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Abstract One of the most important aesthetic concepts in
autonomous Unmanned Aerial Vehicle (UAV) cinematogra-
phy is the UAV/Camera Motion Type (CMT), describing the
desired UAV trajectory relative to a (still or moving) physi-
cal target/subject being filmed. Usually, for the drone to au-
tonomously execute such a CMT and capture the desired
shot in footage, the 3D states (positions/poses within the
world) of both the UAV/camera and the target are required as
input. However, the target’s 3D state is not typically known
in non-staged settings. This paper proposes a novel frame-
work for reformulating each desired CMT as a set of require-
ments that interrelate 2D visual information, UAV trajectory
and camera orientation. Then, a set of CMT-specific vision-
driven Proportional-Integral-Derivative (PID) UAV controllers
can be implemented, by exploiting the above requirements
to form suitable error signals. Such signals drive continuous
adjustments to instant UAV motion parameters, separately
at each captured video frame/time instance. The only in-
puts required for computing each error value are the current
2D pixel coordinates of the target’s on-frame bounding box,
detectable by an independent, off-the-shelf, real-time, deep
neural 2D object detector/tracker vision subsystem. Impor-
tantly, neither UAV nor target 3D states are required ever
to be known or estimated, while no depth maps, target 3D
models or camera intrinsic parameters are necessary. The
method was implemented and successfully evaluated in a
robotics simulator, by properly reformulating a set of stan-
dard, formalized UAV CMTs.
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1 Introduction

The advent of camera-equipped, Vertical Take-Off and Land-
ing (VTOL) Unmanned Aerial Vehicles (UAVs, or “drones”)
during the past decade has revolutionized the media indus-
try, making the capture of impressive aerial footage easily
accessible to almost anyone. Drones permit access to nar-
row spaces, novel visual effects, easy deployment, as well
as rapid and flexible shot setup. In general, they are fully ca-
pable of replacing expensive helicopters, dollies and cranes
at a low cost.

However, the logistics of employing manually operated
drones in large-scale professional TV/film production are
prohibitive, since at least two persons, i.e., a pilot and a
camera operator, are required per UAV, having to cooper-
ate in full coordination. This issue is aggravated when a
swarm/fleet of multiple drones is employed for filming, due
to the advantages multiple-UAV shooting offers: simultane-
ous capture of different targets, potential for more complex
shots with multiple views, enhancement of the director’s
artistic palette and scene coverage [33][34][32].

Thus, overall, incorporating advanced autonomous func-
tionalities to cinematography-oriented UAVs is highly desir-
able, so as to reduce the number of human operators and
to alleviate their burden. Lying at the crossroad of aerial
robotics, aerial cinematography, machine learning and com-
puter vision, the emerging field of autonomous UAV cine-
matography attempts to develop robust robotic UAV plat-
forms for intelligent filming [22] [40] [39] [7], that require
minimal human intervention while obeying artistic guide-
lines. This line of research is complementary to automated
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UAV video aesthetics evaluation [29]; the former refers to
the media production stage, while the latter to the post-production
stage.

One of the most important relevant cinematography con-
cepts is the UAV/Camera Motion Type (CMT), describing
the desired UAV trajectory relative to a (still or moving)
physical target being filmed [6]. Also important is the Fram-
ing Shot Type (FST), which can be quantified as a target
video frame area coverage percentage [35] [26] [48]. Exam-
ples of FSTs are the Close-Up, the Medium Close-Up, the
Medium Shot, etc.

Typically, for the drone to autonomously execute a CMT
and capture the desired shot in footage, the 3D position/poses
of both the UAV/camera and the target are required as input;
then, it is simply a matter of devising the error signal that
drives appropriate trajectory tracking controllers operating
in 3D space [36][1][2][10].

However, 3D position/pose is not typically known for
the target in non-staged settings. In such a scenario, the most
straightforward substitute is to rely on visual information
and control the UAV in 3D space based on it. The tradi-
tional solution of estimating 3D target position/pose from
visual data (e.g., using a Perspective-n-Point solver [15])
and employing this estimate for computing a control law
is both error-prone and too complex, since it demands ac-
curate camera calibration, known UAV state and, possibly,
predefined visible landmarks on the target’s image, along
with their 3D correspondences in a target-based coordinate
system.

The alternative solution is to rely on purely vision-driven
controllers, where control laws are formulated directly on
2D image space, without attempting to estimate 3D state.
Similar controllers have not yet been proposed for cinematog-
raphy purposes, although they are nowadays common in more
essential operations like landing [54]. Importantly, related
existing approaches for active visual tracking do not con-
sider the need for executing a specific CMT: the vehicle
simply follows the moving visible target in 3D space, with-
out regard for its own trajectory [13]. A multitude of simi-
lar vision-based active target tracking methods exist in the
literature and rudimentary implementations can be found
even on affordable commercial quadcopters, but such an ap-
proach does not take into account the aesthetic element of a
desired CMT.

This paper presents a novel vision-based framework for
designing Proportional-Integral-Derivative (PID) controllers
that permit autonomous UAV CMT execution without rely-
ing on 3D state information. The proposed method involves
reformulating any desired CMT as a set of requirements that
interrelate 2D visual information, UAV trajectory and cam-
era orientation. Then, a corresponding set of vision-driven
PID controllers are designed and implemented by exploit-
ing the above requirements to form suitable error signals,

driving continuous adjustments to instant UAV motion pa-
rameters at each video frame/time instance. Although the
details necessarily differ for each supported CMT, the gen-
eral methodological framework is common.

The main novelty lies in the fact that neither UAV nor
target 3D states are required to be known or estimated in
global coordinates, thus making this method suitable for
filming with inaccurate or intermittent Global Positioning
System (GPS) signals. Additionally, in contrast to existing
vision-based control approaches currently used in autonomous
systems, no depth maps, target 3D models or intrinsic cam-
era parameters are needed. The only inputs required are cer-
tain pieces of information which are always readily available
from the on-board Inertial Measurement Units (IMUs), such
as the relative angle between the camera axis and the UAV
velocity vector at each time instance, as well as the on-frame
bounding box of the visible target image in 2D pixel coor-
dinates. This can be detected by an independent, real-time,
off-the-shelf 2D object detector/tracker (e.g., a Deep Neural
Network running on-board the vehicle), using simple RGB
camera feed. This is significantly more robust and reliable
than target 3D state estimation from visual data and camera
parameters, while simultaneously foregoing any need for ex-
pensive sensors.

In short, the contributions of this paper are two-fold:

– A vision-based UAV/camera controller design framework
is proposed, facilitating the construction of PID controllers
that autonomously execute CMTs, based purely on what
the drone-mounted camera “sees” in 2D pixel coordi-
nates at each time instance, without the need for 3D
state information. The required input may be extracted
in real-time by off-the-shelf 2D object detector/trackers.
Thus, existing computer vision solutions can be readily
utilized for providing the proper PID error signal at each
time instance.

– The proposed method is concretely implemented for a
set of industry-standard, formalized UAV cinematogra-
phy CMTs, extracted from a recently proposed UAV shot
type taxonomy [35] [32] [24] [25] [26]. The derived con-
trollers, serving as detailed examples of the proposed
method, are extensively evaluated in simulation.

This paper focuses on UAV cinematography CMTs due
to their high industry relevance for media production. How-
ever, the proposed method is actually more generic: it can
be applied to any setting where a specific UAV motion tra-
jectory relative to a visible target/subject is desired. For in-
stance, travelling to a detectable landing spot in order to
dock is typically performed by flying horizontally (at a con-
stant altitude) towards the landing location, until the UAV
hovers directly above it, and subsequently flying down at
a purely vertical direction. This is a trajectory that can be
modelled by the proposed framework as well as the exam-
ple cinematography CMTs.
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2 Related Work

When deploying camera-equipped UAVs, if it is not neces-
sary for the vehicle to execute a specific trajectory, but sim-
ply to keep following and filming a specific moving target,
then active visual tracking approaches may be utilized [13]
[60]. Rudimentary methods of this type can indeed be found
in almost all commercial multicopters with target tracking
capabilities. However, this is a significantly limited version
of the UAV motion control problem and does not really ap-
ply to professional cinematography scenarios, where the cam-
era trajectory is actually an essential aesthetic element in it-
self.

