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Abstract

This paper presents a fast approximation method for Multidimensional
Scaling (MDS)-based dimensionality reduction on large cartography
datasets. Since MDS preserves data point distances, it is useful in appli-
cation domains where geolocation data are critical. Typical relevant tasks
include smartphone user behavioral pattern extraction, animal motion
tracking over long distances, or distributed sensor data monitoring. The
input to MDS is a data distance matrix employed for reducing data
point dimensionality under distance constraints. Similar procedures are
crucial for analyzing and revealing the original hidden data structure,
as well as for data visualization, feature extraction, or compression.
For N data points, MDS has a computational complexity that exceeds
O(NN?) which, may be excessive for a large IV, e.g., for several hundred
thousands or millions of data points. The proposed method allows fast
approximate MDS calculation on million-point datasets in less than a
minute on a simple laptop, by sampling a small subset of the original
dataset, performing regular MDS on it and training a neural regres-
sor to learn the desired MDS mapping. Quantitative and qualitative
empirical evaluation of the proposed fast MLP-MDS algorithm on a
geospatial data mapping task, i.e., on reducing 3D Earth surface points
(longitude, latitude, radius) to 2D maps, has resulted in promising find-
ings and small approximation errors. The benefits are even greater in
incremental settings, where new data points are obtained and projected
over time. Unlike regular MDS or competing approximations, this is
trivially supported in MLP-MDS due to the latter’s model-based nature.
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1 Introduction

Multidimensional Scaling (MDS) is a classical method for data dimensionality
reduction [1], typically with the purpose of visualizing and/or pre-processing
the dataset for further analysis. Such algorithms may be employed either for
preliminary feature extraction in several machine learning tasks, and/or as
tools for visualizing the data in 1, 2 or 3 dimensions [2] [3] [4]. MDS per-
forms this while attempting to preserve (not necessarily metric) dissimilarities
between data points.

Earth surface map making, or cartography, is essentially a dimensionality
reduction task, where the goal is to properly project a set of Earth surface
points from 3 to 2 dimensions. Its applications are obviously innumerable,
ranging from urban/regional studies [5] to ecology [6], demography [7] and
robotics [8] [9] [10] [11]. Mathematically, there is no error-free method for
projecting Earth 3D surface on a 2D map plane. Gauss’ Theorema Egregium
[12] states that a sphere and a plane are not isometric, even locally. This
fact implies that no planar (flat) map of Earth can be perfect, not even for a
portion of its surface. Thus, every cartographic projection necessarily distorts
distances of geographical locations. In fact, the longer the distance of two Earth
surface points, the higher the distance error on the 2D projection plane. Since
MDS explicitly tries to preserve data point dissimilarities, it is in theory well-
suited to geospatial data mapping tasks where geolocation data are crucial
(e.g., smartphone user behavioral pattern extraction, animal motion tracking
over long distances, or Internet-of-Things sensor data monitoring).

Given a dataset X of N P-dimensional data points, MDS is tasked to map
all N points to a different set Xof N p-dimensional points, where typically p <
P. MDS input is a N x N dissimilarity matrix, constructed using any distance
function, while in case p = 1,2 or 3 the output is a data scatterplot that can
be used for visualization purposes. Different dissimilarity and similarity (or
proximity) measures can be defined for any pair of data points in a dataset. The
type of the distance function employed for constructing the input dissimilarity
matrix determines the required MDS variant, like Classical MDS, Metric MDS
or Non-metric MDS.

The aim of Classical and Metric MDS is to reduce data dimensionality while
preserving data point distances [1] [13]. Given N data points x; € R Vi €
{1,...,N}, and a scalar distance function d(x;,x;), all pairwise dissimilari-
ties between data points can be stored in data distance matrix D € RV*N,
where entry di; =| x; — x5 [a,Vi,5 € {1,...,N}. MDS maps each x; to a
vector X; € RP,p < P, Vi € {l,...,N}, so that d(x;,x;) = cfl()ﬁi,yfj), where
d is Euclidean distance. When distance d is also Euclidean, Classical MDS is
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preferred as it has an exact algebraic solution based on eigendecomposition.
For non-Euclidean distances, Classical MDS may still be used at a significant
penalty in solution robustness. Thus, typically, Metric MDS is employed in
its place. Metric MDS is an iterative algorithm that tries to minimize a non-
linear, non-convex objective function. Despite its flexibility, it is susceptible
to being trapped in local minima due to the nature of non-convex optimiza-
tion methods. Non-metric MDS is out of the scope of this paper, as in this
case dissimilarities are known only by their rank order and the exact distance
between successively ranked dissimilarities is of no interest or is unavailable.

