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ABSTRACT
State-of-the-art deep neural unsupervised video summarization
methods mostly fall under the adversarial reconstruction frame-
work. This employs a Generative Adversarial Network (GAN) struc-
ture and Long Short-Term Memory (LSTM) autoencoders during its
training stage. The typical result is a selector LSTM that sequentially
receives video frame representations and outputs corresponding
scalar importance factors, which are then used to select key-frames.
This basic approach has been augmented with an additional Deep
Reinforcement Learning (DRL) agent, trained using the Discrimi-
nator’s output as a reward, which learns to optimize the selector’s
outputs. However, local minima are a well-known problem in DRL.
Thus, this paper presents a novel regularizer for escaping local loss
minima, in order to improve unsupervised key-frame extraction. It
is an additive loss term employed during a second training phase,
that rewards the difference of the neural agent’s parameters from
those of a previously found good solution. Thus, it encourages the
training process to explore more aggressively the parameter space
in order to discover a better local loss minimum. Evaluation per-
formed on two public datasets shows considerable increases over
the baseline and against the state-of-the-art.
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1 INTRODUCTION
The abundance of available video content has made automated
video summarization a powerful tool in a variety of applications.
Automated video summarization creates brief video summaries by
selecting the most important and crucial elements of the original
video. These are the most significant video frames, or segments of
consecutive video frames, displayed chronologically to provide a
succinct summary. Video summaries can be either static ones, con-
sisting of key-frames , or dynamic ones, containing key-segments
ordered as a trailer/skim [13, 14]. This paper concerns key-frame
extraction.

In recent years, Deep Neural Networks (DNNs) have dominated
the video summarization literature. Initially, supervised learning
approaches were developed, that required manual “ground-truth"
summaries to be present during training [25]. Typically, they uti-
lized Convolutional Neural Networks (CNNs) pretrained for whole-
image classification to derive semantic vector representations for
each video frame. Each of these representations is then given to the
summarization DNN, which chooses the key-frames. Supervised
methods, however, depend on rather dubious summary ground-
truth, derived from subjective user annotations. Additionally, ob-
taining such manual summaries for large-scale video datasets is
very labor/time-intensive and supervised training leads to difficul-
ties in generalization.

The alternative of unsupervised DNN-based key-frame extrac-
tion typically relies on Generative Adversarial Networks (GANs)
[5] and Long Short-Term Memory (LSTMs) networks, employed for
temporally modeling the original video. The main idea is that the
summary (i.e., the temporally ordered set of extracted key-frames)
must be able to, in a sense, reconstruct the original full-length video
and this reconstruction should be indistinguishable from the origi-
nal video [10, 11]. An orthogonal approach is to employ reinforce-
ment learning in order to train a neural agent that achieves a high
reward, properly defined for key-frame extraction. For instance, a
combination of reward terms is proposed in [26], which encourages
diversity and representativeness of the generated summaries. Diver-
sity is measured by computing the pairwise dot products of video
frame descriptors, while representativeness is measured by select-
ing video frames close to cluster centers in the video embedding
space. In any case, the derived summary should simultaneously be
representative of the original video content, concise and visually
diverse.
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The state-of-the-art in unsupervised key-frame extraction is
the adversarial reconstruction framework [15]. It is composed of
two main components: the Summarizer and the Discriminator. The
Summarizer contains the Selector, the Encoder and the Decoder. It
serves the role of the Generator, constructing training data points
for the Discriminator (which is a binary classifier), under a GAN
setting. These interacting components are LSTM networks and are
trained concurrently, using back-propagation and any variant of
gradient descent. The Selector generates importance scores that
indicate each video frame’s appropriateness for inclusion in the
summary. Accordingly, given the chosen key-frames, the Autoen-
coder (Encoder-Decoder) tries to reconstruct the entire, original
input video sequence, whilst the Discriminator is trained to distin-
guish between summary-based reconstructions and original videos.
After training, the only component necessary to produce the sum-
mary of a new video is the Selector. This fundamental approach
concentrates on the ability of the summary to recreate the initial
video, but [15] also integrated a Determinantal Point Process (DPP)
regularizer [12] during training, in order to obtain more visually
diverse key-frames.

