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Abstract—Unmanned Aerial Vehicles (UAVs, or drones) have
revolutionized modern media production. Being rapidly deploy-
able “flying cameras”, they can easily capture aesthetically
pleasing aerial footage of static or moving filming targets/subjects.
Current approaches rely either on manual UAV/gimbal control
by human experts, or on a combination of complex computer
vision algorithms and hardware configurations for automating
the flight+filming process. This paper explores an efficient Deep
Reinforcement Learning (DRL) alternative, which implicitly
merges the target detection and path planning steps into a single
algorithm. To achieve this, a baseline DRL approach is aug-
mented with a novel policy distillation component, which trans-
fers knowledge from a suitable, semi-expert Model Predictive
Control (MPC) controller into the DRL agent. Thus, the latter
is able to autonomously execute a specific UAV cinematography
task with purely visual input. Unlike the MPC controller, the
proposed DRL agent does not need to know the 3D world position
of the filming target during inference. Experiments conducted in
a photorealistic simulator showcase superior performance and
training speed compared to the baseline agent, while surpassing
the MPC controller in terms of visual occlusion avoidance.

Index Terms—autonomous drones, UAV cinematography, Deep
Reinforcement Learning, policy distillation, Model Predictive
Control, Deep Neural Networks

I. INTRODUCTION

The rapid popularization of commercial, battery-powered,
camera-equipped Unmanned Aerial Vehicles (UAVs, or
“drones”) during the past decade, has deeply affected media
production. UAVs have proven to be an affordable means
for swiftly acquiring impressive aerial footage in diverse
scenarios. They offer fast shot setup, the ability to hover above
a point of interest, access to narrow spaces and novel aerial
shot types not easily achievable otherwise, at a minimal cost
[1], [2].

According to recent UAV shot type taxonomy proposals [3],
[4], [5], [6], [7], [8], UAV shots consist in valid combinations
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of Camera Motion Types (CMTs) and Framing Shot Types
(FSTs). The most interesting among them involve a still
or moving target/subject. Professional UAV filming requires
specialised personnel for flight and filming control, i.e., sep-
arate drone and camera/gimbal operators. That renders the
possibility of fully autonomous drones highly attractive, since
it would reduce the need for human operators and the overhead
that comes with executing demanding CMTs, such as “Orbit”.

A popular class of methods for achieving autonomy in
complex unknown and stochastic environments is Deep Re-
inforcement Learning (DRL), which relies on Deep Neural
Networks (DNNs). Classical control algorithms such as Model
Predictive Control (MPC) become highly complex in large-
scale problems and require sensor information that is typically
not available, or very expensive to acquire. DRL agents on the
other hand can learn to navigate in stochastic environments
with limited sensor information [9], [10]. DRL and classic
control methods are traditionally seen as alternatives, while
none has been exploited up to now for autonomous CMT
execution in UAV cinematography.

The goal of this paper is to try to leverage the benefits of
both worlds, with as little overhead as possible. To achieve
this, a novel DRL agent training algorithm is proposed: it
exploits knowledge conveyed by a manually designed, task-
specific MPC controller which requires 3D target position
information in order to function. The training process is
complemented by collision avoidance and occlusion avoidance
objectives. After the DRL agent has been trained, its task is to
constantly and autonomously adjust the UAV’s trajectory so
that a desired CMT is executed, without relying on detailed
3D maps or on knowledge of the 3D position of the target
being filmed; only RGB video input from the UAV-mounted
camera is utilized at each time step. The proposed vision-
based MPC-distilled DRL agent exhibits superior performance
in comparison to the baseline one, without relying on complex
and time consuming trajectory optimisation, pose estimation,



3D map reconstruction or state estimation methods.
Thus, the novel contributions of this paper are the following

three items:

• An MPC controller designed for autonomous UAV CMT
execution (i.e., for the “Orbit” CMT [3]). No such algo-
rithm has been previously proposed.