Classical MDS uses a double centering operator and Singular Value Decom-
position (SVD), so its computational complexity is O(N?). For Metric MDS,
its time complexity is that of the employed optimization strategy. SMACOF
(“Scaling by MAjorizing a COmplicated Function”) is typically used in prac-
tical implementations, having a time and space complexity of O(N?) [14] [15].
More generally, since all MDS variants take a dissimilarity matrix as input,
its computational complexity is independent of data point dimensionality, but
depends on dataset size: it is safe to say that it always equals or exceeds O(N?)
for N data points (i.e., the computational complexity of calculating a N x N
distance matrix).

As a result, current MDS algorithms are notoriously slow and their applica-
bility is limited to small datasets. Efficiently solving large-scale MDS problems
arising in numerous applications has been a long-time challenge. In the geospa-
tial mapping case the issue is especially pronounced, since the number of Earth
landmarks to be mapped can be in the range of millions. Thus, an approximate
method is the only practical approach.

In this paper, we propose a novel method for approximating MDS on large
geospatial datasets of N data points, where N is in the range of millions. The
novel MLP-MDS method, relies on training a MultiLayer Perceptron (MLP)
neural network for solving a regression problem with relatively few data points
and, subsequently, employing the trained model for reducing the dimensional-
ity of the entire dataset. MLP was selected as it is one of the most simple and
traditional neural network architectures that is a universal function approxi-
mator. Thus, as MDS is essentially a mapping x = f(x), where x € R” and
% € RP, MLP learns to regress this function using M regression training pairs
{xi,%; },i€{l,..., M}, M < N, where X; have been pre-obtained by perform-
ing Metric MDS on M data points randomly sampled from the original dataset.
Since M is a relatively small integer, regular Metric MDS may be performed
without computational /memory issues. The benefits of the MLP-MDS method
are even greater in incremental dimensionality reduction settings, where new
data points are obtained and projected over time. Unlike regular MDS or
competing approximations, this can be trivially supported by MLP-MDS. Its
empirical evaluation demonstrates good dimensionality reduction results on a
geospatial mapping task.

3
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2 Related Work

Data dimensionality reduction methods relying on neural networks are not
a novelty [16], including multidimensional projection algorithms exploiting
MLPs. However, all existing approaches either introduce non-MDS approxi-
mation methods that don’t maintain the original distance of data-points (not
even up to scaling) in the projected visual dimension, or implement data
transformation pipelines [17] [18] [19] that are not applicable on big data due
to large memory and computation constraints. As shown later in this paper,
many of these methods work by sampling initial control points from the orig-
inal dataset and, subsequently, computing their distance or similarity matrix.
In large-scale datasets with millions of data points, the overall process is still
very demanding in computational and memory resources.

Applying Metric MDS on very large datasets is known to be difficult, due
to memory and computational requirements [20]. As a result, several non-
neural MDS approximations have been developed for use in similar cases [21]:
FastMap, MetricMap and Landmark MDS (LMDS) [20], all try to reduce com-
putational complexity by calculating MDS on one or more smaller distance
matrices and then finding approximate solutions on the remaining data (split-
and-combine methods) [13] [20]. For example, on Landmark MDS, a smaller set
of landmark points is randomly sampled from the full dataset and Metric MDS
is performed on them. The remaining data are then approximately projected
on the low-dimensional space, since they have known distances from the MDS-
employed landmark points. FastMap MDS is similar to Landmark MDS, but
using only 2 landmarks: the ones with the greatest distance. Although faster
than Classical MDS, these methods cannot be readily applied on real-world
large datasets due to unacceptably high approximation errors [22]. More land-
marks can be used in order to increase accuracy, but overall runtime/memory
requirements are increased as well. Thus, simply parallelizing MDS is typically
preferred, by distributing distance matrix blocks on multiple machines. Even
then, applying MDS on a dataset of 100000 data points needs a tremendous
amount of resources to complete, as shown in Figure 1: at least a 64-bit mem-
ory space, 480 GB of RAM and more than 2'' seconds of computing time,
using 256 CPU cores [15].