Thus, in autonomous UAV cinematography applications,
motion control typically involves trajectory tracking con-
trollers that operate in 3D space and rely on GPS/IMU sig-
nal fusion [16] [38]. Assuming the target’s 3D state is also
known, the appropriate trajectory itself can be planned ac-
cording to the desired CMT specified by the director (e.g.,
using the CMT geometrical modelling in [35]). In general,
Proportional-Integral-Derivative (PID) [57] or Linear-Quadratic
Regulator (LQR) [41] controllers are employed for related
tasks. The PixHawk/PX4 Autopilot [37], a popular low-level
flight trajectory control system, offers a commercial off-the-
shelf PID cascade control solution for UAVs that allows ve-
hicle steering at various levels, ranging from designating 3D
path waypoints to directly feeding raw motion commands to
the motors.

When the target’s 3D state is unknown, its estimation
from visual data is a feasible substitute; then traditional con-
trollers with error signals defined in 3D space may be em-
ployed. Although Visual SLAM [50] cannot be readily em-
ployed if the target is moving, target 3D position/pose may
be estimated from the UAV’s camera feed using a Perspective-
n-Point problem solver, which requires accurate camera cal-
ibration and predefined visible 2D landmarks on the tar-
get’s image, along with their 3D correspondences in a target-
based coordinate system. Alternatively, mostly in the case
of human targets, Deep Neural Networks (DNNs) can be
employed for detecting the subjects and estimating their 2D
pose on-frame [51] [44] [45]. Their output can then be com-
bined with known UAV 3D state/camera parameters to ac-
quire a complete estimate of target 3D state. However, DNNs
such as Convolutional Neural Networks (CNNs) or Long
Short-Term Memory architectures (LSTMs) that can be uti-
lized for extracting 3D geometry have not yet reached the
level of maturity required by robotics applications operat-
ing in the physical world, due to the commonly arising issue
of domain shift distributions between the training set and the
inference-stage input data. In general, these solutions are not
robust, reliable or flexible enough, while accurate knowl-
edge of the UAV’s 3D state is typically still demanded.

The alternative solution is to rely on purely vision-based
controllers, where control laws are formulated directly on
2D image space, without attempting to estimate 3D state.
This is typically called Image-Based Visual Servoing (IBVS)
[58], where the goal is to control 3D camera velocity based
on the current deviation of the positions (in 2D pixel coordi-
nates) of on-target landmark point images from prespecified
desired ones. Typically, IBVS requires knowledge of cam-
era intrinsic parameters and a depth map per video frame,
at least in principle. Similar controllers have not yet been
proposed for cinematography purposes, although they are
nowadays common in more essential operations like safe
landing [54] [23]. In similar scenarios, the camera orienta-
tion/position on the vehicle may be considered fixed, so that
3D UAV velocity is the quantity in need of control.

The degree of precision required in autonomous UAV
cinematography is not as great as, e.g., in applications in-
volving object manipulation by robotic grippers. This fact
has recently been exploited in [47] to design a simple cam-
era/gimbal PID controller for cinematography purposes, that
does not depend either on UAV or target 3D state knowledge
or estimate. The controller is able to physically rotate a gim-
bal so as to continuously keep a desired target’s 2D image
positioned (in pixel coordinates) at a user-defined prespeci-
fied image region (e.g., video frame center) and constantly
adjust camera zoom level to maintain the desired FST at all
times [35]. The only input required is a rectangular target
2D Region-of-Interest per video frame (also in pixel coordi-
nates), which can be reliably extracted in real-time by mod-
ern deep neural, single-stage object detectors and trackers
[12] [42][56][49]. This is a task that DNNs can perform
much more reliably in the real world, compared to 3D ge-
ometry extraction. Although it still requires significant com-
putational power in the form of embedded AI platforms de-
signed for drones (e.g., the nVidia Jetson Tegra line of prod-
ucts), it is much more robust than 3D target state estimation
and does not depend on known camera parameters or depth
maps. However, the proposed controller does not consider
CMTs at all, despite their nature as a cornerstone of UAV
cinematography.

An alternative both to IBVS and to the simple vision-
based PID control scheme from [47] is reinforcement learn-
ing (RL) employing raw video input and motor command
output, which also discards any need for UAV or target 3D
state knowledge or estimate. DNNs have recently been em-
ployed in similar settings for UAV collision avoidance [53],
indoor flight control in search and recovery operations [28]
or high-level flight navigation [27] [11]. An imitation learn-
ing variant has also been explored for drone racing [31],
where a neural network learns to map video input to proper
motor control commands in a supervised setting, using datasets
obtained by employing human pilots in a photorealistic sim-
ulator. More generally, such approaches rely on advanced
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robotics simulators where the training of RL agents takes
place; successful generalization to unknown real-world en-
vironments during actual deployment is not guaranteed. This
disparity between training conditions in the simulator and
inference conditions in the real world is known as the “real-
ity gap”.

Additionally, RL has not yet been investigated for cin-
ematography applications, with the exceptions of [46] and
[17]. In the first one, the task is not to autonomously execute
specific CMTs, but simply to capture frontal close-up shots
of human targets. In the second one, the task does not in-
volve low-level UAV control for CMT execution, but rather
fully autonomous high-level, on-line cinematography plan-
ning that draws from a limited palette of rudimentary CMTs.

A different, non-RL DNN architecture for learning UAV
cinematography in a supervised manner is explored in [18],
using real, professional UAV video footage, where a Sequence-
to-Sequence Convolutional LSTM learns to regress desired
dense optical flows (OFs) from input dense OFs and CNN-
derived semantic features extracted by each video frame (de-
scribing target on-frame 2D position/pose and visible scene
objects). The output OFs are analytically translated into de-
sired UAV/camera motion commands using known camera
parameters and an estimated Essential Matrix. Finally, the
predicted motion commands over N immediate future time-
steps are assembled into feasible UAV trajectories by ex-
ploiting any trajectory planning method.

In a similar, but less generic algorithm [19], an LSTM-
based encoder-decoder neural architecture for temporal Sequence-
to-Sequence prediction tasks (e.g., neural machine transla-
tion) learns to regress the desired next filming target appear-
ance, at each time instance, from purely visual inputs under
mild assumptions (the filming target is a single subject of
known height in 3D world). Training also takes place on
professional UAV footage, rendering this too a variant of
imitation learning. During inference, the DNN prediction is
translated into UAV/camera motion commands using a PID
controller and a trajectory planning algorithm. The under-
lying neural building blocks are rather straightforward: two
LSTM networks and an attention layer [5].

Both of these imitation learning approaches, although
not suffering from the reality gap typical of RL-based meth-
ods, are constrained by their reliance on a specific training
dataset and their lack of explicit CMT modelling. In con-
trast, in this paper, a generic method is proposed for design-
ing specific, purely vision-driven PID controllers per CMT,
while concrete examples are provided for a range of cin-
ematography CMTs. To the best of our knowledge, this is
the first systematic presentation of vision-driven, stateless
UAV controllers for autonomous CMT execution that oper-
ate without knowing or estimating the filming target’s 3D
state; we are not aware of any similar, published algorithms.