• Exploiting policy distillation during training, by com-
bining the semi-expert MPC controller with the Deep
Deterministic Policy Gradient (DDPG) DRL algorithm,
in contrast to the common trend of distilling policies from
expert teachers.

• Introducing a task-specific DRL training reward for visual
occlusion avoidance, so that the collected footage clearly
depicts the target being filmed.

These novelties, taken together, allow the proposed MPC-
distilled DDPG agent to tackle the complex problem of a
UAV autonomously orbiting around a target being filmed in
an obstacle-cluttered environment, using purely visual input
data.

II. RELATED WORK

Research on UAV control using vision-based DRL typically
utilizes video frames from a UAV-mounted front-facing cam-
era, to enrich the observations of the environment with visual
information. In [11], a hierarchy of independent DQNs and
non-neural controllers is used to solve the UAV autonomous
landing problem, by breaking it down to three simpler tasks. In
[10], a variation of the RDPG [9] algorithm for UAV naviga-
tion missions achieves faster convergence than the baseline, by
using the actor-critic architecture to break up the correlation
between sequential observations. In [12], a DD-DQN [13]
agent generates label maps for training a segmentation model,
so as to achieve UAV path planning with simultaneous obstacle
avoidance.

There have also been attempts to utilize MPC in DRL using
either imitation learning [14], Guided Policy Search [15], or
the Hamiltonian of the optimal control problem [16]. In con-
trast to these approaches, this paper combines a semi-expert
MPC controller, which can provide only trajectory tracking
and approximate obstacle avoidance, with Deep Deterministic
Policy Gradient using policy distillation [17], [18].

Unlike DRL for generic robotic and UAV control, DRL
specifically for UAV cinematography tasks has not been ex-
plored in depth. A few relevant algorithms have been presented
for frontal view person shooting [19], for object tracking using
multiple drones, or for combining trajectory optimisation and
DRL in order to automate artistic choices [20].

III. TECHNICAL BACKGROUND

The proposed method includes a semi-expert MPC con-
troller, able to autonomously orbit around a target and avoid
obstacles, and a CNN-based actor trained by DDPG with
policy distillation.

Model Predictive Control. MPC is a discrete time con-
trol technique that provides a solution to the finite horizon,
constrained optimal control problem:

min
u(·)

Φ(x(tf )) +

∫ tf

0

l(x,u, t) dt

subject to x′ = f(x,u, t), x(0) = x0,

g(x,u, t) = 0,

h(x,u, t) ≥ 0,

(1)

where tf is the time horizon, x is the system state, u are the
inputs to the system, x0 a given initial state, Φ(·) the final
cost and l(·) the intermediate cost function. f(·), g(·) and h(·)
are time-dependent vector fields defining the system dynamics,
the equality constraints, and the inequality constraints, respec-
tively [15]. The problem’s associated optimal value function
V (cost-to-go) is defined as:

V (t,x) = min
u

Φ(x(tf )) +

∫ tf

0

l(x,u, t) dt. (2)

Deep Deterministic Policy Gradient. DDPG is a model-
free Deep Reinforcement Learning (DRL) algorithm for con-
tinuous action control, based on the actor-critic paradigm. It
is a significant improvement in comparison to Deterministic
Policy Gradient due to three novelties: the utilisation of Deep
Neural Networks (DNNs) for the functional approximation of
the actor and the critic, the use of target networks and the use
of experience replay [21].

Actor-critic methods model the actor with a DNN and find
the synaptic weights that encode the optimal policy π∗. This
is achieved by updating its weights in the direction of the
gradients of the expected future reward, using error back-
propagation and a form of gradient descent. Because that
gradient needs an unbiased estimator of the Q-function in order
to guide the weights of the actor towards the optimal policy,
the critic network is first updated towards the direction of the
gradient of the temporal difference at each training iteration.