3 MLP-MDS Method

Given an input dataset X', a distance matrix D defined on X and a monotonic
function f (d;j) = o + pd;j, Metric MDS attempts to find an optimal output
configuration X so that d;; = || X; — X, |l2 =~ f(di;). The so-called stress

function L (22 ) defines the robustness of the solution:

1/2

(s, (- )
£ (%) = (||D|F L) o
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Fig. 1 Required parallel MDS running time versus number of CPU cores, in an example
dataset of 100000 data points [15].

Metric MDS is an iterative algorithm that tries to find the set X that
minimizes £ (é’? ) over all o, 5. As this process involves minimizing a non-linear

non-convex objective function based on O(N?) distances, its computational
complexity is at least O(N?). Thus, its application on big data is theoretically
challenging and practically impossible [14] [15].

To overcome this problem we propose a novel algorithm, called MLP-MDS,
where we learn to approximate the mapping g from X to X using regression
and a small subset of X.

We assume an integer M < N, a training subset X of X composed of M
data points X; € R i € {1,..., M} sampled in a systematic manner from X
(sampling details can be found in Subsection 4.1), Metric MDS as a function g
and projections y; = ¢(X;),y € RP. We employ the projections y; of all X; on
the low-dimensional space RP to train a regression model that approximately
performs the mapping g:

y =9(x; ¢), (2)

for any x € R”, where y € R? and ¢ are the learnable MLP model parameters.

Given the above definition, MLP-MDS is defined only by the choice of a

MultiLayer Perceptron (MLP) as the regression model. The MLP is trained
by solving the following optimization problem:

M
min Y J(yi, y:), (3)
=1

where J depends on the selected loss function and y; € RP is the model’s
output prediction vector for input data point X;. Actual training details (e.g.,
optimization method, regularization, loss function, hyperparameters, etc.) can
be adjusted according to the task.

After training, y; &~ y; but, in general, y; = ¢(X;) # X;. That is, the
projection of a data point when MDS is performed on the entire input dataset
X is different than when MDS is performed on the sample X. MLP-MDS
relies on the hypothesis that this difference is negligible for practical purposes,
assuming an effective sampling strategy is employed when constructing X,
instead of naive uniform selection.
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Thus, in the proposed method, data point clustering with M < N clusters
is exploited for deriving X. After clustering is completed, the cluster medoids
are employed for performing MDS and, thus, constructing the M input/out-
put (X;/y;) training pairs for regression. Note that clustering is orders of
magnitude more efficient than Metric MDS, especially with regard to memory
requirements.

After the MLP model has been trained, it can be employed directly for
finding the low-dimensional projection of any x € R” (approximately accord-
ing to mapping g). This process may be performed for all data points of X
that were not included in X, but also for any other P-dimensional vector. Note
that this is not possible with regular MDS, which outputs a fixed set of NV
projected data points, while even if enough memory were available for apply-
ing the full Metric MDS algorithm on the entire set X', MLP inference on it
would still be several orders of magnitude faster.

4 MLP-MDS Perfomance Evaluation

To evaluate the proposed MLP-MDS method, an Earth surface map making
dataset was employed. Since cartography is a dimensionality reduction prob-
lem, where P = 3 and p = 2, it can be approached using MDS. The employed
dataset consists of N = 4708904 geographic landmarks, with the following
attributes provided per landmark: latitude, longitude, continent, name, type,
population (if valid) and altitude. However, out of these, only three numeri-
cal attributes (”latitude”, ”longitude”, "altitude”) are needed for MLP-MDS
evaluation purposes, while ”continent” was employed in post-processing solely
for better visualising the MLP-MDS results. We will refer to them as data
points because of the special meaning of landmarks in Landmark-MDS.

Regular Metric MDS on a small sample of 60000 Earth data points requires
TBs of memory, significant computational time and a cluster of machines to
complete. Applying regular Metric MDS on 4 million Earth data points is
practically impossible, making approximate methods a necessity.