By not relying on machine learning they do not require
training, either on a professional UAV footage dataset or on
a simulator, thus they do not suffer as much in case of a dis-
crepancy between development and deployment conditions.
By not relying on known or estimated 3D information, since
the derived PID controllers are only driven by an error signal
computed on 2D image space, they achieve high robustness
even in flight environments with intermittent and/or inaccu-
rate GPS signals. Finally, in contrast to typical IBVS solu-
tions for autonomous systems, the proposed framework does
not require neither depth maps, nor knowledge of intrinsic
camera parameters.

3 Vision-based UAV Control for Autonomous CMT
execution

The proposed method is, in essence, a methodological frame-
work for designing PID controllers that allow a UAV to au-
tonomously execute a specific CMT, using only 2D visual
input. Importantly, a different set of dedicated controllers
must be designed for each CMT.

3.1 Proposed Method

A target-tracking CMT can be defined as a set of require-
ments that interrelate captured 2D visual information and
parameters of UAV trajectory and camera orientation. These
requirements can then be exploited to form error signals,
driving corresponding PID controllers that manipulate in-
stant UAV/camera motion parameters. Thus, a target-tracking
CMT can be executed without needing 3D target/UAV coor-
dinates, relying only on what the UAV “sees” at each time
instance. The only requirement is for the target to initially be
visible on the first video frame. Subsequently, a detected tar-
get ROI (in 2D pixel coordinates) is assumed to be available
at each video frame using relevant automated, off-the-shelf
algorithms.

Designing a set of CMT-specific PID controllers accord-
ing to the proposed method involves three sequential steps:

1. Identify relevant parameters and external values.
2. Identify relevant controllers.
3. Specify the proper error signal (including a reference

value) for each required controller.

These stages are described below in detail.
The first step consists in defining the desired CMT as

a set of requirements, specifying at each time instance the
valid value range of a subset of the 12 UAV/camera/target
ROI parameters shown in Table 1. Not all of the above pa-
rameters are relevant to each CMT. Depending on the spe-
cific CMT, a number of these parameters must stay fixed
during execution (to pre-identified “external values”), while
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Table 1: Complete set of required UAV/camera/target ROI parame-
ters.

1. Scalar UAV speed v

2. Scalar UAV speed along the vertical axis vv
3. Scalar UAV speed along the horizontal axis vh
4. Absolute pitch rotation angle θD of the UAV 3D velocity vector

5. Relative yaw angle ωϕ between the UAV 3D velocity direction and the

3D camera axis

6. Relative pitch angle ωθ between the UAV 3D velocity direction and the

3D camera axis

7. Absolute pitch angle θC of the 3D camera axis

8. Absolute yaw angle ϕC of the 3D camera axis

9. Pitch angular velocity a of the 3D camera axis

10. Target 2D ROI area Ra

11. Target 2D ROI center [Rx, Ry]T (in pixel coordinates)

12. Scalar camera focal length f

Table 2: Complete set of controlled parameters.

1. UAV speed v

2. Instant UAV speed along the horizontal axis ∆vh

3. Instant UAV speed along the vertical axis ∆vv

4. Instant camera pitch rotation angle ∆θC

5. Instant UAV pitch rotation angle ∆θD

6. Instant UAV yaw rotation angle ∆ϕD

7. Camera focal length f

others must be implicitly controlled by the PID controllers
constructed according to the proposed method.

Thus, the second step consists in identifying the N con-
trollers, where N ∈ N, 1 ≤ N ≤ 7, that are required for
the desired CMT. These will control a subset of the 7 scalar
parameters shown in Table 2. As before, not all of these pa-
rameters are relevant to each specific CMT.

Finally, the third step consists in expressing the scalar,
time-dependent error signal e(t)i for the i-th PID controller,
where 1 ≤ i ≤ N . This is based on the current deviation
of a function of the identified parameters from a “reference
value”, at each time instance/video frame t.

Subsequently, during actual operation, the overall error
signal e(t) ∈ RN (where N is the number of PID controllers
required for specifying the desired CMT) drives the output
of the well-known PID equation [4]:

u(t) = Kpe(t) +Ki

∫ τ

0

e(t) dτ +Kd
de(t)

dt
, (1)

where all the operators are applied element-wise and Kp ∈
RN , Ki ∈ RN and Kd ∈ RN are the coefficients of the pro-
portional, integral and derivative terms. The output u(t) ∈

RN is a vector containing the control commands for the t-th
time instance/video frame.

Both the external and the reference values must have
been prespecified separately for each CMT. The choice of
certain external values affects aesthetic properties of the cap-
tured footage (e.g., its FST, or the shot duration), thus there
is no single “correct value” for them, while for others a spe-
cific value (or range of values) must have been selected so
that the CMT can be described properly. Overall, a consis-
tent and valid set of parameters, external values, reference
values, controllers and corresponding error signals jointly
describes a given CMT, in a manner leading to its autonomous
execution. Absolute positions in 3D space (either of the UAV
or the target), intrinsic camera parameters or depth maps are
not required: they do not have to be known, estimated or
provided.

For simplicity, we assume that controllers developed ac-
cording to the proposed method send instantaneous control
commands to UAV/camera parameters in discrete time in-
stances coinciding with discrete, incoming video frames. In
practice, an approximately fixed lag (in the order of a few
msecs) may intervene between capturing a video frame and
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sending the corresponding control commands, due to 2D vi-
sual target detection/tracking requirements. However, this
lag is typically negligible for UAVs properly equipped with
modern real-time algorithms and computational hardware.

3.2 PID Controllers for Autonomous UAV Cinematography

To showcase the proposed method, we concretely imple-
mented it for a set of industry-standard, formalized UAV
cinematography CMTs, extracted from a recently proposed
UAV shot type taxonomy [35] [32] [24] [25] [26]. Figure
1 graphically summarizes the supported CMTs, while brief
textual descriptions can be found in Table 3. More details
are in [35].

For simplicity, we assume central composition and that
all pixel coordinates have been rescaled into the interval
[0, 1], although these are not strictly necessary. The sup-
ported CMTs can be divided into ones that inherently retain
constant FST and ones that do not (ORBIT, FLYBY, FLY-
OVER, DESCENT, ASCENT, PST, CONLTS). In the sec-
ond case, a controller that continuously adjusts camera focal
length f and the corresponding component of the error sig-
nal are foreseen, in order to also retain constant FST, besides
implementing the CMT. However, this controller/error com-
ponent is entirely optional and can be removed (thus, fixing
f to a stable value), if it is not desired to maintain a spe-
cific FST while capturing the shot. If it is indeed employed,
however, it can operate without requiring knowledge of the
actual camera focal length at each time instance; only the
firmware/hardware ability to slightly increase or decrease f

with a single command is needed.
Below, the terms “local tangent plane” and “terrain tan-

gent plane” refer to a plane parallel to the local sea level
and to the plane instantaneously tangent to the local terrain
inclination, respectively. The formulas and notations have
been derived by assuming an East-North-Up (ENU) [14] 3D
coordinate system and OpenCV [8] 2D coordinate conven-
tions. In the camera reference frame C, the x-axis is aligned
with the camera axis, while the z-axis is pointing up. The
absolute reference frame W is defined at t = 0 (exactly be-
fore each CMT execution), where the target is visible in the
video frame, using the conventions below:
– The y-axis of W is aligned with the y-axis of C.
– The z-axis of W is perpendicular to the local tangent

plane.
In the sequel, the set of controllers implementing each of

the supported cinematography CMTs according to the pro-
posed method is described in detail.

3.2.1 ORBIT

Orbit (ORBIT) can be described as the following set of re-
quirements:

– The UAV should retain constant speed v (greater than
target speed u). This is an external value that implicitly
determines the drone’s angular velocity.