Various algorithms have built upon the original method from
[15], such as [3], [2] and [1]. The approach most relevant to this
paper is [1], which embedded a DRL Actor-Critic agent into the
training process. The Actor receives as its initial input state the State
Generator’s output, i.e., the vector of scalar importance scores for
all original video fragments (non-overlapping segments of multiple
consecutive video frames), and gradually modifies it; these modifi-
cations stem from the actions performed by the agent. The Discrimi-
nator’s output is exploited as a reward guiding this DRL task: essen-
tially, Actors which construct summaries that maximally confuse
the Discriminator are rewarded. As in all Actor-Critic DRLmethods,
a separate Critic neural model evaluates the Actor’s choices dur-
ing the training stage, in order to facilitate learning of the optimal
policy/mapping between states and actions. This mapping is en-
coded in the Actor’s learnable parameters. After training has been
completed, the Actor and the Selector are the only neural modules
required for key-frame extraction in new, test videos. They form
a pipeline, with the Actor transforming the output of the Selector
into an optimized set of importance scores.

Although this DRL-enhanced variant of the adversarial recon-
struction framework has led to state-of-the-art results in unsuper-
vised key-frame extraction, it is well-known that DRL may suffer
from entrapment in suboptimal local loss minima [19]. Thus, this
paper proposes a new regularizer for escaping local minima, under
the guise of a novel loss term introduced into the training process
of the Actor-Critic model in any DRL-based baseline method for
key-frame extraction. Adding this regularizer during training aug-
ments the quality of the DRL agent by compelling it to escape the
local minimum it normally tends to converge during training, thus
allowing its optimization to reach a better solution. This regularizer
may easily be added to the pool of loss functions used for training
the overall framework, with its gradient signal specifically influenc-
ing the Actor-Critic module. Notably, it is entirely different from
common ways of modifying the DRL learning objective for achiev-
ing increased exploration during training (e.g., by policy entropy
maximization in Soft Actor-Critic [7]).

A quantitative assessment using common protocols on two pub-
licly available datasets, TVSum and SumMe, reveals favorable find-
ings and non-negligible increases over the baseline.

2 ESCAPING LOCAL MINIMA
The proposed method (L𝑒𝑙𝑚) is a potential addition to any DRL-
based deep neural key-frame extraction method that relies on Actor-
Critic agents. It is a training-stage regularizer that can be added to
the original pool of loss functions influencing the optimization of
the Actor-Critic models. It operates by segmenting training into two
phases. The first phase is exactly identical to the complete baseline
method’s training stage, proceeding for 𝐾 epochs without L𝑒𝑙𝑚 .
During the second phase, the final trained baseline Actor-Critic
model/agent from the 𝐾-th epoch of the first phase is exploited as a
reference “frozen" model. This second training phase proceeds for
another 𝐾 epochs, but this time with the proposed loss term L𝑒𝑙𝑚
punishing at each iteration the similarity between the reference
frozen Actor-Critic model and the current one. This similarity is
computed within L𝑒𝑙𝑚 in terms of the model parameters. This
additional optimization objective forces the agent’s training process
to search for a different local loss minimum than the one found
during the traditional first phase (the first 𝐾 epochs, without the
L𝑒𝑙𝑚 regularizer).

This integrated compulsion towards diversity in the parametric
structure of the agent, i.e., the difference between the final solu-
tion and the previously found reference model, leads at the end of
the second training phase to an Actor with better summarization
performance. This comes at zero overhead in terms of inference
runtime during the test stage. The obvious drawback of an approxi-
mately double required time interval compared to baseline (since
the baseline architecture is trained for 𝐾 epochs, i.e., the first phase,
while the proposed method needs training for 2𝐾 epochs, i.e., the
first and the second phase) is irrelevant to the actual deployment
of a pretrained summarization model.

The proposed method can be applied generally, as an add-on to
any DRL-based deep neural key-frame extraction framework, but
was actually implemented and evaluated on top of a DRL-enhanced
version of the adversarial reconstruction framework [15], namely
AC-SUM-GAN [1]. This choice was made simply because AC-SUM-
GAN is currently at the state-of-the-art for unsupervised key-frame
extraction. In principle, however, the proposed method can be identi-
cally applied to any other DRL-based deep neural key-frame extraction
framework. The baseline AC-SUM-GAN is briefly described below.

