
overlapping detected Regions-of-Interest (RoIs), i.e., bounding
boxes, which correspond to the same visible object on an
image. The problem it attempts to solve arises from the
tendency of many detectors to output multiple, neighbouring
candidate object RoIs for a single visible object, due to
their implicit sliding-window nature. Thus, an NMS algorithm
processes the raw object detector outputs identified on an input
image and attempts to filter out the duplicate RoIs.

The de facto dominant NMS method for object detection
is GreedyNMS. It selects high-scoring detections and deletes
less confident neighbours, since they most likely cover the
same object. Its simplicity, speed and unexpectedly good
behaviour in most cases make it competitive against proposed
alternatives, since rapid execution is very important for NMS.
An Intersection-over-Union (IoU) threshold determines which
less-confident neighbors are suppressed by a detection. This
fixed IoU threshold leads GreedyNMS to failure in certain
cases. Too powerful a suppression, using a low threshold, may

The source code is publicly available at: https://github.com/opendr-eu/
opendr/tree/master/src/opendr/perception/object detection 2d/nms/seq2seq
nms.

remove detections that cover different spatially overlapped
objects, while a too high threshold may be unable to suppress
duplicate detections.

Due to these limitations of traditional algorithms, modern
Deep Neural Network (DNN)-based methods for performing
NMS have emerged during the past few years. While some
DNNs are assigned with auxiliary tasks complementing the
original NMS scheme (e.g., estimate target density maps in
order to apply dynamic suppression thresholding [1]), others
provide a more straightforward solution (e.g., outputting a
score for each candidate detection, thus indicating whether
it corresponds to a “duplicate” detection or not [2]). The latter
type of methods relies on building representations for each
candidate detection, typically based on their corresponding
geometric/spatial relations [2], while ignoring RoI visual ap-
pearance. This is either because CNN-based features can blur
the boundaries between highly overlapping true positives and
duplicates, or due to the difficulties DNNs are faced with when
trying to extract accurate representations for highly occluded
objects. However, evidence has recently surfaced indicating
that appearance-based input may improve the performance
of DNN-based NMS methods [3] [4], if that information is
properly fused with the geometry-based input.

An additional issue stems from the fact that the NMS
problem for object detection purposes is essentially sequential
in nature. The output RoIs are sequentially processed by
the common object detection evaluation protocols [5] [6],
ordered according to the scalar confidence scores assigned
to them by the NMS method. Similarly, the input candidate
RoIs, i.e., the raw output of the object detector which is
fed as input to the NMS algorithm, must also be ordered
according to the initial confidence scores assigned to them
by the detector. Thus, essentially, an NMS method actually
decides whether a candidate RoI is duplicate, or not, based on
the decisions it has previously taken for the preceding, higher-
scoring candidate RoIs along the input sequence. However,
to the best of our knowledge, NMS has not been previously
explicitly formulated as a problem of processing sequences,
thus related algorithms have not been applied to solving it.

Motivated by such issues of existing neural NMS ap-
proaches, this paper offers the following contributions:

• a novel reformulation of the NMS task for object detec-
tion as a sequence-to-sequence problem.

• a novel deep neural architecture for NMS, relying on
the Scaled Dot-Product Attention mechanism, called
Seq2Seq-NMS.

https://github.com/opendr-eu/opendr/tree/master/src/opendr/perception/object_detection_2d/nms/seq2seq_nms
https://github.com/opendr-eu/opendr/tree/master/src/opendr/perception/object_detection_2d/nms/seq2seq_nms
https://github.com/opendr-eu/opendr/tree/master/src/opendr/perception/object_detection_2d/nms/seq2seq_nms


• a new, fast, efficient and GPU-based neural implementa-
tion of the low-level Frame Moments Descriptor (FMoD)
[7], which is employed for feeding the proposed DNN
with appearance-based representations of detected candi-
date RoIs.

The proposed method is highly applicable to the per-
son/pedestrian detection task, where most NMS algorithms
face difficulties in identifying individuals in the presence of
occlusions. The majority of existing NMS methods target
fast execution, but person detection requires a high degree
of accuracy; this is critical for ensuring human safety in
domains such as autonomous systems [8] [9] [10] [11] [12]
[13]. Moreover, the visual appearance representation approach
adopted by Seq2Seq-NMS, i.e., FMoD descriptors computed
on edge maps of cropped candidate RoIs, is most accurate
in cases where the visible silhouette of the target object
class remains approximately identical in shape across the
training and test images. This is true in the person detection
case, bar abnormally extensive viewpoint variations across the
employed dataset. Adopting FMoD, which has already proven
its worth in NMS for person detection from aerial viewpoints
[3], renders the applicability of the proposed method focused
to similar scenarios.

Extensive quantitative evaluation using well-known
metrics and public person detection datasets indicates
favourable results in comparison to several competing NMS
methods, both neural and non-neural, leading to state-of-
the-art results. The source code is publicly available at:
https://github.com/opendr-eu/opendr/tree/master/src/opendr/
perception/object detection 2d/nms/seq2seq nms.

II. RELATED WORK

NMS is the final step of typical object detection pipelines,
thus this Section first briefly reviews state-of-the-art detectors.
Subsequently, NMS algorithms and related loss functions are
presented. Finally, the motivation behind the proposed method
is discussed in the context of the existing approaches to NMS.

A. Object Detection

Object detection is a long-standing, fundamental problem in
computer vision. Its task is to generate bounding boxes (in 2D
pixel coordinates) for objects detected on an image that belong
to prespecified object classes and to assign classification
scores to them. Most of the early object detection algorithms
[14] [15] relied mainly on local handcrafted descriptors and
discriminative classifiers. The Deformable Part-based Model
(DPM) [16] is a special case, where an object is represented by
its component parts arranged in a deformable configuration. In
[17], the authors designed a joint person detector, based on the
DPM architecture, which overcomes the limitations imposed
by frequent occlusions in real-world street scenes.

Object detection has been tremendously improved thanks
to Deep Neural Networks (DNNs), with Convolutional Neu-
ral Networks (CNNs) being the most relevant architectures.
DNN-based object detectors are usually grouped into two
categories: two-stage and one-stage object detectors. Typically,

the former ones (e.g., [18]) first create object proposals from
input images, using a method such as selective search or a
separate DNN, and then extract features from these proposals
using CNNs. These features are then fed to a classifier that
determines the existence and the class of any object in each
proposal. Although two-stage detectors achieve state-of-the-art
performance, their running speed is typically slow. One-stage
object detectors, such as [19] [20] and [21] perform region
proposal and object classification in a single, unified DNN.
Initial regions are predefined bounding boxes with various
scales and ratios placed densely on the image, which are
generally referenced as anchors. From the initial anchors, the
detectors find those that likely contain objects. Compared to
two-stage detectors, their one-stage competitors are usually
much faster, but less accurate.

B. Non-Maximum Suppression

The de facto standard in NMS for object detection is Gree-
dyNMS [22]. It selects high-scoring detections and deletes
less confident neighbours, since they most likely cover the
same object. An Intersection-over-Union (IOU) threshold de-
termines which less-confident neighboring detections are sup-
pressed. It is a simple, well-known, but limited method, lead-
ing to several attempts for replacing it with much improved
alternatives.

In Soft-NMS [23], a rescoring function decreases the score
of neighboring less-confident detections, instead of completely
eliminating them, achieving better precision and recall rates
compared to GreedyNMS. The authors experiment with Gaus-
sian and linear weighting functions, which both require a
hyper-parameter tuning similar to GreedyNMS. In [24], the
final coordinates of a detection are being reformulated as
the weighted-average of the coordinates of all neighboring
detections, given an IoU threshold. GossipNet [2] is a DNN
designed to perform NMS, by processing the coordinates
and scores of the detections. Overall, it jointly analyzes all
detections in the image, so as not to directly prune them,
but to rescore them. In [25], the authors replace the classi-
fication scores of candidate detections, used in GreedyNMS,
with learned localization confidences to guide NMS towards
preserving more accurately localized bounding boxes. In [4],
an attention module is applied with the task to exploit relations
between the input detections, in order to classify them as
duplicate or not. [1] proposes Adaptive-NMS, a dynamic
thresholding version of GreedyNMS. A relatively shallow
neural network predicts a density map and sets adaptive
IoU thresholds in NMS for different detections according to
the predicted density. An accelerated NMS method has been
proposed in [26], allowing higher inference times in exchange
for a small performance drop, due to the large number of boxes
that are likely to be over-suppressed.