Target networks are networks of identical structure as the
actor and critic, but their weights are updated in such a way
to slowly follow the weights of the actual actor and critic.
This way, stability in the learning process of the actor and the
critic is improved. The concepts of target networks and the
experience replay have been introduced in Deep Q-Learning
[22] and have become common in DRL algorithms.

Actor-critic methods can either be on-policy or off-policy,
meaning that the action taken at every step for exploring
the environment is sampled from the actor network or from
another policy, respectively. DDPG is off-policy, in the sense
that the action used at every step is the sum of the actor policy
at the current state of the environment plus an appropriate ex-
ploratory noise. In this paper, the Ornstein-Uhlenbeck process
is used as the additive exploration noise.

Below, the critic QθQ(o,a) and the actor µθµ(o) are
parameterized by θQ and θµ. Essentially, θµ encodes the
policy being learned by the DDPG agent during its training.
st, ot and at are the state description, observation and action
of the t-th timestep, respectively.

Policy Distillation. Policy distillation is the transfer of
knowledge from a teacher actor T to a student actor S. This is



traditionally achieved by generating a dataset DT = {si, qi}N0
[17] using the teacher and, subsequently, exploiting it as
ground-truth to train the student Q-network through regression.
One core novelty of the proposed method is to exploit a
suitable MPC controller as teacher under a policy distillation
framework, in order to augment the training process of a
neural DRL agent. Thus, policy distillation is modified in
this paper in order to account for the semi-expert nature of
the employed teacher. The aim is to transfer knowledge to
the student, while the latter becomes more robust and learns
according to rewards that cannot be incorporated in the MPC
setting. The processes of knowledge transfer and DRL training
have to be simultaneous, leading to on-line policy distillation.

IV. PROPOSED METHOD
The proposed method consists of a properly adapted form

of a DDPG agent, trained using a novel, task-specific re-
ward function for autonomous UAV cinematography, and the
novel on-line policy distillation term from a MPC teacher.
Autonomous execution of the “Orbit” CMT has been selected
below as the desired cinematography task, due to its challeng-
ing nature (it is difficult to execute manually) and its high
aesthetic appeal. However, the proposed method may alterna-
tively be employed for executing any UAV cinematography
CMT, provided that a proper MPC controller can be designed.

A. MPC for Executing Orbit CMTs

Holding the assumption that the UAV is velocity-controlled
based only on its kinematics, the motion equations are:

ẋ = ax

ẏ = ay

ż = az,

(3)

where ai is the velocity set-point along direction i and the
vector a = [ax, ay, az]

T represents the action. We define
q = [x, y, z]T as the actual 3D position of the UAV in the
environment and qd ∈ R3 as the orbital position where, ideally,
the UAV should currently be in if executing a proper “Orbit”
CMT.

The MPC controller’s task is to track the orbital trajectory
in 3D space, which is computed according to the “Orbit”
equation in [3]. This computation requires the 3D position
of both the drone and the filmed target/subject to be known.
Furthermore, obstacle avoidance is implemented by surround-
ing all obstacles by spheres and then using the distance of
the UAV from the sphere as a constraint. Obviously, this also
requires the 3D positions in space of all obstacles to be known.
The inequality constraints that arise are the following ones:

di = ||q − ci||2 − r2i , for i = 1, 2, ..,M, (4)

where M is the number of spheres and ci/ri are the cen-
ter/radius of the i-th sphere, respectively. Thus, the M + 1
constraints are:

di ≥ 0, for i = 1, 2, ...,M

z > 0.
(5)

Function l(·) is constructed as the sum of the distance between
the UAV and the ideal orbital position at that time instant, the
square of the action vector and a term for creating smooth
action signals:

lt = ||qt − qdt
||2 + ||at||2 + aT

t−1at. (6)

High input sampling frequencies result in more accurate
control policies, but require faster inference, which is not al-
ways feasible on embedded/on-drone computational hardware.
Thus, a sampling period of T = 0.4 seconds was chosen.