4.1 Evaluation Methodology

MLP-MDS was implemented using Python and scikit-learn library and was
evaluated on a HP workstation of dual 24-core Xeon processors, 256 GB RAM
and 840 GBs swap space, running Ubuntu Linux. DBScan clustering [23]
was selected as the sampling mechanism of MLP-MDS for creating X, since
typically interesting landmarks are unequally distributed on Earth surface.
DBScan is a density-based clustering algorithm that proceeds by first deter-
mining how many data points are within “reachable” distance eps from each
point in the given dataset. Based on this information and on a second hyper-
parameter defining the minimum required number of points, each data point
is designated as either noise or as part of a cluster; overlapping clusters are
handled by appropriate merging. Essentially, the vector space is partitioned
into various dense areas (i.e., clusters) and sparse areas. In this paper, DBScan
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was executed iteratively with a Haversine distance metric, until the desired
set of data points was extracted. Initial eps was set to Tkm per radian, but
it was gradually increased until reaching 14km per radian in the final itera-
tion. This process resulted in a balanced small sample set of M = 66863 data
points. It is essential for MLP-based regression to include extreme original
landmarks, as this leads to better distance normalization.

After obtaining the training set X, the 3D normalized Cartesian and the
polar coordinates of its data points were employed to derive the Euclidean
and the haversine [24] M x M distance matrices, i.e., Dy and Dy, respec-
tively. Subsequently, we separately apply regular Metric MDS with p = 2 on
these matrices. Below, Metric MDS output on Dg /Dy is referred to as the
cardinality-M set Vg /Yy, respectively. Each element of these two sets is a
p-dimensional vector; thus, combining X as input and either Vg or Yy as
regression targets/labels, provides us with two different MLP training/test-
ing datasets: Tz and Ty, correspondingly. Note that input vectors from X are
expressed in 3D Euclidean/polar coordinates for Tg /7w, respectively.

4.2 MLP Network Training

For MLP-MDS evaluation purposes, sets Tg/7x (both containing M = 66863
paired input /target vectors x € R3/y € R?) were partitioned into two subsets:
T4 /T4 for MLP training and 72 /75 for MLP testing, according to the 80/20
rule of thumb. Thus, training/test sets included 53491/13372 labelled data
points, respectively.

In order to evaluate the degree to which the amount of training data affects
method performance, the training sets were further split into two subsets each:
TEA/TEA and TAB/TAE. The former/latter ones contain 10693/42793 data
points, respectively.

Fig. 2 2D map output of applying MLP-MDS on the test set TEQ, after training on: a) TElA
(left), or b) TAE (right).

A simple, shallow MLP architecture was employed, with two hidden layers
of 300 nodes each and ReLU activation functions. Training was performed with
the ADAM optimizer [25], using a learning rate of 0.001. Four different MLP

7
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models were trained for 200 iterations each, using 724, TA4, T2 and TAP as
the corresponding training sets.

4.3 Evaluation Results

After model training was successfully completed using error back-propagation
and Stochastic Gradient Descent, MLP-MDS performance was evaluated by
obtaining predictions on the test sets, separately for each of the four trained
models. Subsequently, the Root Mean Square error (RMS) between the dis-
tance matrix of the predictions and that of regular Metric MDS output (taking
only testing data points into account) was computed (“RMSE-DM”). The goal
was to measure the degree to which the pairwise distances of the original input
data are retained after projection, i.e., to quantify how good MLP-MDS is
in approximating the operation of regular Metric MDS. Additionally, RMS
error was measured between the MLP-predicted projected data point coordi-
nates and the corresponding regular Metric MDS outputs, so as to evaluate
the regression component of the proposed method (“RMSE-D”). All results
are depicted in Table 1, where the reported running times are total infer-
ence/prediction times for the entire test set of 13372 data points. Relevant
visualizations of the results are depicted in Fig. 2 and Fig. 3.

Fig. 3 2D map output of applying MLP-MDS on the test set 7}217 after training on: a) 7}_11‘4
(left), or b) TAE (right).

Table 1 MLP-MDS prediction RMS errors (in km) and running time for test set
(cardinality of 13372 data points).

Training Set | Distance | RMSE-D | RMSE-DM Time
T3 Haversine | 0.03587 0.00153 0.0012 min
Tit Euclidean | 0.03527 0.00134 0.0012 min
TiZ Haversine | 0.03668 0.00139 0.0010 min
TAB Euclidean | 0.03304 0.00108 0.0010 min

Moreover, the trained MLP models were employed to approximate MDS
on the original set X of N = 4708904 data points. Applying regular MDS in
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Fig. 4 A visualization of the cardinality-M set Vg, where color denotes continent and
M = 66863. As this type of projection tries to preserve the original haversine distance, the
resulting 2D map appears very different from the widely used Mercator map. Distortion due
to Earth curvature is strong on regions near the poles.