GossipNet was modified in [3], for the specific case of per-
son detection from aerial views, so as to jointly process visual
appearance and geometric properties of candidate RoIs. The
method exploited handcrafted descriptors encoding statistical
RoI appearance characteristics, which were computed on the

https://github.com/opendr-eu/opendr/tree/master/src/opendr/perception/object_detection_2d/nms/seq2seq_nms
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(a) Raw RoIs/detections. (b) RoIs/detections after applying
GreedyNMS at 0.5 IOU.

(c) RoIs/detections after applying the
proposed Seq2Seq-NMS method.

Fig. 1: Candidate RoIs/detections from Faster-RCNN in an image from the COCO dataset. Detections matched successfully
to humans are colored green, while “incorrect” detections are colored red.

spatial distribution of edges detected within each RoI. These
distributions acted as a discriminant factor for identifying
complete vs partial object silhouettes, since the silhouette of
any person seen from an aerial view is rather similar in shape.

More recently, [27] proposed Distance-IoU (DIoU), a new
metric which can replace the typical IoU metric in Gree-
dyNMS. This work suggested that the suppression proce-
dure should take into account not only the overlap of two
neighboring detections, but also the distances between their
centers. Alternatively, Cluster-NMS was proposed in [28], i.e.,
a technique where NMS is performed by implicitly clustering
candidate detections. Cluster-NMS can incorporate geometric
factors to improve both precision and recall rates and can effi-
ciently run on a GPU, achieving very fast inference runtimes.

C. Loss Functions for Bounding Box Regression

In DNN-based methods for visual object detection, predic-
tion of spatially accurate RoIs/bounding boxes is enforced by
an additional loss term during model training. The regressed
RoI parameters are position, shape and scale, in terms of
2D pixel coordinates. These parameters are predicted either
directly, or as offsets relative to “anchor boxes”, in the case of
anchor-based detectors. It is common to use the Ln-norm for
calculating the corresponding loss term (e.g., [18] [19] [20]).
However, [29] indicates that the correlation between training
with such Ln-norm loss terms and improving test accuracy,
as measured by the Intersection-over-Union (IoU) metric, is
not strong at all. On the other hand, directly incorporating
the IoU metric in a loss function would implicitly force the
detector itself to also perform a rudimentary degree of NMS,
but this is unsuitable for cases where two bounding boxes
are non-overlapping, due to their zero loss gradient. Thus,
[29] proposes the Generalized-IoU (GIoU) loss term, which
handles similar scenarios but suffers from slow convergence
and inaccurate regression. Thus, in [27], a loss term relying
on the DIoU metric was formulated, by adding to the IoU
loss a penalty based on the 2D center point coordinates of
two bounding boxes. This was shown to converge faster than
GIoU. [27] also proposed the Complete-IoU (CIoU) loss, an
extension of DIoU with an additional term which can be tuned
so as to impose aspect ratio consistency between two bounding
boxes, thus leading to further increases in test accuracy.

D. Limitations of Existing Methods

State-of-the-art object detectors continue to require NMS as
a final step [21], even when they use sophisticated loss func-
tions for bounding box regression during training. A typical
scenario showcasing the indispensability of a reliable NMS
method is when object detection is performed on images with
high levels of occlusions [1] [30]; ironically, this constitutes a
challenge even to state-of-the-art NMS algorithms.

Although the geometric properties of candidate RoIs have
been considerably exploited by various NMS approaches [2]
[27] [28] [26], only a couple of methods [1] [4] [3] have
attempted to take advantage of both visual appearance and
geometric/spatial RoI information. Therefore, joint exploita-
tion of appearance and geometry for NMS in object detection
is underexplored. In addition, despite a vast amount of effort
expended towards achieving short inference times [26] [27],
since fast execution is an important aspect of NMS, one can
easily identify real-world scenarios where a potential improve-
ment in accuracy may equally matter (e.g., pedestrian/person
detection in human safety-centric applications).

Despite the sequential nature of the NMS task in object
detection, since at least the input candidate RoIs are always
ordered according to their confidence score, no previous
method has relied on formulating the problem as a sequence-
to-sequence task. Thus, the recent rise of self-attention neural
modules [31], capable of efficiently capturing interrelations
within a sequence, has not yet significantly affected NMS
algorithms. To the best of our knowledge, the only relevant
method employing self-attention mechanisms is [4], tailored
for the duplicate removal task and not for pure NMS. Thus, it
does not perform free rescoring: an input candidate RoI which
was assigned a low confidence score by the detector (e.g.,
due to occlusion) cannot be rescored higher by the duplicate
removal DNN; only lower. An unconstrained NMS method
exploiting the powerful self-attention neural mechanism has
yet to emerge.

Out of the existing literature, the proposed method is most
related to [2] [3] and [4]. Like GossipNet in [2], Seq2Seq-
NMS approaches NMS as a rescoring problem. However, an
optimized geometric representation for each candidate RoI is
proposed here, slightly similar, but different and enriched com-
pared to the GossipNet input descriptor. Like [3], Seq2Seq-
NMS jointly processes visual and geometric representations



of the input candidate RoIs, using the FMoD descriptor [7]
computed on edge maps of cropped detections. However, in
this paper, the FMoD descriptor has been re-implemented
neurally, leading to significant runtime gains thanks to GP-
GPU-based parallel processing, while a novel deep neural
architecture is proposed here, so as to exploit the sequence-
to-sequence formulation, instead of relying on GossipNet. Fi-
nally, similarly to [4], the Seq2Seq-NMS architecture employs
the powerful self-attention neural mechanism, but since the
proposed method is a complete, free rescoring NMS DNN it is
able to search for and fully exploit interrelations between the
candidate RoI representations, without being constrained by
the original confidence score assigned by the object detector.

III. ATTENTION-DRIVEN NON-MAXIMUM SUPPRESSION

In this paper, NMS for object detection is first reformulated
as a sequence-to-sequence task. This approach is highly related
to the evaluation criteria established in object detection [5]
[6], where the candidate RoIs identified on an input image are
assumed to indirectly form a sequence, based on the scalar
confidence score assigned to each of them by the detector
(in descending order). Traditionally, evaluating a detector’s
accuracy on a known dataset involves an analysis of this
sequence. At each step, a candidate RoI is processed and
matched to a ground-truth object, if and only if: (a) their IoU
is higher than a predefined threshold, and (b) that ground-
truth object hasn’t been previously matched to a higher-scoring
candidate detection. In the case where both (a) and (b) are
fulfilled, the candidate RoI is marked as “correct”, otherwise
it is marked as “false”. In the special case where only (a) is
fulfilled, the candidate detection is marked as “false”, due to it
being a ”duplicate” detection. Thus, the position of a candidate
RoI in the sequence can be a significant factor when taking
the decision to classify it as a “duplicate” or not.

This emphasis in the ordering is shared with problems tradi-
tionally viewed as sequence-to-sequence ones. For instance, in
machine translation, a sequence of words from one language
must be transformed into a sequence of words in another
language. The order of each word (token) in the sentence is
crucial and can modify its meaning (context). Similarly, in
object detection evaluation, although a candidate RoI (token)
can be successfully matched to a ground-truth object, it can
be classified as “duplicate” and therefore as “false”, instead
of being classified as “correct”, due to the fact that a higher-
scoring candidate detection, which has been positioned earlier
in the sequence, has already been matched with the same
ground-truth object.