– The UAV velocity direction and the camera axis should
form and retain a yaw angle of ωϕ equal to ±π

2 rad. This
is initially controlled/enforced, by fixing the camera axis
yaw rotation angle and properly modifying the UAV yaw
rotation angle at each time instance, via the correspond-
ing PID controller (detailed below). Once the proper ωϕ

has been achieved, it is locked by compensating each
change in UAV yaw rotation angle with a corresponding
change in the camera axis yaw rotation angle.

– The camera axis pitch angle should remain fixed to θC >

0. This is an external value that implicitly determines the
UAV altitude relative to the target.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target 2D ROI center [Rx, Ry]
T should always remain

at the video frame center/principal point.
The following controllers must be constructed, based on

the above requirements:
– Instant UAV yaw rotation angle ∆ϕD.
– Instant UAV pitch rotation angle ∆θD.
– The camera focal length f .

Therefore, the ORBIT error signal can be written as fol-
lows:

e(t) = [Rx − 0.5 + sgn (sinωϕ) cosωϕ, (2)

0.5−Ry, Ra − da]
T ∈ R3.

By plugging this error signal into Eq. (1), u(t)i ends up
depending on e(t)i, 1 ≤ i ≤ 3. Thus, ultimately, u(t)1/u(t)2/u(t)3
is the control command sent by the ∆ϕD/∆θD/f controller
at the t-th time instance, respectively. Overall, given that the
UAV retains a constant scalar linear speed greater than the
target speed, Eq. (2) penalizes the horizontal/vertical dis-
tance of the target ROI center from the image center, in order
to enforce the desired circular UAV motion around the tar-
get and maintain central composition. Also, it uses the sgn

function to determine whether the target lies to the left or to
the right side of the UAV. Current cosωϕ at each time in-
stance is exploited in order to push ωϕ towards the desired
right angle and keep it fixed there, while the f controller re-
lies on an error based on the difference between the desired
and the actual target 2D ROI area.

The proposed error signals and the control outputs for
the remaining CMTs, which are detailed below, were de-
rived in a similar manner.

3.2.2 CHASE

Chase (CHASE) can be described as the following set of
requirements:
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a) b) c)

d) e) f)

g) h) i)

i)

Fig. 1: Graphical illustration of the supported UAV CMTs: a) ORBIT, b) CHASE, c) VTS, d) LTS, e) FLYBY, f) FLYOVER,
g) DESCENT, h) ASCENT, j) PST and k) CONLTS.

– The UAV velocity direction and the camera axis should
always form and retain a yaw angle ωϕ equal either to 0

or π rad. This is initially controlled/enforced, by fixing
the camera axis yaw rotation angle and properly modi-
fying the UAV yaw rotation angle at each time instance,
via the corresponding PID controller (detailed below).
Once the proper ωϕ has been achieved, it is locked by
compensating each change in UAV yaw rotation angle
with a corresponding change in the camera axis yaw ro-
tation angle.

– The camera axis pitch angle should remain fixed to θC >

0. This is an external value that implicitly determines the
UAV altitude relative to the target.

– Camera focal length f should remain constant.
– Target 2D ROI area Ra should remain approximately

fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– UAV speed v.
– Instant UAV yaw rotation angle ∆ϕD.
– Instant UAV pitch rotation angle ∆θD.

Therefore, the CHASE error signal can be written as fol-
lows:

e(t) = [(Ra − da) sgn (cosωϕ), (3)

(Rx − 0.5) sgn (cosωϕ)− sgn (cosωϕ) sinωϕ,

0.5−Ry]
T ∈ R3.

3.2.3 VTS

Vertical Tracking Shot (VTS) can be described as the fol-
lowing set of requirements:

– The UAV velocity direction and the camera axis should
always form and retain a yaw angle ωϕ equal to 0 rad.
This is initially controlled/enforced, by fixing the cam-
era axis yaw rotation angle and properly modifying the
UAV yaw rotation angle at each time instance, via the
corresponding PID controller (detailed below). Once the
proper ωϕ has been achieved, it is locked by compen-
sating each change in UAV yaw rotation angle with a
corresponding change in the camera axis yaw rotation
angle.

– The UAV velocity direction and the camera axis should
always form and retain a pitch angle ωθ equal to π

2 rad.
This can be either expressly controlled/enforced by the
proposed algorithm, using cosωθ as an error signal, or
be a fixed external value that defines the VTS CMT.
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Table 3: Textual description of the supported UAV CMTs [35].

CMT Name CMT Description
ORBIT The camera gimbal is constantly rotating, so as to always keep the still or linearly moving target properly framed.

The UAV circles around and above the target, while simultaneously following the latter’s linear trajectory (if it is
not still). During shooting, the UAV altitude varies according to the target altitude.

CHASE The camera gimbal remains stable and the camera always points at the moving target. The UAV follows/leads the
target from behind/from the front at a steady distance, by matching its speed, if possible.

VTS The camera gimbal remains stable and the camera always points at the moving target. The camera axis is always
perpendicular to the target velocity vector and the UAV flies exactly above the target, matching its speed, if possible.

LTS The camera gimbal remains stable and the camera always focused on the moving target. In LTS, the camera axis is
approximately perpendicular both to the target velocity vector and to the terrain tangent plane normal vector, while
the UAV flies sideways/in parallel to the target, matching its speed, if possible.

FLYBY The camera gimbal is constantly rotating, so as to always keep the still or linearly moving target properly framed.
The UAV intercepts the target from behind/from the front and to the left/right, maintaining steady vertical distance
and constant velocity, passes it by and keeps on flying at a linear trajectory, with the camera still pointing at the receding
target. The UAV and target velocity vector projections onto the local tangent plane remain approximately parallel during
shooting.

FLYOVER The camera gimbal is constantly rotating along the pitch axis, so as to always keep the still or linearly moving target properly
framed. The UAV intercepts the target from behind/from the front, maintaining a steady vertical distance and constant velocity,
flies exactly above it and keeps on flying at a linear trajectory, with the camera still pointing at the receding target. The UAV and
target velocity vector projections onto the local tangent plane remain approximately parallel during shooting.

DESCENT The camera gimbal may constantly rotate along the pitch axis, so as to always keep the linearly moving target properly framed.
Gimbal rotation is not necessary in the case of a still target. The UAV flies linearly and intercepts the target from behind or from
the front, at a steadily decreasing vertical distance and constant velocity. If the target is still, the shot ends with the UAV flying
exactly above it. The UAV and target velocity vector projections onto the local tangent plane remain approximately parallel during
shooting.

ASCENT The camera gimbal may constantly rotate along the pitch axis, so as to always keep the linearly moving target properly framed.
Gimbal rotation is not necessary in the case of a still target. The UAV flies linearly, backing away from the target, at a steadily
increasing vertical distance and with constant velocity. The UAV and target velocity vector projections onto the local tangent
plane remain approximately parallel during shooting.

PST The UAV is slowly flying up or down, along the k-axis, with constant velocity. The camera gimbal rotates slowly (mainly along
the pitch axis), so as to always keep the still or linearly moving target properly framed. The projections of the camera axis and
the target trajectory on the ground plane are approximately lying on the same line during shooting.

CONLTS The camera gimbal remains stable and the camera always points at the moving target. The UAV flies along the projection of the
target trajectory onto a predefined “flight plane”, vertical to the ground plane, while maintaining a constant altitude relative to
the target during shooting. This is useful, for instance, in football match coverage, where the UAVs are allowed to fly only above
the pitch sidelines.

– Camera focal length f should remain constant. This is
an external value that implicitly determines the UAV al-
titude relative to the target.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– UAV speed v.
– Instant UAV yaw rotation angle ∆ϕD.
– Instant UAV pitch rotation angle ∆θD.

Therefore, the VTS error signal can be written as fol-
lows:

e(t) = [Ry − 0.5, Rx − 0.5− sinωϕ, (4)

Ra − da]
T ∈ R3.