2.1 Baseline Framework
Architecture. The original 𝑇 video frames of the full-length se-
quence are assumed to be represented by a corresponding set of
𝑇 temporally ordered convolutional feature description vectors
X ∈ R𝑃×𝑇 , derived by a Convolutional Neural Network (CNN)
pretrained for whole-image classification on a large-scale image
dataset. These vectors (the columns of X) are sequentially fed to a
Linear Compression layer that reduces their size by half and, thus,
sequentially outputs the columns of the matrix X′ ∈ R

𝑃
2 ×𝑇 . This is

the set of video frame descriptions which, from now on, will rep-
resent the video to be summarized. After the Linear Compression
layer, the basic training-stage architectural components are the



Escaping local minima in deep reinforcement learning for video summarization ICMR ’23, June 12–15, 2023, Thessaloniki, Greece

State Generator (bi-directional LSTM), the Actor and the Critic (two
fully connected networks), the Fragment Selector (matrix multipli-
cation operator), the Variational Auto-Encoder (VAE) (two LSTMs)
and the Discriminator (LSTM).

During training, the State Generator (equivalent to the Selector
in [15]) sequentially receives as its input the compressed feature
vectors x′∗𝑖 , 1 ≤ 𝑖 ≤ 𝑇 and assigns to them video frame-level scalar
importance scores: s ∈ R𝑇 . Thus, it produces the initial input state
for the DRL agent, in the form of the vector f ∈ R𝑀 which contains
scores at a coarser, segment-level, by averaging the importance
scores of all video frames within each fragment:

𝑓𝑗 = (
𝑗𝑑∑︁

𝑡=( 𝑗−1)𝑑+1
𝑠𝑡 )/𝑑. (1)

Here,𝑀 defines the number of non-overlapping and consecutive
“fragments" into which the original video is automatically seg-
mented, while 𝑑 ∈ N is the duration of each video fragment in
video frames. The Actor and the Critic receive f as a current in-
put state and play an “N-picks" game. At the 𝑖-th iteration of this
game, where 𝑖 ∈ 1, 2, ..., 𝑁 , the Critic produces a scalar value 𝑣𝑖 ,
which acts as an assessment for the Actor’s choices (typical in all
Actor-Critic DRL methods). At each iteration of the game, the Actor
produces a distribution of actions c𝑖 ∈ R𝑀 and updates/modifies
the video frame-level score vector s by sampling this distribution.
Each action selects one new video fragment for inclusion into the
summary, leading to an increase in the scalar importance scores of
video frames that belong to the selected fragments, at the expense
of the score of the other video frames.

The Fragment Selector utilizes the modified importance scores s′
to multiply each of the compressed feature vectors in X′ with its re-
spective score. These scaled video frame representations essentially
form the currently extracted summary and are fed to the Varia-
tional Autoencoder, which is tasked to sequentially reconstruct
the original video frames as the columns of matrix X̂ ∈ R𝑃×𝑇 . Fi-
nally, the Discriminator receives as separate training inputs the
matrix X′ (original video frame representations) and the matrix
X̂ (summary-based reconstruction of the full-length video frame
representations), returning a reward to the Critic.

Loss functions. The loss functions utilized during training are
described below. The Reconstruction Loss computes the difference
in the proximity of the original and reconstructed feature vectors,
L𝑟𝑒𝑐𝑜𝑛 = ∥𝜙 (X)−𝜙 (X̂)∥2, where𝜙 (.) is the last internal LSTM state
of the Discriminator. The Prior Loss (L𝑝𝑟𝑖𝑜𝑟 = 𝐷𝐾𝐿 (𝑞(𝑒 |𝑥) | |𝑝 (𝑒)))
estimates the amount of information lost when the Encoder’s latent
space is employed to describe the VAE’s previous distribution. The
Sparsity Loss L𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = | | 1

𝑀

∑𝑀
𝑡=1 𝑠𝑡 − 𝜎 | |2, tries to compel the

State Generator to create sparse importance scores, according to the
scalar hyperparameter 𝜎 ∈ [0, 1], so that only a small percentage
of the original video frames (adjusted by 𝜎) are labeled key-frames
in the end.