Motivated by these notions, this paper explicitly formulates
the NMS task as a mapping from an input sequence of can-
didate RoIs to a corresponding output sequence with identical
length. Let Rin be the input sequence of candidate RoIs, in
descending order with respect to detector confidence scores:

Rin = [rin1 , ..., rinN |r
scoredet
i ≥ rscoredeti+1 ] (1)

where rini = [rxmin
i , rymin

i , rxmax
i , rymax

i , rscoredeti ] is an input
candidate RoI expressed through its 2D image coordinates,

along with its corresponding score assigned by the detector,
and N is the number of candidate detections. Let Rout be the
output sequence of candidate RoIs, in descending order based
on the scores assigned by the NMS method:

Rout = [rout1 , ..., routN |r
scoreNMS
i ≥ rscoreNMS

i+1 ] (2)

where routi = [rxmin
i , rymin

i , rxmax
i , rymax

i , rscoreNMS
i ] is an

NMS-rescored candidate RoI. The proposed formulation of
the NMS task can be expressed as:

Rout = NMS(Rin) (3)

Building upon this novel view of the NMS task, the method
proposed in this paper, which we call Seq2Seq-NMS, receives
as input a sequence of candidate RoIs, generated by an
object detector, and extracts rich representations regarding
their appearance and geometry. Subsequently, these represen-
tations are fed to a DNN which processes them in parallel,
while mainly paying attention to spatially neighboring, higher-
scoring candidates when analyzing each RoI. Finally, it outputs
a sequence of scalar scores, each one defining the context
of a candidate detection. This is essentially information that
determines the final decision of whether the respective RoI
should be classified as “correct” or as “potentially suppressed”,
after the NMS task has been completed. In the proposed
formulation, the context of the ith candidate detection is
expressed through the corresponding output score, which is a
classification probability pi : {pi ∈ R|0 ≤ pi ≤ 1} (1/0 means
“correct”/“potentially suppressed”, respectively). After the in-
ference stage, simple thresholding can be applied on these
output probabilities/scores, in order to decide which candidate
detections should be retained. This formulation avoids hard
discarding/pruning of RoIs at the inference phase itself, thus
allowing us to find a balance in the trade-off between False
Positive Rate (FPR) and True Negative Rate (TNR), depending
on the application (e.g., using a low threshold in human safety-
centric applications such as pedestrian detection).

Seq2Seq-NMS relies on building rich representations for
each candidate detection, based on their visual appearance,
their geometry and their interrelations. Abstractly, it consists
of the following three steps:

• Appearance-based RoI representations extraction.
• Geometry-based RoI representations extraction.
• Detections rescoring through the attention-driven NMS

DNN.
These steps are detailed below.

A. Appearance-based RoI Representations Extraction

This step can be considered optional, since RoI represen-
tations that have been already computed at the intermediate
feature extraction layers of the DNN-based object detector
itself can be used instead. However, the use of RoI repre-
sentations computed solely for the NMS procedure makes
the NMS DNN less detector-specific and more robust against
variations in the effectiveness and the performance of the
deployed detector. In [3], where the goal was person detection



from aerial views, representations consisting of statistical RoI
appearance properties, computed on the spatial distribution of
edges detected within each RoI, were used. These distributions
acted as a discriminant factor for identifying complete vs
partial object silhouettes, since the aerial view of persons
silhouettes are similar in shape. However, the same argument
can be made for people seen from a ground perspective (e.g.,
pedestrians perceived by an autonomous car), therefore this is
a solution applicable to most person detection scenarios.

Algorithm 1: Appearance-based RoI representations
extraction using FMoD
Input: (a) an RGB image I

(b) a set of N RoIs expressed in 2D pixel
coordinates B = [b0,b1, ..,bN ] ∈ RN×4

(c) FMoD pyramid levels L, L ≥ 1
Output: Appearance-based representations

A ∈ RN×5(4L−1)

1 begin
2 Resize image I to a fixed size of Wf ×Hf .
3 E(I)← Compute the edge map of image I.
4 Extract in parallel the 0th-level RoI maps

M0 = [M0
0,M0

1, ..,M0
N ], where M0

i ∈ R1×W0×H0 ,
through the ROIAlign operator on E(I).

5 Compute in parallel the 0th-level FMoD
representations A0 = [A0

0,A0
1, ..,A0

N ] of M0,
where A0

i ∈ R15×1.
6 for j ← 1 to (L− 1) do
7 Extract in parallel the jth-level RoI maps

Mj = [Mj
0,Mj

1, ..,Mj
N ], where

Mj
i ∈ R4j×W0

2j
×H0

2j , through subdivision of
M0 RoI maps into four quadrants for j times,
using the ROIAlign operator.

8 Compute in parallel the jth-level FMoD
representations Aj = [Aj

0,Aj
1, ..,Aj

N ] of Mj ,
where Aj

i ∈ R15×4j .
9 end

10 Concatenate FMoD representations across all
pyramid levels A ∈ RN×5(4L−1), where
Ai = [A0

i , ..,AL
i ].

11 end

In [3], a CPU implementation of the low-level FMoD
visual descriptor was employed for representing candidate
RoIs. FMoD was originally devised in a global [7] and in
a local [32] variant (LMoD), respectively applied to movie
[33] and activity video [34] [35] [36] summarization via
key-frame extraction. Typically, FMoD and LMoD capture
informative image statistics from various available image
channels (e.g., luminance, color/hue, optical flow magnitude,
edge map, and/or stereoscopic disparity), both in a global and
in various local scales, under a spatial pyramid video frame
partitioning scheme. Following [3], only the edge map of an
image’s luminance channel is used here as input channel for
the FMoD algorithm, with the latter one applied separately

at each candidate RoI. The intent is to compactly capture
the spatial distribution of the edges within each RoI in a
single description vector. However, in [3] RoIs were processed
sequentially and not simultaneously, thus demanding very long
inference times. To tackle this limitation, in this paper FMoD
was re-implemented neurally so that it runs very fast and in
parallel on modern GPUs. Given as input an image and a set
of candidate RoIs (in pixel coordinates) of different shape and
scale, it extracts all corresponding regions of the luminance
edge map by cropping it along the boundaries of the respective
RoIs. This is done separately for each candidate RoI, but in
parallel for all of them (at a single step). Subsequently, the
FMoD descriptors/representations of all these cropped edge
maps/RoIS are also computed separately but in parallel.

The appearance-based RoI representations extraction pro-
cess can be divided into three operations. The first one involves
the computation of the edge map of the input image, which is
a relatively fast and efficient process. The second step is the
use of the ROIAlign [37] operator to extract, in parallel, fixed-
size regions across one or multiple maps. Finally, deriving
the FMoD representations of these fixed-size maps involves
in-parallel computation of the following 15 scalar statistical
attributes:

• (1-3) horizontal/vertical/vectorized-block mean values.
• (4-6) horizontal/vertical/vectorized-block standard devia-

tion values.
• (7-9) horizontal/vertical/vectorized-block skew values.
• (10-12) horizontal/vertical/vectorized-block kurtosis val-

ues.
• (13-15) horizontal/vertical/vectorized-block signal power

values.

Fig. 2: Computation of the visual appearance-based candidate
RoI representations, by applying the fast FMoD implementa-
tion to an image with 3 RoIs and using 2 pyramid levels.

The corresponding procedure is described in Algorithm 1.
Initially, the RGB input image I, of an arbitrary resolution, is
resized to a fixed resolution of Wf×Hf and its corresponding



edge map E(I) is computed. To make actual inference times
even shorter, this operation is carried out here in parallel with
the corresponding detector’s inference phase. Similarly to [3],
the FMoD representations of all RoIs are computed under
a spatial pyramid partitioning scheme [38]. At the pyramid
base, the 0th-level RoI maps M0 = [M0

0,M0
1, ..,M0

N ], M0
i ∈

R1×W0×H0 are extracted in parallel by applying the ROIAlign
operator on E(I), assuming that N candidate RoIs have
been identified by the object detector for input I. Using M0,
the 0th-level FMoD representations A0 = [A0

0,A0
1, ..,A0

N ],
A0

i ∈ R15×1 are computed in parallel. Subsequently, the
representations at the remaining spatial pyramid levels are
computed iteratively, by the in-parallel computation first of Mj

and then of the corresponding partial FMoD descriptors Aj .
Once the latter ones have been computed for all (predefined
and fixed) L pyramid levels, they are concatenated along them.
For example, in an image with N = 3 candidate RoIs and
L = 2 pyramid levels, A ∈ R3×75. This example is illustrated
in Figure 2.