3.2.4 LTS

Lateral Tracking Shot (LTS) can be described as the follow-
ing set of requirements:

– The UAV velocity direction and the camera axis should
always form and retain a yaw angle of ωϕ = ±π

2 rad.
This is initially controlled/enforced, by fixing the cam-
era axis yaw rotation angle and properly modifying the
UAV yaw rotation angle at each time instance, via the
corresponding PID controller (detailed below). Once the
proper ωϕ has been achieved, it is locked by compen-
sating each change in UAV yaw rotation angle with a
corresponding change in the camera axis yaw rotation
angle.

– The camera axis pitch angle should remain fixed to θC ≤
0. This is an external value that implicitly determines the
UAV altitude relative to the target. In an ideal LTS shot
(rarely feasible), it holds that θC = 0.
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– Camera focal length f should remain constant. This is an
external value that implicitly determines the horizontal
UAV-target distance.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– UAV speed v.
– Instant UAV yaw rotation angle ∆ϕD.
– Instant UAV pitch rotation angle ∆θD.

Therefore, the LTS error signal can be written as follows:

e(t) = [bc, (Ra − da)c+ c cosωϕ +H (da −Ra)α |b| c,
(5)

0.5−Ry]
T ∈ R3,

where H is the Heaviside step function, α is an empirically
set small positive coefficient and:

b = 0.5−Rx, (6)

c = sgn (sinωϕ). (7)

The purpose of the term H (da −Ra)α |b| c is to reduce
the magnitude of the perceived error in 2D ROI size in cases
where the ROI is not located at the video frame center. Thus,
when the UAV is either in front of or behind the target along
the latter’s 3D trajectory and, consequently, the ROI area
is shrinked due to the increased 3D UAV-to-target distance,
we avoid inappropriate control commands attempting to in-
crease instant UAV yaw rotation angle. By adding this term
to the controller error, contractions in 2D ROI size correctly
affect the UAV yaw rotation angle only when the target turns
left or right along its route in the 3D world. During the eval-
uation process described in Section 4, a suitable α = 0.015

was empirically found.

3.2.5 FLYBY

Fly-By (FLYBY) can be described in two stages. In the first
stage, the following requirements must be met:

– The camera axis retains a constant yaw angular velocity
a, with the yaw angle ωϕ formed by the UAV velocity
direction and the camera axis steadily increasing from 0

up to ω̃ϕ = ±π
4 rad. a is an external value that implicitly

determines the shot duration.
– The camera axis pitch angle should remain fixed to θC >

0. This is an external value that implicitly determines the
UAV altitude relative to the target.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– Instant UAV yaw rotation angle ∆ϕD.
– Instant UAV pitch rotation angle ∆θD.
– The camera focal length f .

In the second stage, the yaw angle ωϕ steadily increases/decreases
from ω̃ϕ = ±π

4 up to ±π rad. The following controllers
must be constructed:

– UAV speed v.
– Instant UAV pitch rotation angle ∆θD.
– The camera focal length f .

In the first stage, the FLYBY error signal can be written
as follows:

e(t) = [Rx − 0.5, (8)

0.5−Ry, Ra − da]
T ∈ R3.

The corresponding error signal for the second stage is:

e(t) = [(0.5−Rx) sgn (sinωϕ), (9)

0.5−Ry, Ra − da]
T ∈ R3.

In-between the two stages, a short-duration intermediate
phase is required where the yaw angle ωϕ remains fixed to
ω̃ϕ = ±π

4 and the first-stage controllers keep running. The
disadvantage of the overall formulation is that, in the case of
a linearly moving target, it requires favourable initial UAV
yaw orientation ϕD relative to the target 3D trajectory. Oth-
erwise the UAV and target velocity vector projections onto
the local tangent plane will not be approximately parallel
during shot execution. Obviously, there is no such issue in
the case of a still target.

3.2.6 FLYOVER

Fly-Over (FLYOVER) can be described as the following set
of requirements:

– The camera axis retains a constant pitch angular velocity
a, with the pitch angle ωθ formed by the UAV velocity
direction and the camera axis steadily increasing from 0

up to π rad. a is an external value that implicitly deter-
mines the shot duration.

– The UAV velocity direction and the camera axis should
always form a yaw angle ωϕ equal to 0 rad. This is ini-
tially controlled/enforced, by fixing the camera axis yaw
rotation angle and properly modifying the UAV yaw ro-
tation angle at each time instance, via the corresponding
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PID controller (detailed below). Once the proper ωϕ has
been achieved, it is locked by compensating each change
in UAV yaw rotation angle with a corresponding change
in the camera axis yaw rotation angle.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– UAV speed v.
– Instant UAV yaw rotation angle ∆ϕD.
– The camera focal length f .

Therefore, the FLYOVER error signal can be written as
follows:

e(t) = [Ry − 0.5, Rx − 0.5− sinωϕ, (10)

Ra − da]
T ∈ R3.

3.2.7 DESCENT

Descent (DESCENT) can be described as the following set
of requirements:

– The UAV should retain constant speed v (greater than
target speed u). This is an external value that implicitly
determines shot duration.

– The UAV should retain constant pitch rotation angle θD >

0.
– The UAV velocity direction and the camera axis should

always form a yaw angle ωϕ equal to 0 rad. This is ini-
tially controlled/enforced, by fixing the camera axis yaw
rotation angle and properly modifying the UAV yaw ro-
tation angle at each time instance, via the corresponding
PID controller (detailed below). Once the proper ωϕ has
been achieved, it is locked by compensating each change
in UAV yaw rotation angle with a corresponding change
in the camera axis yaw rotation angle.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– Instant camera pitch rotation angle ∆θC .
– Instant UAV yaw rotation angle ∆ϕD.
– The camera focal length f .

Therefore, the DESCENT error signal can be written as
follows:

e(t) = [0.5−Ry, Rx − 0.5− sinωϕ, (11)

Ra − da]
T ∈ R3.

3.2.8 ASCENT

Ascent (ASCENT) can be described as the following set of
requirements:

– The UAV should retain constant speed v. This should
always be lower/greater than target speed u if the vehicle
is behind/in front of the target, respectively.

– The UAV should retain constant pitch rotation angle θD <

0.
– The UAV velocity direction and the camera axis should

always form a yaw angle ωϕ equal to π rad. This is ini-
tially controlled/enforced, by fixing the camera axis yaw
rotation angle and properly modifying the UAV yaw ro-
tation angle at each time instance, via the corresponding
PID controller (detailed below). Once the proper ωϕ has
been achieved, it is locked by compensating each change
in UAV yaw rotation angle with a corresponding change
in the camera axis yaw rotation angle.

– Target 2D ROI area Ra should remain approximately
fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– Instant camera pitch rotation angle ∆θC .
– Instant UAV yaw rotation angle ∆ϕD.
– The camera focal length f .

Therefore, the ASCENT error signal can be written as
follows:

e(t) = [0.5−Ry, (Rx − 0.5) sgn (cosωϕ) + sinωϕ, (12)

Ra − da]
T ∈ R3.

3.2.9 PST

Pedestal/Elevator Shot with Target (PST) can be described
as the following set of requirements:

– The UAV should retain constant speed vv along the ver-
tical axis. This is an external value that implicitly deter-
mines shot duration.

– The camera axis yaw angle should remain fixed to ϕC =

0.
– Target 2D ROI area Ra should remain approximately

fixed to da. da is an external value that implicitly de-
termines the desired FST.
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– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– Instant camera pitch rotation angle ∆θC .
– Instant UAV speed along the horizontal axis ∆vh.
– The camera focal length f .