Fig. 5 A visualization of the cardinality-M set Vg, where color denotes continent and
M = 66863. By visually inspecting the continent shapes, it becomes evident that regular
Metric MDS using Euclidean distances correctly preserves distances. However, by comparing
with the projection depicted in Fig. 4 where haversine distances were employed, flipping and
rotation differences become obvious.

this case is not practically feasible, thus ground-truth cannot be obtained for
quantitative comparison purposes. Therefore, we validated the results qualita-
tively by visually comparing the output 2D map produced by the trained MLP
models with the ones derived when applying regular Metric MDS only on the
sample X of M = 66863 data points. By exploiting continent-based coloring of
the projected landmarks, as well as by assuming that a proper MDS approxi-
mation would project all identically-colored data points of X’ to the same 2D
map region as their neighbours from X, we are able to verify through visual
inspection that MLP-MDS projection of X is indeed correct. Figures 4,5 and
6,7 largely only differ with regard to landmark density, with no colour diffusion
into multiple continents being noticeable in the latter ones.
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Fig. 6 2D map output of applying MLP-MDS on the entire set X, after training on: a)
TEA (left), or b) TAP (right). Visually comparable to Fig. 4.

Fig. 7 2D map output of applying MLP-MDS on the entire set X, after training on: a)
TéA (left), or b) TéB (right). Visually comparable to Fig. 5.
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¢)
Fig. 8 Output 2D map of Landmark MDS applied on N = 4708904 data points, when
using: a) 30 landmark points, b) 3000 landmark points or ¢) 10693 landmark points.

11
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g) h)
Fig. 9 Output 2D map of Greece using 14969 data points and: a) Greece Ground Truth,
b) Metric MDS, ¢) Landmark MDS with 3000 landmarks, d) Landmark MDS with 10693
landmarks, e) MLP-MDS full after training with 10693 data points, f) MLP-MDS incr with
pre-trained MLP on 42793 data points, g) MLP-MDS incr with pre-trained MLP on 10693
data points, h) MLP-MDS full after training with 3000 data points

Required runtime comparisons were not directly possible, since regular
Metric MDS is not practically feasible on N = 4708904 data points. As a
proxy, we measured Metric MDS on M = 66863 data points, i.e., on the sample
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X: it required 3111/3341 minutes to complete for haversine/Euclidean dis-
tance matrices, respectively. Memory-wise, it used 1 TB of combined computer
memory, while on 200000 points it demanded over 5 TB.

On the other hand, MLP-MDS requires several orders of magnitude
less runtime. Sampling 10693/42793 from 66863 data points using DBScan
takes 2.18/2.54 minutes, respectively, performing regular Metric MDS on
10693/42793 data points requires 14.25/142 minutes, respectively, while train-
ing an MLP of the employed architecture on 10693/42793 input/output pairs
requires 0.764/2.193 minutes for Euclidean distances, or 0.86/2.575 minutes
for haversine distances, respectively. Finally, trained MLP inference on the
remaining N — M = 55900/N — M = 24070 data points requires at most
0.005/0.002 minutes. Overall, MLP-MDS demands at worst 17.20/147.12 min-
utes to complete, for M = 10693/ M = 42793, respectively. Given the results
of Table 1, selecting the fastest option, i.e., M = 10693, does not incur any
significant accuracy penalty.

Unlike regular MDS, MLP-MDS is practically feasible in the actual big
data scenario where N = 4708904. Sampling M = 66863 data points out of
all N via DBScan requires 67 minutes, while total subsequent runtime for
obtaining N — M predictions after training on M = 42793 data points is 2.56
minutes, including just 0.2443 minutes required for MLP inference over the
entire dataset. Finally, MLP-MDS is trivially employable in the incremental
MDS setting, where new data points are acquired and must be projected over
time, by simply feed-forwarding each of them through the pre-trained MLP.
Forward pass for a single data point requires only 0.00032 seconds. In contrast,
regular MDS must be fully performed from scratch for the entirety of the
dataset each time a new input data point is acquired and must be projected.