B. Geometry-based RoI Representations Extraction

The spatial/geometric interrelations between the various
candidate RoIs, based only on their 2D pixel coordinates
and not on their visual appearance, is crucial for solving
the NMS problem. Such a set of purely geometric attributes
has previously proven effective as an input descriptor, in the
context of GossipNet [2]. Thus, in this paper, a slightly similar,
but enriched set of attributes has been devised, serving as an
additional representation for each RoI.

Given a set of N candidate RoIs, along with their cor-
responding detection scores, the tensor G ∈ RN×N×14 is
computed, where each entry Gij ∈ R14 contains the following
attributes:

• (1-3) the normalized horizontal/vertical/euclidean dis-
tances1 between the centers of the jth and the ith RoI.

• (4-7) the normalized width/height/area/aspect-ratio of the
jth RoI.

• (8-11) the ratios between the jth and the ith RoIs
width/height/area/aspect-ratio (e.g., wj

wi
).

• (12) the detector’s confidence score for the jth RoI.
• (13) the detector’s confidence score differences between

the jth and the ith RoI (e.g., sj − si).
• (14) the IoU between the jth and the ith RoI.
Therefore, each diagonal entry Gii ∈ R14 contains the geo-

metric representation of the i-th input candidate RoI/detection.

C. Detections rescoring through the attention-driven NMS
DNN

The goal of the proposed DNN architecture is to perform
one-class Non-Maximum Suppression on a set of candidate
RoIs/detections through rescoring rather than pruning them.
For a given set of N such RoIs, the DNN receives as input a
sequence of corresponding representations (A and G, encoding
the appearance and geometry of all RoIs in the sequence),

1Horizontal and vertical distances are signed distances.

sorted in a descending order based on the respective scalar
detection confidence score.

During inference, these two types of information are fused
and each candidate RoI refines its representation by attending
to the representations of all detections in the set. The Scaled
Dot-Product Attention mechanism [31], originally proposed
for machine translation tasks, is employed, since it has been
proven effective in various applications, such as image clas-
sification [39], or generation [40]. The mechanism is briefly
described below. In the context of the proposed DNN, the
candidate detections used as keys are represented in a relative-
to-each-query manner within this attention mechanism. Al-
though this choice leads to slightly increased computational
and memory costs, it allows the DNN to more effectively
capture the interrelations between the candidate detections.

Finally, the model predicts a new scalar score for each RoI,
indicating whether it should be suppressed or not. The output
sequence is formed by sorting the candidate RoIs, based on
their new scores in descending order.

Fig. 3: Illustration of the Multihead Self-Attention Module.

Multihead Self-Attention Module: The Scaled Dot-Product
Attention, also known as self-attention, was presented in [31]
and formulated as follows:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (4)

where Q ∈ RNq×dk are the queries, K ∈ RNk×dk are the keys
and V ∈ RNk×dv are the values. Each query and each key has



a dimension of dk, while each value has a dimension of dv .
Multihead Attention was also proposed in [31], as a module
which allows various attention mechanisms, including self-
attention, to run in parallel. This module can be formulated
as:

Multihead(Q,K,V) = [h1, ...,hH ]WO, (5)

where

hi = Attention(QWQ
i ,KWK

i ,VWV
i ). (6)

In this formulation, WQ
i ∈ Rda×dk , WK

i ∈ Rda×dk , WV
i ∈

Rda×dv , WO
i ∈ RHdv×da are projection parameter matrices,

H is the number of heads, dk = dv = da

H , and the operator
[...] implies concatenation.

The proposed DNN architecture relies on these mechanisms
in order to identify relations between candidate detections,
based both on their visual appearance and their geometric
properties. Such relations can help the model in determining
whether a detection should be suppressed or not. For example,
the DNN can decide that a higher-scoring candidate RoI
should possibly suppress other less-scoring ones having similar
appearance and geometric representations.

In [31] the authors introduced positional encoding for
Natual Language Processing (NLP) tasks, which uses a com-
bination of sines and cosines at multiple frequencies, in order
to encode the position of a word in a sequence. In theory, this
approach could also be adopted for encoding RoI geometry
(e.g., the position of RoI centers along a certain axis). How-
ever, this may fail to capture the interrelations of candidate
RoIs in a relative manner, as the encoded information in
the NMS task is far more complex compared to [31]. As
an alternative, we approached the task by encoding all the
representations of the input candidate detections in a relative-
to-each-RoI manner. Thus, the keys and values of the Scale
Dot-Product Attention are represented in a relative-to-each-
query representation scheme. For example, the jth key may
be represented differently for the ith query, compared to its
representation for the (i+1)th query. Although this increases
the method’s memory complexity, each query is allowed to
represent the keys and the values relatively to itself. Thus,
for N detections, Q ∈ RN×1×da , K ∈ RN×N×da and
V ∈ RN×N×da , the output is P ∈ RN×1×da .

Due to the increased number of dimensions of Q, K and V,
batch matrix multiplication is employed in Eq. (4) to speed
up the process. The architecture of this module is illustrated
in Figure 3.
Joint Processing Module (JPM): In this module, the rep-
resentations of the detections are jointly and simultaneously
refined, mainly through the Multihead Self-Attention mecha-
nism. The JPM receives as its input FQ

t ∈ RN×1×dm , which
holds the current representations of all candidate detections, as
well as FK

t ∈ RN×N×da , which holds the current relative-to-
each-detection representations, for all N candidate detection.

Fig. 4: Illustration of the Joint Processing Module (JPM).

The architecture of the JPM is shown in Fig. 4. The queries
and keys are formed as:

Q = FQ
t CQ,

K = FK
t ,

V = K,

(7)

where CQ ∈ Rdm×da stands for the weights of a fully
connected layer. The new representations of the candidate
detections, which is the output of this module, are formed
as:

FQ
t+1 = FDCD + FQ

t ,

FD = P + Q,
(8)

where CD ∈ Rda×dm also denotes the weights of a fully
connected layer. In addition, residual connections [41] are
applied between Q and P as well as between FQ

t+1 and FQ
t .

Fig. 5: Seq2Seq-NMS architecture. N is the number of input
candidate RoIs/detections.

Finally, the relative-to-each-candidate-detection representa-
tions FK are refined as:

FK
t+1 = FK

t + FS ⊗ CK , (9)

where FS is derived from FD, by repeating it N times
along its second dimension, and CK are learned weights of



a Scale Layer that we introduce, performing an element-wise
multiplication between its weights and an input representation.
Its purpose is to select the degree of information which will
flow from FS to FK

t+1 in each JPM.
Masking: A masking approach has been integrated into the
self-attention mechanism of the proposed architecture. For N
sorted candidate detections, we mask the values of the input
of the softmax function in Eq. (4). Without loss of generality,
masking is detailed below for the simplest case, where H = 1.

Given a candidate RoI rini , an its associate RoI rinj and
S = QKT

√
dk

, masking is defined as:

Sij =


−∞, if IoU(rini , rinj ) < 0.2

0.1 · Sij , if IoU(rini , rinj ) ≥ 0.2 and j > i

Sij , otherwise
(10)

Masking is employed for two reasons. First, each RoI must
be prevented from attending to spatially distant detections. The
overlap of RoIs is used to determine whether Sij should be set
to −∞, before applying the softmax function. If yes, the atten-
tion weight linking rini to rinj (after applying softmax) will be
zeroed out. Second, we attempt to replicate the behaviour of
Greedy NMS, where a detection is characterized as duplicate,
thus marked for suppression, when another, higher-scoring
detection spatially covers the same object. In the proposed
architecture this can be accomplished by forcing (through
masking) the internal representation of a candidate detection
to be modified by attending mainly to representations that
correspond to RoIs higher-scoring than itself.
Network Architecture: For a set of N candidate sorted de-
tections, the proposed DNN uses as input their corresponding
appearance-based A and geometry-based representations G.
FMoD representations of 3 pyramid levels are employed as
A ∈ RN×1×315. The extracted geometry-based RoI repre-
sentations, namely G ∈ RN×N×14, are assigned to GK as
it contains the relative-to-each-candidate-detection represen-
tations. Its diagonal, derived from the first two dimensions,
forms GQ ∈ RN×1×14. The representations derived from a
fusion between A and GQ form FQ ∈ RN×1×dm . This fusion
is mainly accomplished by concatenating and applying fully-
connected layers between the two types of representations. In
addition, the representations derived from a fusion between A
and GK form FK ∈ RN×N×da . Both FQ and FK are used as
input to the first JPM.