The Original Video Loss L𝑜𝑟𝑖𝑔 = (1 − 𝑝 (X))2, pushes towards
minimization of the distance between the original video class label
(the number 1) and the computed probability of an original video
at the Discriminator’s output, when the latter one is indeed fed an

original video. Accordingly, the Summary Loss L𝑠𝑢𝑚 =

(
𝑝 (X̂)

)2
,

tries to minimize the distance between the summary video class
label (the number 0) and the computed probability at the Discrimi-
nator’s output of a summary-based reconstruction, when indeed a
reconstruction is fed to the classifier. Jointly, these two supervised
loss terms force the Discriminator to become a binary classifier. On

the other hand, the Generator Loss L𝑔𝑒𝑛 =

(
1 − 𝑝 (X̂)

)2
tries to

minimize the distance between the original video class label and
the computed probability of an original video at the Discriminator’s
output, when the latter one is fed a reconstructed video as input. So,
this is analogous to the adversarial loss of a typical GAN, aiming to
compel the Summarizer to derive a summary-based reconstruction
indistinguishable from an original video.

The Critic Loss L𝑐𝑟𝑖𝑡𝑖𝑐 = 1
𝑁

∑𝑁
𝑖=1 𝛼

2
𝑖
minimizes the advantage

𝑎𝑖 , as it computes the value 𝑣𝑖 that is used to evaluate the Actor’s
choices during the 𝑁 iterations of the “N-picks" game. The advan-
tage is computed as 𝑎𝑖 = 𝑧𝑖−𝑣𝑖 , 𝑖 ∈ [1, 𝑁 ] and shows the superiority
of a given action in contrast to the average action in a specific state
of the N-picks game. The return is 𝑧𝑖 =

∑𝑁
𝑘=𝑖

𝛾𝑘−𝑖𝑟𝑖 , with 𝛾 ∈ [0, 1]
being a discount factor and 𝑟𝑖 the reward provided by the Discrimi-
nator. This reward is simply 1 − L𝑟𝑒𝑐𝑜𝑛 . After the 𝑖-th step of the
“N-picks" game, the Actor receives a feedback from the Critic. The
Actor Loss is L𝑎𝑐𝑡𝑜𝑟 = − 1

𝑁
(∑𝑁𝑖=1 ln ci𝑎𝑖 + 𝛿 ∑𝑁𝑖=1 𝐻 (ci)), where 𝛿

is an entropy regularizer, LP = ln{ci}𝑁𝑖=1 is the logarithm of the
probability density function 𝑐𝑖 and 𝐸𝑛 =

∑𝑁
𝑖=1 𝐻 (ci) is the entropy

of 𝑐𝑖 . The Actor tries to learn a policy that optimizes the likelihood
of a significant fragment being included in the summary.

The above loss functions are computed incrementally during the
training of the model. The algorithm computes L𝑝𝑟𝑖𝑜𝑟 and L𝑟𝑒𝑐𝑜𝑛
in the first forward pass; during the backward pass it updates the
Encoder. Then, during the second forward pass, it computes L𝑔𝑒𝑛
and L𝑟𝑒𝑐𝑜𝑛 , while subsequently it updates the Decoder. The recon-
structed feature vectors X̂ are produced and utilized to compute
L𝑠𝑢𝑚 , during the third forward pass. Thereafter, the compressed
feature vectors X′ are used as training input for the Discriminator
and the L𝑜𝑟𝑖𝑔 term is computed. The sum of these two losses in
then used to update the Discriminator and the Linear Compressor.

In the fourth and final step, the Actor-Critic model plays the
“N-picks" game, producing the value 𝑣 , the reward 𝑟 , LP and 𝐸𝑛 .
These values are utilized to compute L𝑎𝑐𝑡𝑜𝑟 , L𝑐𝑟𝑖𝑡𝑖𝑐 and L𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦
and train the Critic, the Actor, the State Generator and the Linear
Compressor.