Landmark MDS is a competing approximation method that does not sup-
port the incremental setting either, unlike MLP-MDS. Thus, for each new point
added to the dataset, the entire process must be executed from scratch. Unlike
regular MDS, however, it is applicable to big data scenarios. The results of
applying it over the entire dataset X of N = 4708904 data points are visually
depicted in Figure 8. Landmark MDS completed the task in 12 minutes with
a set of 30 landmarks, in 71 minutes with a set of 3000 landmarks and in 1320
minutes with a set of 10693 landmarks. The quality of the projection improves
as the number of landmarks increases, but so does the computational time
and memory complexity. In contrast, if a pre-trained MLP is available, MLP-
MDS requires only 0.2443 minutes for simple MLP inference across all N data
points in X, since it naturally supports the incremental setting. In the non-
incremental setting, where no MLP has been pre-trained (thus, MDS has to be
performed in a sample and an MLP model must be constructed), MLP-MDS is
still overall faster than Landmark MDS, since the entire method requires 33.50
minutes, including clustering, applying regular MDS and training an MLP on
10693 data points.

To achieve a quantitative comparison regarding projection quality between
Landmark MDS and MLP-MDS, we employed a similar but smaller dataset

13
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consisting of 14963 data points belonging to a European country (Greece).
The results are visually depicted in Figure 9. Due to the small size region,
haversine and Euclidean distances are approximately equal. We employed as
ground-truth the real Euclidean distances between all original 14963 data
points. RMSE between the distance matrix of the approximately projected
data points and the ground-truth one was utilized for quantitative evalua-
tion. Results are presented in Table 2. Note that we included four versions
of MLP-MDS: two incremental ones (denoted as “MLP-MDS incr”) and two
full ones (denoted as “MLP-MDS full”). The former ones assume that a good
regression model has been pre-constructed using a different dataset (trained
on 10693/42793 data points), while it is now available for direct use with the
current dataset. Thus, we showcase a significant advantage of the proposed
method, compared to traditional MDS approximations which do not inherently
support the incremental setting. The latter ones consist in non-incrementally
applying MLP-MDS from scratch, performing Metric MDS on a sample of
3000/10693 data points (selected from the 14963 data points of Greece) and
training MLP regressors using the corresponding output.

All of the reported errors/accuracies in Table 2 are averaged over the entire
Greece detaset of all 14963 data points. Note that in the MLP-MDS incr cases,
although there is zero overlap between this dataset and the dataset used for
training the regressors, the accuracy is still higher than that of Landmark
MDS. Also, while the most accurate MLP-MDS incr model was successfully
pre-trained on 42793 data points without significant hustle, we were unable
to use more than about 11000 landmarks with Landmark MDS (which could
increase its accuracy) due to its unacceptably high memory requirements.

Metric MDS is solved using the numerical Sammon Maping [26] or the
SMACOF[14] method. Note that stochasticity both in these solvers (the start-
ing point, for instance) and in the MLP-MDS training process (e.g., training
set sampling) is most likely the trivial reason behind the seemingly strange
effect of approximate MLP-MDS appearing to have marginally better accuracy
compared to regular Metric MDS (lower RMSE with respect to ground-truth),
as shown in Table 2.

Table 2 Output accuracy and computation time of projecting Greece dataset (cardinality
of 14963 data points), using Euclidean distances. Lower RMSE is better.

Method RMSE (km) Time
Metric MDS 0.00045 14.73 min
Landmark MDS with 3000 landmarks 0.02955 0.1120 min
Landmark MDS with 10693 landmarks 0.02887 2.50 min

MLP-MDS incr with 42793 data points 0.000057 0.0014 min
MLP-MDS incr with 10693 data points 0.000101 0.00095 min
MLP-MDS full with 10693 data points 0.000116 5.18 min
MLP-MDS full with 3000 data points 0.000211 0.811 min
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5 Conclusions

Multidimensional Scaling (MDS) is a well-known approach for dimensionality
reduction and dataset visualization, that tries to preserve data points distances
during data projection and, thus, is well-suited to geospatial mapping appli-
cations. However, its applicability to big data scenarios and/or to incremental
settings is limited due to very high computational/memory requirements.
Existing approximation algorithms attempt to extend its use to large datasets
at an accuracy penalty, but do not inherently support incremental MDS. The
proposed fast MLP-MDS method addresses these challenges by construct-
ing a regression model that approximately learns the mapping performed by
MDS using a small sample of the complete dataset and, subsequently, may
be used for projecting any data point with minimum fuss, negligible compu-
tational/memory cost and small approximation errors. Empirical evaluation
on a cartography/geospatial mapping dataset demonstrated the high perfor-
mance and robustness of the proposed method, as well as its convenience in
incremental settings.
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