A stack of JPMs, sequentially connected, are in charge of
refining representations FQ and FK . Finally, after applying
two fully connected layers on FQ, the DNN uses a softmax
function to output the final NMS scores. The model archi-
tecture is depicted in Fig. 5. The Gaussian Error Linear Unit
(GELU) is used as activation function. Layer normalization
[42] is applied on the output of residual connections and
dropout [43] is used for regularization, similarly to [31].
Training: The weighted binary cross entropy was selected as
the training objective of the proposed neural architecture. In

particular, the loss function is defined as:

L = −
∑N

i=1(w1yi log(r
scoresNMS
i ) + w0(1− yi) log(1− rscoresNMS

i )), (11)

where N is the number of candidate detections, rscoresNMS

are the output NMS scores, w are class weights and y are
the labels derived from a matching function, given a specific
IoU value. In particular, yi ∈ {1, 0} indicates whether the
ith detection was successfully matched to an object or not. A
detection is matched successfully to an object, when the IoU
between its RoI and an object’s 2D bounding box is higher or
equal to a matching threshold, and that specific object hasn’t
been matched to any higher scoring detection. In this paper,
this matching IoU threshold was set to 0.5. A strategy similar
to the one in [2], is used for the class weights computation.

IV. EXPERIMENTAL EVALUATION

The performance of Seq2Seq-NMS was evaluated on three
separate datasets for the person detection task. In all datasets,
candidate RoIs from the Single Shot Detector (SSD) [19]
were provided as input to the proposed NMS method. In
the implemented version of the detector, VGG16 with atrous
convolutions was selected as the backbone CNN. The input
images were resized to a resolution of 512 × 512 pixels,
while the detector was trained from scratch for each dataset2.
Independently from this set of experiments, a complementary
evaluation scheme was also conducted by employing a differ-
ent detector per dataset. These detectors were selected in order:
a) to facilitate direct comparisons with previously published
NMS methods, and b) to compare the proposed NMS approach
against competing ones in conjunction with different detectors
with different behaviour. In this complementary set of exper-
iments, the following detectors were employed: (a) a non-
neural detector [17], (b) a two-stage DNN-based detector [18]
and (c) a one-stage DNN-based detector [21].

The employed Seq2Seq-NMS architecture consists of 4
Joint Processing Modules. We set dm = 256, and da =
dm

2 = 128. The Multihead Self-Attention module uses H = 2
attention heads and thus dq = dk = dv = 128

H = 64.
Appearance-based RoI representations computed from 3-level
FMoD were used, with 0th level RoI maps extracted at
resolution W0 × H0 = 160 × 160 pixels. In each evaluation
setup, the proposed method was trained using the ADAM [44]
optimizer with β1 = 0.9, β2 = 0.99 and ϵ = 10−9. Given
that the number of RoIs may be extremely large, we first
applied TorchVision NMS with the relaxed 0.8 IoU threshold
as a preprocessing step (common in NMS literature [2]). To
achieve a fair comparison, this preprocessing step is applied in
all deployed methods. Finally, Seq2Seq-NMS is trained using
only the 720 highest-scoring candidate detections as an input
sequence, due to practical memory limitations.

In all cases, Seq2Seq-NMS was compared against both
neural and non-neural NMS algorithms. The first competing
method is a baseline Greedy NMS approach running on GPU.

2The employed SSD implementation was adopted from https://github.com/
opendr-eu/opendr/tree/master/src/opendr/perception/object detection 2d/ssd

https://github.com/opendr-eu/opendr/tree/master/src/opendr/perception/object_detection_2d/ssd
https://github.com/opendr-eu/opendr/tree/master/src/opendr/perception/object_detection_2d/ssd


TABLE I: COMPARISON OF DIFFERENT NMS METHODS ON THE PETS DATASET, USING DETECTIONS FROM
[17]. THE BOTTOM LINE REPORTS THE GAINS ACHIEVED WITH THE PROPOSED METHOD.

Method Device

Pre-NMS max dets. = 600 Pre-NMS max dets. = 1200 Pre-NMS max dets. = 1500

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

Original NMS IoU>0.4 GPU 76.7% 32.2% 2.1 77.2% 32.1% 3.5 77.3% 32.0% 5.0
Original NMS IoU>0.5 GPU 74.2% 31.7% 2.8 74.7% 31.7% 6.4 74.8% 31.7% 8.1
Original NMS IoU>0.6 GPU 66.9% 29.6% 4.2 67.2% 29.7% 10.1 67.3% 29.7% 13.6

TorchVision NMS IoU>0.4 GPU 76.8% 32.2% 0.4 77.3% 32.1% 0.6 77.3% 32.1% 0.6
TorchVision NMS IoU>0.5 GPU 73.9% 31.7% 0.4 74.4% 31.6% 0.6 74.4% 31.6% 0.5
TorchVision NMS IoU>0.6 GPU 66.4% 29.5% 0.4 66.6% 29.6% 0.5 66.7% 29.6% 0.6

Soft-NMSL CPU 77.6% 32.5% 50.3 77.6% 32.3% 98.5 77.6% 32.1% 143.3
Soft-NMSG CPU 78.2% 33.4% 39.2 77.6% 32.9% 89.5 77.2% 32.6% 154.7
Fast-NMS GPU 75.3% 31.9% 1.4 75.2% 31.6% 2.2 75.2% 31.5% 3.2

Cluster-NMS GPU 76.8% 32.2% 3.2 77.2% 32.1% 5.1 77.3% 32.1% 7.5
Cluster-NMSS GPU 75.7% 32.3% 2.7 74.0% 31.3% 4.2 74.7% 31.6% 6.6
Cluster-NMSD GPU 77.0% 32.3% 3.8 77.6% 32.1% 7.3 77.6% 32.1% 9.1

Cluster-NMSS+D GPU 77.2% 32.6% 4.0 76.5% 32.0% 8.0 76.5% 32.0% 11.2
Cluster-NMSS+D+W GPU 77.2% 32.6% 47.6 76.5% 32.0% 154.8 76.5% 32.0% 276.1

GossipNet GPU 81.9% 36.3% 27.2 84.3% 37.2% 64.2 84.6% 37.2% 95.8
Seq2Seq-NMS GPU 83.6% 37.8% 11.0 85.4% 38.4% 13.8 85.5% 38.4% 15.4

Seq2Seq-NMS Gains
(The best performance of each method is used for comparison)

AP0.5 AP0.95
0.5

+0.9% +1.2%

The second is TorchVision’s3 GreedyNMS implemented to
run very fast on GPUs. Soft-NMS [23], i.e., a non-neural
NMS method widely used as a more accurate replacement
for Greedy NMS, was also tested. Evaluation was conducted
using both the linear and the Gaussian weighting functions
(referred to as Soft-NMSL and Soft-NMSG, respectively), with
on-CPU execution. Another competing algorithm is Fast-NMS
[26]: a generally faster, non-neural replacement for standard
NMS, executed on GPU but suffering a marginal penalty
regarding accuracy. Additionally, several variants of Cluster-
NMS [28], a more recent non-neural method, were also used
for comparisons. Below, the term Cluster-NMSS is used to
imply the use of the score penalty mechanism, while Cluster-
NMSD implies the addition of the normalized central point
distance. In the latter case, the method is equivalent to DIoU-
NMS [27]. The term Cluster-NMSS+D is used when both
of these mechanisms are utilized. Finally, Cluster-NMSS+D+W
indicates a weighted strategy similar to [24]. More details
regarding these variations can be found in [28]. The last
approach selected for comparison purposes is GossipNet [2],
a neural NMS method achieving state-of-the-art accuracy.