Test. During the test stage, after training has been completed,
only the State Generator and the Actor are required. The summary
of an input video is constructed using the scores of vector s, after it
has been modified by the Actor. Key-frame selection is performed in
the following manner: a) Kernel Temporal Segmentation (KTS) [16]
automatically segments the original video into consecutive shots
of different duration, based on an analysis of X, in order to assign
a weight to each video frame (equal to the total number of video
frames in its shot), and b) the importance score and the weight of
each video frame are exploited to finally select the key-frame set
by solving the combinatorial knapsack problem.
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2.2 Proposed Method (ELM Loss)
The proposed regularizer L𝑒𝑙𝑚 can be applied by doubling the
number of epochs the baseline DRL-based summarization model
is trained. During the initial 𝐾 epochs, training proceeds as usual.
At the end of the 𝐾-th epoch, the parameters of the final trained
baseline Actor and Critic models are stored as two reference vectors.
Subsequently, training resumes with an identical copy of the neural
architecture and proceeds for a second phase of 𝐾 epochs. The only
difference from the first phase is that the proposed ELM Loss term
is subtracted from the computed Actor Loss and Critic Loss. Thus,
during the second phase:

L𝑎𝑐𝑡𝑜𝑟,𝑒𝑙𝑚 = L𝑎𝑐𝑡𝑜𝑟 − _L𝑒𝑙𝑚𝐴 (2)

and
L𝑐𝑟𝑖𝑡𝑖𝑐,𝑒𝑙𝑚 = L𝑐𝑟𝑖𝑡𝑖𝑐 − _L𝑒𝑙𝑚𝐶 , (3)

where L𝑎𝑐𝑡𝑜𝑟,𝑒𝑙𝑚/L𝑐𝑟𝑖𝑡𝑖𝑐,𝑒𝑙𝑚 is the loss function updating the Ac-
tor/Critic, respectively, during the novel second training phase,
while L𝑒𝑙𝑚𝐴/L𝑒𝑙𝑚𝐶 is the version of the proposed regularizer for
updating the Actor/Critic, respectively. _ > 0 is a coefficient adjust-
ing how much the proposed loss term is taken into account by the
optimization process, against the task-specific L𝑎𝑐𝑡𝑜𝑟 and L𝑐𝑟𝑖𝑡𝑖𝑐
loss terms.

L𝑒𝑙𝑚 is computed as the distance between the parameter vector
of the current training iteration’s agent during the on-going second
phase from the respective stored/frozen parameter vector of the
reference baseline agent (obtained previously, at the end of the first
training phase). This is done separately for the Actor and for the
Critic, resulting in the differentiation between L𝑒𝑙𝑚𝐴 and L𝑒𝑙𝑚𝐶 .
Such a distance can be calculated individually for each of the agent’s
neural layers; these partial distances can then be summed to form
the loss value. Below, the difference between L𝑒𝑙𝑚𝐴 and L𝑒𝑙𝑚𝐶 is
ignored for purposes of clearer presentation, since they only deviate
to one another with respect to where the stored reference parameter
vector came from (the reference Actor/Critic, correspondingly).
Thus, the following general definition of L𝑒𝑙𝑚 holds:

L𝑒𝑙𝑚 =

𝑛∑︁
𝑖=1

(
1 − 𝑆𝐶 (w𝐶𝑖 ,w

𝑅
𝑖 )
)
, (4)

where 𝑆𝐶 is the cosine similarity between vectors, w𝐶
𝑖
/w𝑅
𝑖
is the

parameter vector of the 𝑖-th layer of the current/reference agent,
respectively, and 𝑛 is the number of layers in the agent. This formu-
lation does not penalize an agent that is identical to the reference
one, but essentially rewards (by reducing the loss value in Eqs. (2)
and (3)) one that is different from the reference one in terms of co-
sine distance. As previously noted, Eq. (4) is obviously implemented
differently for the Actor and for the Critic, since these two agents
correspond to different stored reference parameter vectors.

The hyperparameter _ cannot be kept large during the entire
second phase. It needs to be rather high during the initial epochs
of the second phase, but it should be reduced gradually in order
to eventually allow the task-specific loss terms to take over the
optimization process, through their gradient signals. Ideally, train-
ing with L𝑒𝑙𝑚𝐴/L𝑒𝑙𝑚𝐶 and a large _ during the initial epochs of
the second phase will ultimately lead the optimization process to-
wards novel regions of the agent’s parameter space, i.e., areas not
reached during the first phase, and therefore increase the chance