B. MPC-distilled DDPG

After the task-specific MPC controller has been designed,
the proposed purely-vision based DRL agent can be trained
using on-line policy distillation.

The main idea is to leverage the useful properties MPC
carries in a DRL framework. Since the task of autonomous
“Orbit” execution from visual input only is highly complex,
solving it with a baseline, pure DRL method would result in
a prohibitively high required training time and in a DNN size
too large for embedded computers. Moreover, accurate reward
shaping is crucial, but rather difficult in large-scale problems
such as this one, since any defects in its design would likely
lead to even higher training times, instabilities and sub-optimal
solutions.

All these issues are significantly ameliorated by introducing
a loss term that penalizes distance between the student’s action
and the MPC-teacher’s action, at each step of the training
process. This serves as a way to exploit the known UAV
kinematics model while training the DRL agent, in order to
improve its performance. The proposed distillation loss term
is incorporated into the gradient of the cost J [21], in order
to guide the policy being learnt near to the MPC controller’s
policy. Notably, the MPC controller is not a perfect expert
(as is typically the case in imitation learning) but simply
an automated algorithm with access to additional information
(i.e., the target’s 3D position at each time step). The gradient
that is used to update the weights of the actor DNN is:

∇θµJ =

Est∼ρβ

[
∇θµQ(o, µ(o)|θQ)|o=ot

∇θµµ(o|θµ)|o=ot

+ ∇θµ l(µ(o|θµ),aMPC(s))|s=st,o=ot
]

(7)

In the problem tackled, the state ot ∈ R84x84x3 is the
RGB image that the drone camera captures in time t, st
the vector containing the UAV, target and obstacle positions,
at ∈ R3 the action vector as defined in (3) and aMPC ∈ R3

the corresponding MPC action given UAV position qt. It
must be noted that the proposed method only controls the
UAV position, since complementary, cinematography-oriented,
purely vision-based algorithms already exist for camera gimbal
control [23] [19].



(a) (b)

(c) (d)

Fig. 1: Top-down view of the x− y plane trajectories outputted by the proposed MPC-distilled DDPG agent ((a) and (c)) and
the semi-expert MPC controller ((b) and (d)). In (a),(b) and (c),(d) the starting UAV position is [0, 0] and [0, 20], respectively.

Algorithm 1 MPC-distilled DDPG

Initialize critic QθQ(o,a) and actor µθµ(o) with parameters
θQ and θµ. Initialize target critic QθQ'(o,a) and target actor
µθµ'(o) with weights θQ' ← θQ and θµ' ← θµ.
Initialize Replay Buffer R with an extra slot for MPC
actions.
for episodes=1,M do

Initialize a stochastic process N for action exploration.
Receive an initial observation o0 and an initial state s0.
for t=1,T do

Obtain action at = µθµ(ot) +Nt

Execute action at, obtain reward rt, observation ot

and state st
Calculate MPC action using the full state st
Store transition (at,a

MPC
t ,ot, rt) into R

Sample a minibatch of L transitions
{(aMPC

i ,ai,oi, ri)}Li=1

Set yi = ri + γQθQ'(oi, µθµ')
Compute critic update

∆θQ = 1
L

∑
i(yi −QθQ(oi,ai))

∂Q
θQ (oi,ai)

∂θQ

Compute actor update
∆θµ = 1

L

∑
i
∂Q

θQ (oi,µθµ (oi))

∂a
∂µθµ (oi)

∂θµ +
∇θµ l(µθµ(oi),aMPC(oi))

Update actor and critic using Adam
Update target network of critic

θQ' ← ϵθQ + (1− ϵ)θQ'

Update target network of actor
θµ' ← ϵθµ + (1− ϵ)θµ'

end for
end for

C. Reward shaping for the DDPG agent

In order to train a suitable DDPG agent, 4 individual
rewards were linearly combined to form the final complete
reward function. This is computed at each timestep by the
training environment and provided to the DDPG algorithm.