The hyperparameters of all non-neural methods were tuned
so as to report the best achieved results on 0.5 IoU matching
threshold. Evaluation was performed on a PC using an Intel
Core i7-7700 CPU and an NVIDIA GeForce RTX 2080 GPU
with 11GB of memory, both for training and inference. The
employed evaluation metrics are AP0.5, AP0.95

0.5 and inference
times. AP0.5 corresponds to the average precision for 0.5 IoU,
while AP0.95

0.5 to the mean average precision for IoU ranging
from 0.5 to 0.95 with a step size of 0.05.

In the evaluation of all methods, the number of maximum

3https://pytorch.org/vision/stable/ops.html#torchvision.ops.nms

candidate detections prior to the NMS procedure was set to
1500. All RoIs outputted by the NMS algorithms were utilized
for evaluation, without any thresholding.

A. PETS

PETS [45] is a relatively small dataset, whose images were
collected from static surveillance cameras and provide diverse
levels of occlusion. The average number of people depicted in
an image is approximately 14. Apart from [19], [17], a non-
neural person detection method designed to handle occlusions,
was selected as the corresponding detector for providing raw
candidate RoIs as input to the NMS methods.

The proposed NMS architecture was trained for 8 epochs.
The learning rate was set to 10−4/10−5/10−6 for epochs 1-
4/5-7/8, respectively. GossipNet’s architecture and training
followed [2]. Final parameters of all methods were selected
according to the best achieved accuracy in the validation set.

Table I reports the results of the proposed and the competing
NMS methods, using candidate detections from [17] as input.
This object detector outputs a large number of candidate RoIs,
thus leading to increased GPU memory consumption for both
the proposed method and GossipNet. Typically, most candidate
detections that can be successfully matched to ground-truth
objects are assigned higher confidence scores by the detector,
compared to RoIs with lower scores (e.g., < 0.05) which
are mostly false positive samples. Thus, in this experiment,
we attempt to evaluate whether the lowest scoring detections
have an impact on the performance of the proposed and the
competing NMS methods. Table I reports the results of each
NMS approach using N candidate detections as input, for
different values of N . As it can be seen, the performance of
several non-neural methods, such as Soft-NMSL and Cluster-
NMSD, does not improve when the lowest-scoring detections

https://pytorch.org/vision/stable/ops.html#torchvision.ops.nms


(e.g., > 1200) are used. In contrast, both neural methods
achieve more accurate results for longer input sequences (more
candidate RoIs per image). In this setup, the proposed method
achieved both the best AP0.5 and the best AP0.95

0.5 , against all
competing approaches, even in the case where only the highest
1200 candidate input detections were used. The obtained AP0.5

was 85.5%, which is a +7.3% improvement against Soft-
NMSL and Cluster-NMSD, the non-neural method with the
best AP0.5, and a +0.9% improvement against GossipNet.
In addition, the obtained AP0.95

0.5 was 38.4%, which is an
+1.2% gain over the competing methods. Notably, when
using only a small number of the highest-scoring candidate
detections (e.g, N = 600), the proposed method still achieves
better results compared to all non-neural NMS algorithms.
Regarding inference runtimes, it needs 15.4 ms to run per
image when N = 1500, since the required edge maps are
computed in parallel with the object detector’s inference. Thus,
it is faster than GossipNet, as well as far less affected (with
respect to runtime) by the number of candidate detections used
as input. Indeed the GossipNet inference runtime drastically
increases with N but this is not the case for the proposed
approach. However, Seq2Seq-NMS is slower than most non-
neural methods running on GPU.

TABLE II: COMPARISON OF DIFFERENT NMS METH-
ODS ON THE TEST SET OF THE PETS DATASET, US-
ING DETECTIONS FROM [19]. THE BOTTOM LINE RE-
PORTS THE GAINS ACHIEVED WITH THE PROPOSED
METHOD.

Method Device AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

Original NMS IoU>0.4 GPU 87.6% 35.0% 12.7
Original NMS IoU>0.5 GPU 89.9% 36.3% 13.1
Original NMS IoU>0.6 GPU 89.8% 37.1% 13.4
TorchVision NMS IoU>0.4 GPU 88.0% 35.1% 0.3
TorchVision NMS IoU>0.5 GPU 90.0% 36.4% 0.2
TorchVision NMS IoU>0.6 GPU 89.8% 37.2% 0.3
Soft-NMSL CPU 90.0% 38.2% 134.4
Soft-NMSG CPU 89.6% 38.6% 108.1
Fast-NMS GPU 87.6% 36.8% 6.0
Cluster-NMS GPU 90.2% 36.9% 13.4
Cluster-NMSS GPU 90.1% 38.0% 13.8
Cluster-NMSD GPU 90.2% 36.6% 17.9
Cluster-NMSS+D GPU 90.6% 38.3% 22.4
Cluster-NMSS+D+W GPU 90.6% 38.3% 38.2
GossipNet GPU 90.7% 38.8% 24.5
Seq2Seq-NMS GPU 90.9% 38.6% 19.7

Seq2Seq-NMS Gains +0.2% -0.2% -

Table II reports the results using cadidate detections from
[19]. The proposed method achieved an AP0.5 of 90.9%, thus
attaining a gain of +0.2% over GossipNet. In terms of AP0.95

0.5 ,
the proposed method was outperformed only by GossipNet
(−0.2%) and was on par with Soft-NMSG. Regarding infer-
ence runtimes, Seq2Seq-NMS needed on average 19.7 ms to
run per image, since the required edge maps are computed
in parallel with the object detector’s inference stage. Though
this is faster than GossipNet, it is again slower than non-neural
methods running on GPU.

B. COCO Person

COCO 2014 is a large dataset consisting of 82,783 images
for training and 40,504 images for validation/testing. Although
it contains 80 labeled classes, only the “person” class was used
for evaluating the proposed method. Its images depict people
in various viewing angles, scales and poses. The average
ground-truth number of persons depicted in an image is 2.17.
When considering only the images that actually contain visible
people, this number increases to 4.01. Candidate detections
were extracted from SSD and Faster R-CNN [18], in separate
experiments, while the validation set splits were adopted
from [2]. The first data subset, referred to as “minival”,
contains 5000 images, while the second subset, referred to
as “minitest”, contains 35000 images.

The proposed method was trained for 12 epochs. The learn-
ing rate was set to 10−4/10−5/10−6 for epochs 1-8/9-11/12,
respectively. GossipNet’s architecture and training again fol-
lowed [2]. The final hyperparameters of all methods were
selected according to the best achieved accuracy in the minival
(validation) set. Table III reports the results of all competing
NMS approaches.

TABLE III: COMPARISON OF DIFFERENT NMS METH-
ODS ON THE MINITEST SET OF THE COCO DATASET,
USING DETECTIONS FROM [18] AND [19]. THE BOT-
TOM LINE REPORTS THE GAINS ACHIEVED WITH THE
PROPOSED METHOD.

