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ABSTRACT
This work examines the problem of increasing the robustness
of deep neural network-based image classification systems
to adversarial attacks, without changing the neural architec-
ture or employ adversarial examples in the learning process.
We attribute their famous lack of robustness to the geomet-
ric properties of the deep neural network embedding space,
derived from standard optimization options, which allow mi-
nor changes in the intermediate activation values to trigger
dramatic changes to the decision values in the final layer.
To counteract this effect, we explore optimization criteria
that supervise the distribution of the intermediate embedding
spaces, in a class-specific basis, by introducing and leverag-
ing one-class classification objectives. The proposed learning
procedure compares favorably to recently proposed training
schemes for adversarial robustness in black-box adversarial
attack settings.

Index Terms— Adversarial Robustness, One-class Clas-
sification, Adversarial Attacks, Adversarial Defense

1. INTRODUCTION

One of the most important drawbacks of the application of
deep neural networks in sensitive image/video classification
tasks is their limited robustness to adversarial attacks i.e.,
they are susceptible of being fooled by carefully crafted mi-
nor/humanly imperceptible perturbations. Adversarial attacks
are methods that calculate such perturbations by exploiting
the neural network backward pass to obtain gradient flow
from the activations of the final (or even some intermediate)
layer towards the input, using some loss function. When both
the model architecture and parameters are known to the ad-
versary, adversarial attacks are classified as white-box, while
black-box/transferability attacks are devised from different
host models or from the same architecture with different
parameters. Up-to-date, there is a wealth of literature de-
scribing different forms of adversarial attacks that can be
found in review papers [1, 2], where the reader is referred to.
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Adversarial defenses are methods designed to counter
adversarial attacks. The most prominent defenses so far
are based on adversarial training [3, 4], which in simpli-
fied terms, involves training a deep neural network with
adversarial examples of predefined noise margins, calculated
implicitly or explicitly. Such approaches have two important
disadvantages. First, they require a significantly added work-
flow during the model training process for generating and
training with adversarial attacks, second, the resulting mod-
els seem to have decreased classification accuracy in clean
data. On the contrary, another line of work [5, 6] achieves
robustness by manipulating the properties of the learned fea-
ture space, by exploiting distance-based optimization criteria
in the form of intermediate supervision functions. As a re-
sult, the learned representation has decreased within-class
dispersion and increased between-class separation in the in-
termediate feature spaces, while such approaches can be used
in conjunction with adversarial training, for added robustness
benefits.

This work builds on the latter direction and extends the
recently proposed Hyperspherical Class Prototypes (HCP)
method [6], by incorporating novel optimization terms in-
spired by the present state-of-the-art in deep neural network-
based one-class classification problems [7, 8, 9]. The pro-
posed method does not imply modifications to the deep neu-
ral architectures or the creation of adversarial examples for
training purposes. It is deployed in the form of alternative
loss functions that supervise the distribution of final and inter-
mediate layer activation values. It is shown that the proposed
method increases (or at least does not hinder) the classifica-
tion accuracy in clean examples, while it provides increased
robustness to adversarial attacks at the same time. The pro-
posed method is evaluated in black-box/transferability-based
adversarial attack settings in image classification tasks, as
this scenario excludes any potential robustness induced by
gradient obfuscation [10].

The rest of the paper is structured as follows. Section 2
overviews existing adversarila defenses. Section 3 analyti-
cally describes the components of the proposed method. Sec-
tion 4 describes the experiments conducted in order to evalu-
ate the effectiveness of the proposed method in image classi-
fication problems in publicly available datasets. Finally, con-
clusions are drawn in Section 5.



2. ADVERSARIAL DEFENSES

Adversarial defenses in classification systems aim to increase
their ability to withstand or overcome input perturbation, gen-
erated by adversarial attacks. Assuming a classification sys-
tem y = f(x;θ), where f is the model decision function
parametrized by θ, x are the model inputs and y is the model
prediction, robustness is quantified by determining its toler-
ance to perturbation ∥p∥ < ϵ per se, i.e., f(x;θ) = f(x +
p;θ). Here it should be noted that other definitions of ad-
versarial robustness has been proposed in the past, that focus
on altering the classification architecture, e.g., input filtering
[11], Generative methods [12]. Using the above definition of
robustness, we consider such methods irrelevant to the pro-
posed one. Up to date, the perturbation levels required to fool
neural network classifiers with adversarial attacks are very
low, i.e., perturbed images are almost indistinguishable from
the original ones to the human eye.