Therefore, the PST error signal can be written as fol-
lows:

e(t) = [0.5−Ry, Rx − 0.5, Ra − da]
T ∈ R3. (13)

3.2.10 CONLTS

Constrained Lateral Tracking Shot (CONLTS) can be de-
scribed as the following set of requirements:

– The camera axis pitch angle should remain fixed to θC >

0. This is an external value that implicitly determines the
UAV altitude relative to the target.

– The camera axis yaw angle should remain fixed to ϕC =

0.
– Target 2D ROI area Ra should remain approximately

fixed to da. da is an external value that implicitly de-
termines the desired FST.

– Target ROI center [Rx, Ry]
T should always remain at

the video frame center/principal point.

The following controllers must be constructed, based on
the above requirements:

– Instant UAV speed along the horizontal axis ∆vh.
– Instant UAV speed along the vertical axis ∆vv .
– The camera focal length f .

Therefore, the CONLTS error signal can be written as
follows:

e(t) = [Rx − 0.5, Ry − 0.5, Ra − da]
T ∈ R3. (14)

4 Evaluation

4.1 Evaluation Setup

AirSim, i.e., a photorealistic UAV simulation environment,
was employed and extended in order to evaluate the pro-
posed vision-driven PID controllers. AirSim [55] is built on
top of the advanced Unreal 4 (UE4) real-time 3D graph-
ics/physics engine. It allows programmatic interaction with
the simulated UAVs via Remote Procedural Call (RPC)-based
communication.

In the conducted evaluation sessions, a cycling scenario
on a mountainous environment was simulated. A target cy-
clist was set to traverse a predefined route, which is of course

unknown to the filming UAV. The latter was set to follow and
shoot the cyclist while executing the desired CMTs, without
having any prior knowledge of the environment, of the bi-
cycle’s track or of the cyclist’s motion patterns. This is a
challenging scenario, since the target moves along a non-
linear route with several turns and curves. During the sim-
ulation, the cyclist maintained an approximately (not fully)
constant speed. This scalar speed was also unknown to the
UAV, except for the cases of ORBIT, ASCENT and DE-
SCENT where it must be known a priori, as described in
Subsection 3.2. It must be noted that several of the imple-
mented UAV CMTs are ideally defined for linearly mov-
ing targets [35], due to aesthetic considerations. An example
video frame captured by the simulated UAV while executing
an LTS CMT is depicted in Figure 2.

Fig. 2: An example video frame of executing an LTS on a
cyclist, detected via YOLOv2, inside the AirSim simulator.

The overall architecture, depicted in Figure 3, consisted
of: a) an environment along with the AirSim server, b) a de-
tector/tracker c) PID controllers d) multiple AirSim clients
for extracting and sending back information to the server
(e.g. extracting images from the UAV’s camera, sending UAV/gimbal
control commands to the server, etc.). The communication
between the modules is accomplished through ROS, exclud-
ing the RPC-based interaction between the AirSim server
and clients.

The integrated detector/tracker module, based on [43]
[42] and updated in [49], consisted of the YOLOv2 Detec-
tor [52] and the SiamRPN tracker [30]. The detector’s in-
put resolution was set to 300x300. The SiamRPN/YOLOv2
tracker/detector was pretrained on the OTB dataset [59] /real-
world image dataset reported in [42], respectively; no de-
tector/tracker fine-tuning for the AirSim evaluation environ-
ment was performed. Overall, this is more of a typical vi-
sual detection/tracking setup, rather than an absolute state-
of-the-art, since the goal was to evaluate the proposed sys-
tem performance in combination with standard, off-the-shelf
auxiliary software. Therefore, in order to discriminate be-
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PID	
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Fig. 3: The evaluation setup architecture. For simplicity,
multiple AirSim clients are omitted.

tween performance drops due to controller inadequacy and
due to detector/tracker failures, two sets of evaluation sce-
narios were conducted and are reported: one with ground-
truth target ROIs (GT-Vision) and one with detector/tracker-
derived target ROIs (DT-Vision). Implementation-wise, PID
coefficients Kp, Ki, Kd were empirically discovered per
controller, via manual tuning, and used for both of these
vision-driven control modes. The complete footage captured
through the simulator for all CMTs, as well as the optimal
PID coefficients used for the experiments, are publicly avail-
able1.

4.2 Evaluation Results

Two evaluation protocols were followed: an objective one
and a subjective one. The goal of the objective evaluation
was to assess whether the UAV trajectory relative to the
target being filmed under vision-driven control, while cap-
turing a specific shot, was correlated to the corresponding
trajectories under 3D state-based control. The latter control
mode (3D) was simply realized by implementing the refer-
ence CMT description equations from [35], which assume
full UAV/target 3D state knowledge at all times and output
UAV trajectory waypoints for executing the desired CMT at
a fixed temporal rate of F Hz (i.e., the next desired UAV 3D
position is computed F times per second). Each waypoint
was fed to the simulated Pixhawk/PX4 autopilot immedi-
ately after its computation.

Tables 4, 5 and 6 depict the objective evaluation results.
The normalized cross-correlation of target-relative 3D UAV
positions over a full CMT trajectory is shown across three
pairs: between the GT-Vision and the reference 3D control
mode, between the DT-Vision and the reference 3D con-
trol mode, as well as between the two vision-driven con-
trol modes themselves (GT-Vision and DT-Vision). The re-
sults are depicted separately for each of the three axes of the
Cartesian world coordinate system employed by AirSim and
for each of the supported CMTs, while the mean across all
axes is also depicted per CMT. Note that normalized cross-
correlation lies in the interval [−1.0, 1.0], with 1.0 indicat-

1 https://drive.google.com/drive/folders/
1RhxG0PbWIzrNHk3_1YQGaKU6CNz5LxpN

ing the strongest possible dependence between signals and
0.0 implying a complete lack of dependence.

Evidently, in the majority of cases, both GT-Vision and
DT-Vision control modes achieve very high trajectory cross-
correlation with the reference 3D mode in all three axes of
the Cartesian world coordinate system employed by Air-
Sim. DT-Vision correlation is slightly lower due to detec-
tor/tracker failures, which is to be expected, but the minor
deviation from the performance of GT-Vision suggests that
the proposed method can be readily employed in actual sys-
tems with off-the-shelf, pretrained detectors/trackers. No-
tably, the 3D UAV trajectories obtained in DT-Vision mode
are very highly correlated with the corresponding trajecto-
ries derived by exploiting ground-truth target ROIs in GT-
Vision mode, implying that the proposed controllers are rel-
atively robust to 2D visual detection/tracking failures.

Overall, the lowest/worst normalized cross-correlation
(NCC) between the vision-driven and the reference 3D con-
trol modes is achieved by the FLYOVER controllers, render-
ing it the only problematic CMT. Although its mean NCC
with the 3D control mode UAV trajectory is 0.8043/0.6700
for GT-Vision/DT-Vision, the corresponding per-axis NCC
drops as low as 0.2400 for the X-axis in DT-Vision mode
(still significantly higher than 0, but relatively low). How-
ever, by contrasting the FLYOVER trajectories obtained by
all three control modes, we can see that the CMT is indeed
performed correctly in all cases. This is depicted in Figure
4, where each of the three plots is shown from six differ-
ent view angles and, in all cases, the small red/black circle
denotes the start of the UAV/target trajectory. The relatively
low NCC scores are evidently due to the “jittery” UAV tra-
jectories achieved in vision-driven control modes, instead
of the purely linear one in reference 3D control mode. Al-
though this seems to simply be an issue fixable by proper
fine-tuning of the PID coefficients in the FLYOVER con-
trollers, we were unable to come up with a better set of pa-
rameters, despite the large expended effort. In general, PID
control is known to be sensitive to coefficient selection.