Method Device

Input dets.
from [18]

Input dets.
from [19] Average

Inference
Time (ms)AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

Original NMS
IoU>0.4

GPU 65.4% 35.6% 56.3% 31.6% 4.3

Original NMS
IoU>0.5

GPU 65.3% 35.8% 56.1% 31.6% 5.4

Original NMS
IoU>0.6

GPU 63.3% 35.6% 55.5% 31.7% 6.9

TorchVision NMS
IoU>0.4

GPU 65.4% 35.5% 56.3% 31.6% 0.3

TorchVision NMS
IoU>0.5

GPU 65.3% 35.8% 56.1% 31.7% 0.3

TorchVision NMS
IoU>0.6

GPU 63.1% 35.5% 55.5% 31.7% 0.4

Soft-NMSL CPU 66.6% 37.0% 57.0% 32.1% 11.6
Soft-NMSG CPU 66.3% 36.7% 57.2% 32.5% 11.7
Fast-NMS GPU 64.3% 35.4% 55.8% 31.5% 1.6
Cluster-NMS GPU 65.4% 35.5% 56.3% 31.6% 3.1
Cluster-NMSS GPU 65.3% 36.1% 57.1% 31.9% 3.7
Cluster-NMSD GPU 65.5% 35.6% 56.3% 31.6% 5.1
Cluster-NMSS+D GPU 65.9% 36.6% 57.3% 32.1% 5.3
Cluster-NMSS+D+W GPU 66.0% 37.7% 57.3% 32.1% 7.3
GossipNet GPU 66.9% 36.1% 67.7% 36.7% 5.1
Seq2Seq-NMS GPU 67.4% 37.0% 68.7% 37.8% 7.2

Seq2Seq-NMS Gains +0.5% -0.7% +1.0% +1.1% -

When candidate detections from [18] were used as input,
the proposed method achieves the best AP0.5, equal to 67.4%,
which is an improvement of +0.8% against Soft-NMSL and
+0.5% against GossipNet. In terms of AP0.95

0.5 , Seq2Seq-NMS
is outperformed by Cluster-NMSS+D+W and is on par with Soft-
NMSL, achieving a value of 37.0%.

Using candidate detections from [19], the proposed
Seq2Seq-NMS architecture achieved more significant gains:
an AP0.5 of 68.7% and an AP0.95

0.5 of 37.8%, thus reaching



gains of +1.0% and +1.1% respectively over the second best
approach.

Regarding inference time, Seq2Seq-NMS is close to that
of Cluster-NMSS+D+W, but somewhat slower than GossipNet.
The reported values are obtained by averaging the inference
times of each method over the two separate cases (different
employed detectors). Notably, the joint processing of input
candidate RoIs by the neural NMS methods, compared to the
non-neural ones, accomplishes more significant improvements
when given inputs from the one-stage detector [19] than those
from the two-stage detector [18]. In a sense, the neural NMS
approaches seem to compensate for the inferior accuracy of
one-stage detectors compared to the two-stage ones.

C. CrowdHuman

The CrowdHuman dataset has been recently released to
specifically target human detection in crowded areas. Crowded
scenes are particularly challenging for person detectors, due
to heavy visual occlusion of individual humans. The dataset
contains 15000 images for training, 4370 images for validation
and 5000 images for testing. The average number of persons in
an image is 22.64, with various types of occlusions. Candidate
detections were extracted from SSD [19] and YOLOv4 [21].
The images fed to the latter were rescaled to a resolution of
608× 608 pixels.

TABLE IV: COMPARISON OF DIFFERENT NMS METH-
ODS ON THE CROWDHUMAN DATASET, USING DE-
TECTIONS FROM [21] AND [19]. THE BOTTOM LINE
REPORTS THE GAINS ACHIEVED WITH THE PRO-
POSED METHOD.

Method Device

Input dets.
from [21]

Input dets.
from [19]

Average
Inference
Time (ms)AP0.5 AP0.95

0.5 AP0.5 AP0.95
0.5

Original NMS
IoU>0.4

GPU 78.8% 45.6% 62.6% 29.9% 8.3

Original NMS
IoU>0.5

GPU 83.3% 48.2% 66.3% 31.5% 8.6

Original NMS
IoU>0.6

GPU 85.3% 49.8% 67.0% 32.4% 9.8

TorchVision NMS
IoU>0.4

GPU 79.1% 45.7% 62.8% 30.0% 0.3

TorchVision NMS
IoU>0.5

GPU 83.5% 48.3% 66.4% 31.6% 0.3

TorchVision NMS
IoU>0.6

GPU 85.3% 49.9% 66.9% 32.4% 0.4

Soft-NMSL CPU 85.8% 51.1% 66.5% 32.3% 54.2
Soft-NMSG CPU 84.9% 50.4% 67.1% 33.0% 58.1
Fast-NMS GPU 84.3% 49.7% 64.8% 31.4% 2.2
Cluster-NMS GPU 85.3% 49.9% 67.1% 32.1% 5.0
Cluster-NMSS GPU 83.6% 49.2% 64.0% 31.0% 5.2
Cluster-NMSD GPU 85.5% 50.4% 67.1% 32.2% 6.5
Cluster-NMSS+D GPU 84.7% 50.1% 65.7% 31.8% 8.0
Cluster-NMSS+D+W GPU 84.7% 50.1% 65.7% 31.9% 32.3
GossipNet GPU 87.2% 51.0% 72.4% 35.0% 10.0
Seq2Seq-NMS GPU 87.3% 51.2% 73.9% 35.9% 9.4

Seq2Seq-NMS Gains +0.1% +0.1% +1.5% +0.9% -

The proposed NMS method was trained for 14 epochs.
The learning rate was set to 10−4/10−5/10−6 for epochs
1-8/9-12/13-14, respectively. GossipNet was trained for 106

iterations, with a learning rate set to 10−4 and decreased by
0.1 at the 6× 105-th and the 8× 105-th iterations.

Table IV shows that the proposed method achieves minimal
gains, in terms of AP0.5 and AP0.95

0.5 , when input candidate de-
tections are provided by [21]. Indeed, Seq2Seq-NMS achieves
an AP0.5 of 87.3%, which is a +1.5% improvement against
Soft-NMSL but corresponds to a minor +0.1% improvement
over GossipNet. Similarly, the proposed method achieved
AP0.95

0.5 = 51.2% which corresponds to only a minor +0.1%
improvement against the best competitor. However, when
candidate detections are provided by [19] the proposed method
achieves an AP0.5 of 73.9% and AP0.95

0.5 = 35.9%. The gains in
both metrics are quite significant compared to the second-best
GossipNet, achieving improvements of +1.5% and of +0.9%
respectively.

Regarding inference runtime, the proposed method requires
on average 9.4 ms; thus, it is faster than all non-GPU ap-
proaches and slightly faster than GossipNet. The reported
values are obtained by averaging the inference times of each
method over the two separate cases (different employed de-
tectors).

D. FMoD Ablation Study

This Subsection examines the effect of the appearance-
based features extracted by FMoD on the performance of
Seq2Seq-NMS. Moreover, alternative appearance-based de-
scriptors which could replace FMoD in the overall pipeline are
investigated. Experiments were performed on the CrowdHu-
man dataset, using [19] for providing the input raw candidate
detections.

TABLE V: PERFORMANCE EVALUATION OF THE PRO-
POSED METHOD USING APPEARANCE-BASED ROI
REPRESENTATIONS OBTAINED BY DIFFERENT FMOD
VARIANTS.

Resolution
of RoIs
(in pixels)

Num. of
Pyramid
Layers

AP0.5 AP0.95
0.5

Average
Inference
Time (ms)

20× 20 1 73.2% 35.5% 7.4
160× 160 1 73.3% 35.5% 7.9
20× 20 2 73.3% 35.5% 8.3

160× 160 2 73.4% 35.7% 8.5
20× 20 3 73.7% 35.8% 8.9

160× 160 3 73.9% 35.9% 9.0

The following aspects of FMoD were examined:
• the scale of RoIs used for computing the FMoD de-

scriptors. To do so, the edge map RoIs obtained by the
ROIAlign operator were extracted in a fixed resolution of
either: a) 20× 20 pixels, or b) 160× 160 pixels, before
computing the respective FMoD descriptors on them.

• the optimal number of FMoD spatial pyramid levels.
Experiments were carried out for pyramid levels L equal
to 1, 2 and 3.

As shown in Table V similar performance is attained for
1 or 2 FMoD pyramid levels, but the accuracy of Seq2Seq-
NMS is improved with 3 FMoD pyramid levels. The scale
of RoIs extracted by the RoIAlign operator seems to have
a minimal impact on the accuracy. The reported inference



times amount to the overall time needed for computing the
corresponding edge maps and extracting their appearance-
based RoI representations using FMoD.