First, the UAV must learn how to orbit the target. To achieve
this, the next orbital trajectory 3D waypoint qd is dynamically
computed on-the-fly at each timestep, using the relevant time-
parameterized “Orbit” equations from [3]. Thus, the following
error is defined:

ed = ||q − qd||2, (8)

where q is the actual 3D position of the UAV at the current
timestep.

Next, an error threshold is specified, above which the orbital
reward becomes zero. Eventually the reward for the orbital
trajectory is:

rd =

{
0 , if e ≥ eth,

1− ed
eth

, otherwise
(9)

Additionally, a reward that punishes low or high altitudes is
defined. This is motivated by the fact that the footage needs
to be captured from an altitude not much greater than that
of the filmed target, thus avoiding too large a gimbal pitch
angle which would corrupt the CMT. Two options are viable
to achieve this: i) explicitly reward small pitch angles, or ii)
specify a band of altitudes within which the reward is zero,
but outside it is -0.5. Option ii) was chosen for this paper:

rz =

{
−0.5 , if z ≥ zmax or z ≤ zmin,
0 , otherwise

(10)

Moreover, obstacle avoidance is an essential factor for
robotic navigation within complex environments. Although
obstacle avoidance is implemented by the MPC controller
and the student DDPG actor will distill that knowledge, an



optional obstacle avoidance reward term was still defined for
DRL training. This is significantly more accurate than the
bounding sphere approximations internally computed by the
MPC controller. An on-board LiDAR is used to sense obstacles
located within a range of up to dmax meters from the UAV,
along a FoV of 360o around it. Then, the minimum value
dlidarmin

of the LiDAR output is used to form the reward:

robs = −e−a
dlidarmin

dmax . (11)

Accumulated rewards for the cases of Fig. 1
Algorithm Initial Position [0, 0] Initial Position [0, 20]
MPC 0.72595 0.69523
MPC-distilled DDPG 0.74524 0.50416
Baseline DDPG 0.10650 0.39576

TABLE I: Accumulated rewards for the cases shown in Fig.
1. Evidently, the MPC-distilled DDPG agent is able to reap
higher/lower rewards when the target is visible/invisible at the
very first steps. The baseline DDPG agent completely fails to
achieve the task and crashes.

A visual occlusion avoidance reward term is defined, since
the UAV is expected to capture clear images of the target
being filmed while executing the “Orbit” CMT. This reward
term was borrowed from [20], where a semantic segmentation
map is used during training to find the on-frame surface of
the bounding box surrounding the filmed target. The UAV
is set to various positions inside the environment, where the
target/subject is not occluded from the camera’s FoV. Then,
the various measured distances between the UAV and the
bounding box of the target/subject are used as data pairs for
curve fitting a polynomial p(d). The actual reward term is:

rocc = e−β(Sactual−Smeasured)
2

(12)

where Sactual/Smeasured is the estimated actual/measured
bounding box surface, respectively.

Lastly, a reward aiming to smooth out the UAV trajectory
is defined, using the angle between the previous action vector
and the current one. This reward should be: i) negative when
the angle is greater than 90 degrees, and ii) positive when
lower than 90 degrees. The highest value of 1 should be at 0
degrees. This behaviour is accurately captured by the cosine
similarity between ak−1 and ak:

rsmooth =
aT
k−1ak

||ak−1||||ak||
(13)

All the individual reward terms described above are combined
into the final reward function:

r = σdrd + σzrz + σobsrobs + σoccrocc + σsmoothrsmooth,
(14)

where σi are the reward coefficients.
V. EXPERIMENTS

We trained an MPC-distilled DDPG agent in a virtual
environment from the AirSim simulator [24]. The environment
consists of obstacles in the form of grey boxes and a still target

Fig. 2: Trajectory of MPC (in blue) and of MPC-distilled
DDPG with smoothness reward (in orange).