The goal of subjective evaluation was to let human judges
deduce in a systematic manner whether the visual result of
the three control modes (GT-Vision, DT-Vision and 3D), for
each supported CMT: a) is representative of the ideal CMT
from a cinematography/aesthetics perspective, and b) is vi-
sually enjoyable. In all cases, a single-stimulus Absolute
Category Rating (ACR) methodology was used [20], while
10 subjects were employed: 8 naive and 2 experts. In each
trial, a participant was shown a test sequence per CMT for
each control mode (without being informed of which mode
it was drawn from) and had unlimited time to grade this se-
quence in terms of representativeness and enjoyability. The
discrete scale used for both metrics is the following one:
5=Excellent, 4=Good, 3=Fair, 2=Poor and 1=Bad. A train-
ing session took place for each subject before formal eval-

https://drive.google.com/drive/folders/1RhxG0PbWIzrNHk3_1YQGaKU6CNz5LxpN
https://drive.google.com/drive/folders/1RhxG0PbWIzrNHk3_1YQGaKU6CNz5LxpN
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(a)

(b)

(c)

Fig. 4: FLYOVER 3D trajectories in: a) reference 3D control mode, b) GT-Vision mode, and c) DT-Vision mode.
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CMT X-axis Y-axis Z-axis Mean
ORBIT 0.8873 0.8900 0.9630 0.9134
CHASE 0.9706 0.9991 0.9994 0.9897
VTS 0.5976 1.0000 1.0000 0.8658
LTS 0.9165 0.9991 0.9998 0.9718
FLYBY 0.9272 0.9699 0.9993 0.9655
FLYOVER 0.5491 0.8641 0.9997 0.8043
DESCENT 0.9990 0.9996 0.9998 0.9995
ASCENT 0.9999 1.0000 1.0000 1.0000
PST 0.9999 1.0000 1.0000 1.0000
CONLTS 0.9724 0.8871 0.9998 0.9531

Table 4: Normalized cross-correlation between the GT-
Vision and the reference 3D control modes. The two signals
are target-relative 3D UAV positions over time, during the
execution of each CMT. All values lie in [−1.0, 1.0], where
higher is better. The lowest value per column is highlighted
in bold.

CMT X-axis Y-axis Z-axis Mean
ORBIT 0.8806 0.8943 0.9615 0.9121
CHASE 0.9635 0.9985 0.9989 0.9870
VTS 0.7809 1.0000 1.0000 0.9270
LTS 0.8669 0.9985 0.9997 0.9551
FLYBY 0.9277 0.9702 0.9992 0.9657
FLYOVER 0.2400 0.7706 0.9995 0.6700
DESCENT 0.9975 0.9988 0.9998 0.9987
ASCENT 1.0000 1.0000 1.0000 1.0000
PST 0.9999 0.9999 1.0000 1.0000
CONLTS 0.9783 0.9487 0.9998 0.9756

Table 5: Normalized cross-correlation between the DT-
Vision and the reference 3D control modes. The two signals
are target-relative 3D UAV positions over time, during the
execution of each CMT. All values lie in [−1.0, 1.0], where
higher is better. The lowest value per column is highlighted
in bold.

uation, consisting of showing him/her indicative sequences
per CMT (extracted from real UAV video footage).

Tables 8 and 7 depict the results of the subjective eval-
uation. As expected, in terms of representativeness, most
CMTs executed in 3D control mode achieved slightly higher
scores compared to GT-Vision and DT-Vision modes. How-
ever, certain CMTs such as ORBIT, ASCENT, DESCENT
and PST, are relatively on par for all three control modes.
Enjoyability scores were also typically a little lower for GT-
Vision/DT-Vision modes in comparison to 3D control mode
results, but the differences range from small to negligible.
Notably, 4 out of 10 CMTs appear more enjoyable in GT/DT-
Vision modes than in 3D control mode. This includes the
FLYOVER CMT, indicating that the “jittery” trajectories de-
picted in Figure 4 are not non-linear/non-smooth enough to
cause discomfort to the viewer. In general, the best-performing
CMTs in GT/DT-Vision modes are CHASE, FLYOVER, DE-
SCENT, ASCENT, PST and CONLTS.

CMT X-axis Y-axis Z-axis Mean
ORBIT 0.9964 0.9991 0.9996 0.9984
CHASE 0.9978 0.9995 0.9998 0.9990
VTS 0.7077 1.0000 1.0000 0.9026
LTS 0.8717 0.9984 0.9997 0.9566
FLYBY 0.9997 0.9999 1.0000 0.9999
FLYOVER 0.9413 0.9862 1.0000 0.9758
DESCENT 0.9996 0.9998 1.0000 0.9998
ASCENT 1.0000 1.0000 1.0000 1.0000
PST 1.0000 1.0000 1.0000 1.0000
CONLTS 0.9995 0.9872 1.0000 0.9956

Table 6: Normalized cross-correlation between the GT-
Vision and the DT-Vision control modes. The two signals
are target-relative 3D UAV positions over time, during the
execution of each CMT. All values lie in [−1.0, 1.0], where
higher is better. The lowest value per column is highlighted
in bold.

CMT 3D GT-Vision DT-Vision
ORBIT 4.7 3.6 3.5
CHASE 4.9 4.1 3.7
VTS 5.0 4.0 4.2
LTS 4.9 3.6 3.8
FLYBY 4.6 3.4 3.4
FLYOVER 3.7 4.0 3.7
DESCENT 5.0 5.0 5.0
ASCENT 4.9 4.6 4.6
PST 5.0 4.7 4.6
CONLTS 4.8 4.3 3.9

Table 7: Mean subjective evaluation scores for the represen-
tativeness metric. All values are in [1.0, 5.0], where higher
is better. The highest value per row is highlighted in bold.

CMT 3D GT-Vision DT-Vision
ORBIT 4.5 4.0 3.9
CHASE 4.4 4.6 4.2
VTS 4.9 3.5 3.7
LTS 4.9 3.5 3.4
FLYBY 4.3 3.8 3.8
FLYOVER 3.4 4.2 3.6
DESCENT 4.6 4.8 4.6
ASCENT 5.0 4.6 4.6
PST 5.0 4.9 5.0
CONLTS 4.5 4.0 4.7

Table 8: Mean subjective evaluation scores for the enjoyabil-
ity metric. All values are in [1.0, 5.0], where higher is better.
The highest value per row is highlighted in bold.

Further evaluation was conducted using an alternative
combination of more recent and improved neural object de-
tectors/trackers: YOLOv5s [21] and SiamAPN++ [9], in-
stead of YOLOv2/SiamRPN. Being fast and lightweight, they
too are suitable for embedded AI applications. SiamAPN++
was pretrained on the UAV20L dataset. YOLOv5s was pre-
trained on the COCO dataset and finetuned on two cycling
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detection/tracking datasets 2 [42]. The achieved normalized
cross-correlation between the DT-Vision control mode, us-
ing YOLOv5s/SiamAPN++ as detector/tracker, and the ref-
erence 3D control mode, averaged across all CMTs, was
0.943. This is a very minimal gain of +0.4%, compared to
the one achieved using YOLOv2/SiamRPN in the vision sub-
system. The most notable gains were attained in FlYOVER
and LTS, achieving +4.1% and +1.1% respectively.

4.3 Discussion

Overall, subjective evaluation results for both metrics show
that CMTs executed in GT/DT-Vision modes are compa-
rably pleasing and visually similar to those in 3D control
mode. The entire evaluation process indicates that controllers
designed according to the proposed method are unexpect-
edly robust to a degree of 2D visual detection/tracking fail-
ure, but also confirms their unsurprising sensitivity to PID
coefficients selection.