Method TVSum SumMe
Online Motion-AE [23] 51.5% 37.7%
SUM-FCN𝑢𝑛𝑠𝑢𝑝 [18] 52.7% 41.5%
DR-DSN [26] 57.6% 41.4%
EDSN [4] 57.3% 42.6%
Unpaired VSN [17] 55.6% 47.5%
PCDL [24] 58.4% 42.7%
ACGAN [8] 58.5% 46.0%
SUM-GAN-sl [3] 58.4% 47.8%
SUM-GAN-AAE [2] 58.3% 48.9%
CSNet [9] 58.8% 51.3%
AC-SUM-GAN [1] 60.6% 50.8%
AC-SUM-GAN (200 epochs) 61.4% 54.4%
Proposed ([1] - _L𝑒𝑙𝑚 ) 62.0% 55.8%

Table 1: Comparison of various deep unsupervised video
summarization methods on the TVSum and SumMe datasets,
using the F-score metric (percentage, higher is better). Best
results are in bold.

of subsequently discovering a local loss minimum which is better
than that of the reference agent. But for actually reaching such a
good task-specific loss minimum near the end of the second phase,
_ must be small during the latter epochs.

3 EVALUATION
The proposed method was implemented on top of AC-SUM-GAN
and evaluated using two publicly available datasets: TVSum [20]
and SumMe [6]. SumMe contains 25 videos of duration 1 to 6 min-
utes, while TVSum consists of 50 videos ranging from 1 to 11 min-
utes. Both datasets include single-user ground-truth summary for
every video and manual annotations for key-fragments (SumMe) or
video frame-level importance scores (TVSum). The protocol used
for evaluation is the key-fragment-based approach with the F-score
metric [22], as executed in [1]. The dataset was divided into 5 ran-
dom splits, while 80% of the videos were used for training and 20%
for testing.

Videos were downsampled at 2 FPS and video frame represen-
tations were derived from the pool5 layer of a GoogLeNet CNN
pretrained for whole-image classification on the large-scale Ima-
geNet dataset. The derived per-frame feature vector dimensionality
is decreased from 𝑃 = 1024 to 512 by the Linear Compression layer.
The Encoder, Decoder and Discriminator consist of two LSTM lay-
ers, whereas the State Generator is a bi-directional LSTM. The Actor
contains 4 fully connected layers. Its output is fed to a softmax layer
and produces a categorical distribution of probabilities, while the
Critic contains 5 fully connected layers and its output is a scalar
value ranging from 0 to 1. The Adam optimizer was used during
training, with a learning rate of 10−4 for every component besides
the Discriminator, for which it was set to 10−5. 𝜎 was set to 0.4 for
SumMe and 0.9 for TVSum.

The initial parameters of both the Actor and the Critic were set
using Dirac initialization [21]. Training hyperparameter _ was em-
pirically set to an initial value of 2/1 with an exponential/constant
decay over the epochs of the second phase, for SumMe/TVSum
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respectively. The constant decay was set to a step of 0.1 every 10
epochs.

The proposed training-stage method, implemented on top of the
baseline AC-SUM-GAN, is compared in terms of summarization
performance (measured in F-Score) against several unsupervised
key-frame extraction approaches in Table 1. To achieve a fair com-
parison, the performance of the baseline AC-SUM-GAN is reported
not only for 100 epochs (as in [1]), but also for 200 epochs, since the
proposed method requires double the typical number of training
epochs. As it can be seen, adding L𝑒𝑙𝑚 to the pool of loss functions
leads to non-negligible test-stage gains in F-Score with regard to the
directly comparable AC-SUM-GAN-200-epochs competitor, which
is the second best performer.

4 CONCLUSIONS
A novel regularizer for escaping local loss minima was presented,
suitable for deep reinforcement learning (DRL)-based unsupervised
key-frame extraction methods relying on an Actor-Critic module.
Adding this regularizer to the pool of employed loss functions
during the training stage leads the optimization process towards
novel regions of the agent’s parameter space, i.e., areas not typi-
cally reached. Therefore, it increases the chance of subsequently
discovering a local loss minimum which is better than that of the
baseline model, when trained without the proposed regularizer.
Although this requires double the training epochs compared to
typical approaches, it induces zero runtime overhead during the
test stage. The method was implemented on top of a state-of-the-art
DRL-enhanced variant of the common adversarial reconstruction
framework and evaluated on two publicly available datasets. Results
indicate non-negligible gains compared to baseline.
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