Fig. 3: Average reward for the proposed MPC-distilled DDPG
and the baseline DDPG, with both of them trained using the
proposed reward function. Evidently, the proposed distillation
loss term significantly speeds up learning. The corresponding
MPC controller’s reward is shown in green, for comparison
purposes.

around which an “Orbit” CMT must be performed. The target
is orange in color, so that it is clearly distinguishable in the
RGB images the UAV gets. The environment is visible in Fig.
1.

Optimal hyperparameter values were found via grid search:
the action sampling time was set to 0.4 seconds, the MPC
horizon to 10 time steps, the reward coefficients to σd =
1 , σz = 1 , σobs = 0.7 , σocc = 0.6 and the learning
rates for the actor and the critic subnetwork to 0.0001 and
0.0002 respectively. Identical CNNs were used for the actor
and critic subnetworks.

The average rewards for the MPC-distilled DDPG and the
baseline DDPG, along with comparisons against the MPC con-
troller, are presented in Fig. 31. Evidently, while the baseline
DDPG is unable to learn in 1000 episodes a good policy,
MPC distillation allows the proposed augmented DDPG agent
to rapidly learn the desired task in just 200 episodes. This
is extremely fast for such a difficult task in such a complex
environment.

Fig. 1 depicts a top-down view of the trajectories that the
MPC-distilled DDPG agent and the MPC agent have followed.

1These accumulated rewards per episode do not include the smoothness
term.



In (a), (b) the agent’s starting position is [0, 0] while in (c),
(d) it is [0, 20]. Evidently, the two trajectories look similar
when there is no occlusion, or when the distance from the
obstacles is large enough, but with the proposed MPC-distilled
DDPG agent’s trajectory being a lot less smooth once the
UAV reaches the target’s vicinity. However, the proposed
agent chose to follow from the start a trajectory that provides
the minimum occlusion, while the MPC controller does not
account at all for visual occlusions.

The smoothness of the orbital trajectory can be justified by
the fact that the training took place for less than 1000 episodes.
Since the starting position of the drone is always on a circle
around the target, the UAV does not get a lot of opportunities
during training to reach the target or complete a full orbital
trajectory. Thus, the UAV has learned the optimal behaviour in
positions close to the starting points, but the orbital trajectory
lacks smoothness and seems uncertain.

In order to compensate for that effect, the smoothness
reward of Eq. (13) was introduced along with the use of
recurrent layers in the actor and critic network. The result is
a much smoother trajectory, achieved with the same number
of training episodes. Fig. 2 displays the achieved trajectory on
top of the reference trajectory.

It must be clearly emphasized that the effect of the proposed
MPC-distilled DDPG algorithm is to render training for au-
tonomous UAV CMT execution achievable, by significantly
speeding up policy acquisition. As it can be seen in Fig. 3,
the baseline DDPG agent does not ever learn to execute the
task at all within almost 1000 episodes.

VI. CONCLUSIONS
The method proposed in this paper tackles a complex task

from autonomous UAV cinematography, i.e., physically orbit-
ing a target while filming it, using a novel Deep Reinforcement
Learning setup. The proposed agent plans on-the-fly the UAV’s
3D trajectory waypoints, while relying only on visual input
during deployment. However, during training it leverages
semi-expert MPC knowledge to reduce DNN size/complexity
and significantly lower required training time, while allowing
the agent to learn to behave according to the rewards designed
for the DDPG algorithm. Thus, the proposed agent is able to
choose trajectories satisfying requirements that the semi-expert
policy does not account for (i.e., visual occlusion avoidance,
improved obstacle avoidance). Although the final behaviour of
the trained MPC-distilled DDPG agent is not as smooth as that
of the MPC controller, the proposed agent has the advantage
of not requiring knowledge of the target’s 3D position at
each time step. Future work may involve additional trajectory
smoothing reward terms at the training stage, in a multitask
setting where the camera gimbal is also controlled.
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