Our work focuses on adversarial defenses that modify
the training process of neural network, while maintaining the
same neural network architecture, only by trying to derive
in different parameters i.e., f(x; θ̃). The straightforward
approach to this end is to fine-tune or re-train the model by
exploiting adversarial samples, derived by employing one or
more adversarial attack methods [3, 4]. This process can be
applied during training by employing an additional objective
function inspired by adversarial attacks. For instance, the
Fast Gradient Sign [3] objectives have been employed for
adversarial training in the following manner:

LAT = λLCE(f(x;θ), y) + (1− λ)LCE(f(x̃;θ), y), (1)

where x̃ is an adversarial sample derived from x using the
Fast Gradient Sign method, LCE is the standard cross entropy
loss function and 0 ≤ λ ≤ 1 is hyperparameter that controls
the learning balance between clean and adversarial samples
(a value equal to 0.1 has been proposed showing good re-
sults [3]). A more sophisticated variant [4] generalized the
adversarial training approach by incorporating combinations
of general adversarial attacks and remains up to date, the most
efficient defense mechanism. The problem of adversarial ro-
bustness can also be treated from a domain adaptation point
of view [13]. That is, intermediate layer clean and adversar-
ial data representations are projected to a subspace by em-
ploying a Graph Neural Network [14], and the divergence
between them is minimized by computing an approximation
of the Wasserstein distance [15]. The main disadvantages of
these approaches are the introduced workflow for calculating
the adversarial examples, while at the same time, model clas-
sification accuracy in clean data is negatively affected. More-
over, due to the adversarial attack-specific nature, there is no
guarantee [16] that such defenses remain effective against dif-
ferent types of adversarial defense.

Ultimately, the effectiveness of adversarial defense meth-
ods that fall into the above category seem to rely on achieving

the production of as similar intermediate data representations
as possible for both clean and adversarial images belonging
to the same specific class. Recently proposed adversarial de-
fenses [5, 6] showed that incorporating distance-based opti-
mization criteria might achieve this goal, without requiring
re-training the model with adversarial examples. The sec-
ond advantage of such methods is that they might employ
adversarial training as a complementary step, providing in-
creased robustness to specific adversarial attacks. Inspired by
the Nearest Centroid Classifier [17] and combining ideas re-
lated to the triplet-loss [18] and center-loss [19] functions, the
classification model is encouraged to produce class data rep-
resentations that lie close to some learned class prototype vec-
tors, leading to increased robustness in adversarial attacks, by
only having minor degradation in classification accuracy for
clean samples. More specifically, recently proposed adver-
sarial defenses achieve this goal by learning class prototype
vectors in the intermediate hidden layer spaces, and minimize
the distances between the class data representations and the
prototype vectors. For instance, assuming gk(x;θ) to be the
k-th layer representation of some input x, and aj the j-th class
prototype vector, the Center Loss [19] criteria are optimized
as follows:

LCL = ∥gk(x;θ)− a
(k)
j ∥2, (2)

leading to more compact data representations for elements be-
longing to the j-th class. Here, it should be noted that this
specific function has some drawbacks related to the represen-
tation collapse problem as pointed out in recent work [8, 9];
that is, the loss might lead to trivial solutions after some opti-
mization steps. To counteract such effects, modified versions
of it have been proposed in one-class classification settings,
e.g., early stopping criteria [7, 8], as well as in adversarial ro-
bustness methods, including regularizers and contrastive loss
formulations [5, 6].

3. ROBUST ONE-CLASS CLASSIFICATION-BASED
TRAINING LOSS

The relevance of one-class classification methods to adver-
sarial robustness stems from the fact that adversarial samples
may be considered as outliers to the standard training data dis-
tribution. Moreover, in contrast to multi-class classifiers, one-
class classifiers are not obliged to output a specific class for
each of their input; if the input data fall outside all one-class
model distributions, they are considered as outliers, by defi-
nition. These facts have been demonstrated in [7, 20] where
one-class classifiers had been employed as adversarial sample
detectors. This work does not employ one-class classification
as adversarial sample detectors, but only as a vehicle to con-
struct the robust feature learning process.