Moreover, candidate detections from [19] in the Crowd-
Human dataset were also utilized in order to compare the
following three variants of Seq2Seq-NMS:

• Seq2Seq-NMS that utilizes only geometry-based RoI
representations. To achieve this, the DNN was fed with
dummy zero-vectors as appearance-based representations.

• An extension of Seq2Seq-NMS where learnt convolu-
tional features are employed as appearance-based RoI
representations, instead of FMoD descriptors: in practice,
already computed feature maps from the corresponding
detector’s backbone CNN are exploited. Two variants
were examined by employing the feature maps from the
initial layers of VGG16 during inference. Early layers
were preferred in order to retain as much spatial informa-
tion as possible. The size of the selected maps, defined as
tensors, were 64×64×512, with the last dimension being
the depth of the corresponding convolutional layer. In the
first variant, the maps were properly resized and RoI maps
were extracted using the ROIAlign operator in a 20× 20
resolution. In the second variant, a convolutional layer,
with window=1× 1, stride=1× 1, and 32 filters followed
by ReLU as activation function was employed before the
ROIAlign operator. In this variant, the memory require-
ments induced by the ROIAlign operator were heavily
reduced compared to the first variant. It must be high-
lighted that the ROIAlign operator is fully differentiable.
A simple deep neural module, depicted in Table VI was
implemented in order to compute the final appearance-
based RoI representations. Seq2Seq-NMS was trained
jointly with this module.

• The default Seq2Seq-NMS which uses FMoD descriptors
as appearance-based RoI representations.

TABLE VI: IMPLEMENTED DEEP NEURAL MOD-
ULE IN SEQ2SEQ-NMS, TASKED WITH EXTRACTING
APPEARANCE-BASED ROI DESCRIPTIONS.

Conv2D + ReLU, window=3× 3, stride=1× 1, filters=20
Conv2D + ReLU, window=3× 3, stride=1× 1, filters=4
Max-Pooling, window=2× 2, stride=2× 2
Flatten
Fully-Connected Layer + ReLU

The relevant evaluation results are reported in Table VII.
Default Seq2Seq-NMS with FMoD descriptors as appearance-
based RoI representations improves AP0.5 by +0.8% and
AP0.95

0.5 by +0.3%, compared to geometry-only RoI represen-
tations. A more notable improvement is demonstrated with
convolutional RoI representations derived by the deep neural
module: in the base case, this variant improved AP0.5 by
+2.2% and AP0.95

0.5 by +1.3%, compared to the geometry-only
Seq2Seq-NMS. The more memory-efficient variant achieved

+1.0 and +0.5% in the respective metrics. Regarding in-
ference times, FMoD requires 2.7 ms in order to extract
the corresponding appearance-based RoI representations from
edge maps. If one includes the edge map computation, the
corresponding inference time rises to 9.0 ms since, in our im-
plementation, edge maps were computed in CPU; GPU alter-
natives may be much less time-demanding, thus significantly
reducing overall inference requirements. In addition, the first
variant of deep neural appearance-based RoI representations
extraction requires 0.8 ms, while the more time- and memory-
efficient variant requires 0.5 ms. The time needed by VGG16,
in order to compute the raw feature maps is not included in
the reported times.

TABLE VII: PERFORMANCE OF SEQ2SEQ-NMS ON
THE CROWDHUMAN DATASET, USING DIFFERENT AP-
PROACHES TO APPEARANCE-BASED ROI REPRESEN-
TATION.

Type of the Appearance-based RoI
Representations AP0.5 AP0.95

0.5

Average
Inference
Time (ms)

Geometry-based RoI representations only
(Using zero vectors as dummy appearance
representations)

73.1% 35.6% 0.0

Deep neural RoI representations extracted
from raw VGG16 feature maps at size
64× 64× 512

75.3% 36.9% 0.8

Deep neural RoI representations extracted
from VGG16 feature maps at size
64× 64× 32

74.1% 36.1% 0.5

FMoD RoI representations 73.9% 35.9% 2.7 (9.0)

E. Discussion

Overall, the proposed Seq2Seq-NMS DNN achieves top
accuracy on the AP0.5 metric in all three datasets. The results
show that Seq2Seq-NMS can successfully capture interrela-
tions between candidate detections for the person detection
task, based both on their visual appearance and their geometry.
The three datasets used for evaluation contain images with a
great variety of visible persons density, ranging from images
of individual people to photographs of large crowds, indicating
that Seq2Seq is suitable for generic person detection.

Regarding the AP 0.95
0.5 metric, Seq2Seq-NMS achieves top

accuracy in most cases. The main exception is COCO dataset,
when using candidate detections from [19]. This behaviour
can be explained by the fact that our method was specifically
enforced during training to match candidate RoIs to ground-
truth RoIs, in case their in-between IoU is more than 0.5,
instead of doing so for various IoU thresholds in the [0.5, 0.95]
range. More details about the matching strategy procedure,
adopted in training, can be found in Section III.

Moving on to inference running time, the proposed method
is relatively slower than non-neural, mostly less accurate,
GPU-executed algorithms. However, when compared against
DNN architectures for NMS, such as GossipNet, Seq2Seq-
NMS achieves faster inference, with the exception of COCO
(Table III). In addition, the inference runtime of Seq2Seq-NMS
seems less affected by the input sequence length (number of
candidate detections N ), thus achieving faster inference when
processing longer sequences, as shown in, e.g., Table I.



Another observation stemming from the presented exper-
imental results is that Seq2Seq-NMS fits well with person
detectors of various types: it achieves improved AP0.5 perfor-
mance against several competing NMS methods when com-
bined with detectors of any nature (non-neural, one- and two-
stage DNN-based). In the default Seq2Seq-NMS architecture,
the use of FMoD for describing the visual appearance of the
cropped candidate RoIs reinforces such a behaviour, since
FMoD descriptors are independent of the employed person
detector.

In addition, as shown in the ablation study presented in
Section IV-D, the use of appearance-based RoI representations
from FMoD indeed improves the performance of Seq2Seq-
NMS, compared to the case where only geometry-based
representations are used. The same study showed that the
best accuracy is achieved when the appearance-based features
are computed using three FMoD pyramid levels, whereas the
scale of RoIs has minimal impact on accuracy. Finally, a
simple variant of Seq2Seq-NMS that exploits deep neural
appearance-based RoI representations from internal feature
maps of the employed detector, instead of FMoD descriptors,
further improves accuracy as shown in Table VI.

Besides the results depicted in Tables I, II III and IV, an
ablation study was also performed regarding the proposed
masking operation (described in Section III-C) of the self-
attention mechanism. Omitting masking led to reduced accu-
racy rates, or even training convergence failures in cases with
huge numbers of candidate RoIs per image. The importance
of masking stems from the fact that it enforces an ordering
constraint on how the internal representation of each candidate
detection is shaped: thanks to masking, its form is finalized
by attending mainly to representations that correspond to
RoIs higher-scoring than itself, using the Scaled Dot-Product
Attention mechanism. Thus, in our view, this finding supports
the validity of the sequence-to-sequence formulation of the
NMS task.

V. CONCLUSIONS

Detecting humans accurately is crucial for human safety-
centric applications, but also extremely challenging. Large
variations in human poses and high levels of occlusions
negatively affect person detection accuracy. Non-Maximum
Suppression (NMS) is the last step in a typical object detection
system, which is also affected by such challenges. This paper
presented Seq2Seq-NMS, a novel deep neural architecture for
performing NMS in similar hard cases, relying on a refor-
mulation of NMS as a sequence-to-sequence problem. The
proposed method utilises the Multihead Scaled Dot-Product
Attention mechanism, in order to efficiently capture interrela-
tions across the sequence of candidate detections, while also
jointly exploiting visual appearance and geometric properties
of the input RoIs in order to better represent them. Quantitative
evaluation on three public person detection datasets showed
that Seq2Seq-NMS can provide state-of-the-art results at the
IoU threshold used for annotating its training dataset, with
acceptable inference runtime requirements. Future extensions

may focus on a training strategy suitable for various IoU
thresholds and on adapting the proposed method to multiclass
object detection.
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