Assuming properly tuned coefficients, the proposed method
indeed leads to autonomous execution of desired UAV CMTs
without 3D state information or estimation, relying solely
on 2D visual input. Certain UAV/camera parameters that are
required to be known, as detailed in Section 3, can in fact
be always kept internally up-to-date trivially, using only the
on-board IMU(s). Of course, the target must first be visibly
located within the camera’s field of view, during shot initial-
ization at the first time instance, so that its 2D image can be
localized by a real-time 2D visual detector/tracker. There-
fore, the method is most appropriate for scenarios where
rough GPS position signals are available (so that the cam-
era/drone can be initially rotated in order to approximately
face the target), but they are inaccurate, unstable and/or in-
termittent. In fully GPS-denied environments the gimbal/drone
may be manually rotated during shot initialization (at the
first video frame/time instance) so that the target lies within
the camera’s field-of-view; from then on, the method may
proceed fully autonomously. Finally, if the goal is to exe-
cute a CMT relative to the first target of a specific type that
happens to become visible, neither rough GPS positions nor
manual gimbal/drone rotation are required during shot ini-
tialization.

An important conclusion drawn from the evaluation pro-
cess is the relatively high method robustness to object de-
tection/tracking failures. The captured CMT in DT-Vision
mode is approximately correct, even in the presence of ob-
ject detection/tracking errors/instabilities concerning target
2D ROI localization across the video sequence. Since highly
robust, state-of-the-art, off-the-shelf deep neural object de-
tectors/trackers are currently available, that can be executed

2 Benchmark RAI and Annotations Bicycles Raw datasets
were downloaded from https://aiia.csd.auth.gr/
open-multidrone-datasets/

in real-time on embedded AI compute boards (e.g., nVidia
Jetson), the proposed method seems rather resilient to typi-
cal levels of ROI localization noise. This robustness is also
implicitly confirmed by the very minimal gains in CMT ex-
ecution accuracy when employing a more recent object de-
tector/tracker combination: despite obtaining (on average)
a more precise target 2D ROI at each video frame, the pro-
posed method’s ability to autonomously execute UAV CMTs
remains almost identical for the vast majority of implemented
shot types.

As a side-note, despite the high importance of CMTs for
UAV cinematography applications, other cases where CMTs
may prove useful can be imagined. For instance, if a landing
site is visually detected on-frame, a typical relevant CMT
for landing would be to fly in parallel to the local tangent
plane towards the detected site and, once the UAV lies ex-
actly above it, start flying down. A CMT could be easily de-
scribed for this process according to the proposed method,
resulting automatically in vision-driven PID controllers that
autonomously implement it.

Finally, given that tuning and evaluation of the proposed
method took place in a simulated environment, the issue of
transfer to real-world UAVs inevitably arises. This is the so-
called “reality gap”, commonly encountered in the robotics
literature. In this case, there are two complementary aspects
to the issue: i) how well the deep neural object detector/tracker
subsystem would perform in the real world, and ii) how well
would the controller parameters that have been manually
tuned in simulation (e.g., the PID coefficients per CMT) per-
form in the real world.

In our opinion the first aspect is not that important, given
the significant robustness against detection/tracking errors
empirically demonstrated by the implemented controllers and
the constant improvement of deep neural architectures able
to run in real-time on embedded AI hardware. In fact, if
an object detector/tracker has been properly trained on real-
world image datasets, it tends to perform well in both real-
world test images and within a photorealistic simulation en-
vironment (it is the opposite scenario that does not hold).
Therefore, in our case, there is no significant issue: the em-
ployed vision subsystem was pretrained on real-world datasets
and is known to be running successfully in real-time on em-
bedded AI platforms.

However, the second aspect is more problematic: given
the sensitivity the implemented controllers empirically demon-
strated to PID coefficient values, a drop in performance is
to be expected when the reality gap is crossed. The trivial
solution would be to increase the noise in the execution of
simulated actions 3 and then retune the controller param-
eters from scratch. Most likely, this would result in lower
achievable accuracy which, however, would remain almost
constant after transfer to a real-world UAV. A better, much

3 A default level of noise is already inserted by the simulator.

https://aiia.csd.auth.gr/open-multidrone-datasets/
https://aiia.csd.auth.gr/open-multidrone-datasets/
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more involved solution would be to replace the simple PID
controllers of the proposed method with self-tuning adaptive
PID controllers; these are able to periodically retune their
parameters on their own, in response to changes in their op-
erational environment [3]. Transfer from simulation to a real
UAV would certainly qualify as such a change, thus mini-
mizing the observed drop in performance. This is, in fact, a
very interesting future research direction.

5 Conclusions

Professional filming with camera-equipped Unmanned Aerial
Vehicles (UAVs, or drones) depends on specifying and exe-
cuting a sequence of desired Camera Motion Types (CMTs),
typically with regard to a filming target/subject. Automat-
ing this process with autonomous, robotic UAVs typically
requires knowledge of the target’s 3D state at all time in-
stances (e.g., through on-target GPS). However, this is cum-
bersome, or even impossible when filming non-scripted scenes,
and/or when flying in GPS-denied outdoor environments.
As an alternative, this paper proposes a novel method for
purely vision-driven PID control of UAVs, in order to au-
tonomously execute the desired target-tracking CMTs, based
solely on what the drone-mounted camera “sees” in 2D pixel
coordinates at each time instance, without the need for know-
ing 3D information. To the best of our knowledge, no pre-
vious method of vision-driven UAV control for autonomous
CMT execution has been systematically developed in the in-
telligent shooting community. Only rudimentary, non-generic
and unpublished/unknown algorithms of this general cate-
gory, each one specifically designed for a given CMT, seem
to be implemented in commercial, proprietary UAVs equipped
with autonomous functionalities.

As a concrete example of the proposed method, a set of
industry-standard, formalized UAV cinematography CMTs
have been reformulated in the form of requirements that in-
terrelate 2D visual information, 3D UAV trajectory and cam-
era orientation. Following the proposed method, this has fa-
cilitated the implementation of a corresponding set of vision-
driven PID controllers per CMT, that exploit the above re-
quirements to form error signals driving continuous adjust-
ments to instant UAV motion parameters. The end result is
autonomous execution of each supported CMT. Depth maps,
target 3D models or extrinsic/intrinsic camera parameters
are not needed. The only required input is the target’s bound-
ing box in 2D pixel coordinates at each video frame, as de-
tected by an independent, real-time, off-the-shelf deep neu-
ral 2D visual detector/tracker. The proposed method is sig-
nificantly more robust and reliable than target 3D state esti-
mation from visual data and camera parameters. The main
novelty lies in the fact that neither UAV nor target 3D state
inputs are required to be known or estimated, thus making

this method suitable for filming with inaccurate or inter-
mittent GPS signals. Objective and subjective evaluation in
a photorealistic UAV simulator indicates that the proposed
PID controllers are powerful enough to permit successful
autonomous execution of the supported CMTs, potentially
opening up new avenues in autonomous UAV cinematogra-
phy. Additionally, the method is generic enough to be ap-
plicable to non-cinematography settings as well, as long as
a specific UAV motion trajectory relative to a visible tar-
get/subject is desired.

Given the robustness the proposed method empirically
demonstrated to failures of the neural detector/tracker, as
well as the continuing improvements of embedded Deep Neu-
ral Networks (DNNs) in computer vision, it seems inevitable
that similar algorithms will become common place in the
near future. Indeed, cognitive autonomy is increased with
each passing generation of commercial multicopters for videog-
raphy/cinematography, leading us to assume that near-future
professional UAVs will be able to film almost entirely on
their own, if provided a valid cinematography plan by the
user. On the other hand, this does not make the human pi-
lot obsolete: DNNs still struggle with adaptation to dynam-
ically changing environments, while controller-specific pa-
rameters (such as the per-CMT PID coefficients in the pro-
posed method) may also fail in the presence of scene varia-
tions over time. As a result, the current near-future trend is
to treat such autonomous functionalities as a valuable tool
in the hands of the human operator, rather than a substitute
of them.
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