The first objective of the proposed learning process is to
derive tight class boundaries in the deep representation space.
We adopt the HCP optimization problem [6] to this end.
That is, the optimal tight class boundaries are determined by



enclosing feature space class data representations with hy-
perspheres, and thereby minimize the respective hypersphere
volumes. This method alters the training procedure of a stan-
dard neural network architecture, by training in-parallel, an
additional layer that includes the prototype vector centers in
the feature space. The one-class classification criteria have
been formally extended to the multi-class classification case.
Let K be the set of layers on which the proposed objectives
will be applied to, where gk(x;θ) is k-th layer representation
of some input x. This method aims to learn hypersherical
prototypes in the k-th layer defined by the prototype matrices
A(k) ∈ RC×Lk , where Lk is the dimensionality of the k-th
layer, and radii R|K|×C that will act as one-class classifiers,
verifying data sample activations belonging to the j-th class.
To this end, the optimization problem for each sample xi is
the following:

min:
R,Ξ,A(k)

∑
k∈K

C∑
j=1

r2kj +
∑
k∈K

ck

N∑
i=1

ξki (3)

s.t.:
∑
k∈K

C∑
j=1

(
−yij

(
r2kj − ∥gk(xi;θ)− a

(k)
j ∥2

)
≤ ξki

)
,

ξki ≥ 0

where a
(k)
j is the prototype center for class j, yij = 1 if sam-

ple xi belongs to class j, or yij = −1, otherwise, ξki are
the slack variables and ck ≥ 0 is a hyperparameter that al-
lows training error (i.e., soft margin formulation) relaxing the
optimization constraints. The constraints of the above opti-
mization problem can be optimized by applying the following
hinge loss function in every layer selected in K:

LM =

C∑
j

max
(
ck,−yij

(
r2kj − ∥gk(xi;θ)− a

(k)
j ∥2

))
.

(4)
In the deep learning case, both the feature vectors and the
prototype vectors are trainable parameters, optimized by the
corresponding hinge loss function, thus we employ a value of
ck = 0.

If ∥gk(xi;θ)−a
(k)
j ∥2 < r2kj , then the data representation

gk(xi,θ) falls inside the j-th class hypersphere, while oth-
erwise, the item lies outside the j-th hypersphere. The loss
value is LM > 0 if and only if the one-class classifier deci-
sion function misclassifies xi, and it is equal to the distance of
the data representations in the feature space from the closest
hypersphere outer boundary. The compactness of the derived
class representations is proportional to the learned value of
the corresponding radius rkj .

The above function does not produce loss values for
marginal data items, i.e., items lying close to the hypersphere
boundaries. The HCP optimization procedure as defined in
[6] introduced geometrically inspired tricks to solve those
issues. This work considers different optimization terms,

inspired by well-established OCC methods. Specifically, we
employ a contrastive loss term for items belonging to the
same class. To this end, we consider a mini-batch of size
N is randomly sampled and the contrastive prediction task
is defined on pairs of data representations derived from the
mini-batch, resulting in 2N data points. For a pair of data rep-
resentations z1 = gk(x1,θ)− a

(k)
j , z2 = gk(x2−,θ)− a

(k)
j

belonging to the j-th same class, the loss function is defined
as follows:

LC(z1, z2) = −log

(
exp(zT1 z2/T)

exp(zT1 z2/T) +
∑2N

i=2 exp(z
T
1 zi/T)

)
(5)

where zi are the remainder mini batch representations and
T is the so-called temperature hyperparameter (a value of
T = 0.25 was used in all our experiments). The introduc-
tion of the above loss term promotes the derivation of simi-
lar representations in the feature space, without minimizing
their Euclidean distance. However, as pointed out in one-
class classification tasks [9], the LC might indirectly increase
the Euclidean distance, especially if it is very small, which
is something that is contradicting to adversarial robustness.
Therefore, we follow the same practice and also employ an
Angular loss term [9] to complement this contrastive loss:

LA(z1, z2) = ∥zT1 z2∥2. (6)

Finally, we formulate the proposed learning procedure
called Robust One-class Classification (ROCC) loss function
as the combination of the constraints of the abovementioned
optimization terms, as follows:

LROCC = LM + LC + LA, (7)

where relevant weighting hyperparameters can be considered
as well i.e., LROCC = µ1LM + µ2LP + µ3LNP , for adjust-
ing the contribution of each term to the overall loss. In our
experiments, weighting parameters were not employed (i.e.,
µ1 = µ2 = µ3 = 1), since it was found that the relevant loss
terms produce values that allow smooth optimization.

The proposed optimization terms are employed together
with standard Cross entropy loss in the final layer of a neural
network, and are advised to be separately implemented in in-
termediate layers. Determining where is the optimal place to
introduce the intermediate supervision constraints is an open
problem. Our selection is described in the experimental re-
sults. Nevertheless, it should be pointed out that a trade-off
between optimal classification accuracy and adversarial ro-
bustness should be considered; i.e., the closer to the input
the intermediate supervision step is employed with the pro-
posed optimization options, the more the adversarial robust-
ness, while the closer to the output, the better the classifica-
tion accuracy of the model.



Table 1: Classification accuracy of the competing methods.

Method/Dataset CIFAR-10 CIFAR-100 SVHN
Vanilla [21] 93.36 74.04 96.23
CL [19] 93.77 69.75 95.90
PCL [5] 92.30 68.19 95.37
HCP [6] 93.31 72.83 95.85
ROCC 94.46 73.62 96.31

4. EXPERIMENTS

This section describes the experiments conducted for evalu-
ating the performance of the proposed optimization scheme.
ResNet-101 [21] architecture was employed as the baseline
architecture, which is typically employed in image classifica-
tion problems and produces close to state-of-the-art results.
In terms of datasets, we have employed the publicly available
CIFAR-10, CIFAR-100 [22] and SVHN [23] datasets which
contain 10, 100 and 10 classes, respectively. The classifica-
tion models were pretrained for 200 epochs using softmax-
only and fine-tuned for an additional 400 epochs using the
loss function proposed by the different adversarial defense
methods. Along with the proposed method (ROCC), we have
also employed the Hyperspherical Class Prototype method
(HCP), the PCL adversarial defense [5] (PCL) and the closely
related center loss function [19] (CL). Hereafter, we refer to
the competing methods with their respective acronyms. The
loss functions for the proposed ROCC method, the HCP, PCL
and CL and were applied in the same ResNet layers (i.e., the
256-dimensional layer-3 and 1024-dimensional final layer).
All experiments were implemented in Pytorch 1.6.0.

In our first set of experiments, we compare the classifica-
tion performance of the competing methods in the employed
datasets. Since all datasets are well balanced in terms of con-
tained classes and contain many test samples, we compare the
competing methods in terms of classification accuracy. Table
1 reports the obtained classification accuracy in the respective
datasets. As can be observed, the proposed method outper-
forms all other adversarial robustness methods in every case
while it even outperformed the vanilla softmax optimization
function in two cases. This can be attributed to the fact that
the proposed optimization functions only consider how to ob-
tain better representations for each class, thus being compati-
ble with any standard classification loss function.

Table 2: Robustness (classification accuracy) in PGD black-
box attack, by using the Vanilla ResNet architecture as attack
model.

Method/Dataset CIFAR-10 CIFAR-100 SVHN
CL [19] 57.60 40.40 86.59
PCL [5] 61.61 42.55 84.94
HCP [6] 60.67 46.92 86.50
ROCC 65.09 44.97 86.92

In our second set of experiments, we evaluate the Robust-
ness of the competing methods to the iterative projected gra-
dient descent (PGD) [3] attack, with a corresponding param-
eter e = 0.1. To this end, we employed the Vanilla ResNet
architecture for generating adversarial samples, and inferred
their labels by the respective robust models trained using the
competing methods. Here it should be noted that this attack
is the strongest form of transferability attacks, since the only
difference between the attack and target architecture are the
network parameters. The results are reported in Table 2. As
can be observed, in the 10-class datasets (CIFAR-10, SVHN)
the proposed ROCC method outperformed the competition,
except the CIFAR-100 case.

Table 3: Cross-method black-box PGD attacks in CIFAR-10.

Attack Method/Robust Method CL [19] PCL [5] HCP [6] ROCC
CL [19] - 73.46 75.51 80.53
PCL [5] 69.83 - 75.21 78.90
HCP [6] 78.17 79.47 - 83.34
ROCC 64.01 65.16 67.23 -

Finally, in our third set of experiments, we employed the
competing architectures to attack each other, as ”host” and
target architectures. We again used the PGD attack with e =
0.1. Here, it should be expected that the most robust archi-
tectures are supposed to a) remain robust in transferability at-
tacks and b) create strong adversarial samples that are able
to fool the other defenses. As can be observed, the proposed
ROCC method produces the strongest transferability attacks
among the competition (red), while at the same time, it re-
mains the most robust in the opposite scenario (bold).

5. CONCLUSION

This work described a method for increasing the robustness
of deep neural network-based image classification systems
to adversarial attacks, by exploiting and re-formulating one-
class classification inspired optimization criteria. Experimen-
tal results denoted that the proposed optimization scheme
increases adversarial robustness in black-box adversarial at-
tacks without negative effects in classification accuracy. As
this work found an interesting link between one-class classi-
fication and adversarial robustness, future work could include
studying the opposite direction; i.e., adapting adversarial
robustness methods for training one-class classification prob-
lems. In addition, the proposed criteria should also be studied
in other forms of computer vision problems, e.g., regression-
based problems such as object detection/tracking.
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