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ABSTRACT

Fast semantic image segmentation is crucial for autonomous
systems, as it allows an autonomous system (e.g., self-driving
car, drone, etc.) to interpret its environment on-the-fly and de-
cide on necessary actions by exploiting dense semantic maps.
The speed of semantic segmentation on embedded computa-
tional hardware is as important as its accuracy. Thus, this
paper proposes a novel framework for semantic image seg-
mentation that is both fast and accurate. It augments exist-
ing real-time semantic image segmentation architectures by
an auxiliary, parallel neural branch that is tasked to predict se-
mantic maps in an alternative manner by utilizing Generative
Adversarial Networks (GANs). Additional attention-based
neural synapses linking the two branches allow information
to flow between them during both the training and the infer-
ence stage. Extensive experiments on three public datasets for
autonomous driving and for aerial-perspective image analysis
indicate non-negligible gains in segmentation accuracy, with-
out compromises on inference speed.

Index Terms— Semantic image segmentation, multi-task
learning, Convolutional Neural Networks, autonomous sys-
tems.

1. INTRODUCTION
Semantic image segmentation consists in predicting dense se-
mantic maps, where a class label is assigned to each pixel of
the input image. It is one of the most important tasks for au-
tonomous systems perception, as it allows them to understand
their environment using simple RGB cameras and adjust their
actions accordingly. Recent technological advances (e.g.,
self-driving cars, autonomous drones) have highlighted the
importance of real-time semantic image segmentation, since
laggy/delayed semantic map estimation may potentially have
catastrophic results. Moreover, these algorithms are typically
executed on embedded computing boards to avoid potential
delays due to connectivity issues between the autonomous
system and the cloud or a ground station. However, fast ex-
ecution on embedded computers with limited computational
capabilities often compromises semantic map estimation ac-
curacy [1].
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Several recent semantic image segmentation methods
based on Deep Neural Networks (DNNs) have attempted to
bridge the gap between fast execution and estimation accu-
racy [2, 3, 4, 5]. For example, [2] utilized a lightweight Con-
volutional Neural Network (CNN) architecture to process the
input image in multiple resolutions and predict accurate se-
mantic maps in real-time. In a similar manner, a two-stream
CNN with lightweight architecture was proposed in [3] to
capture both semantic context and spatial details in the input
image. However, certain important input data patterns may
be missed by these lightweight network architectures which,
if successfully captured, could further increase semantic map
estimation accuracy.

To this end, this paper introduces a novel semantic image
segmentation framework that increases semantic map estima-
tion accuracy without hurting execution speed. An innovative
deep neural architecture is proposed that augments typical se-
mantic image segmentation network architectures by adding
an auxiliary, parallel neural branch. Essentially, this extracts
from the input data semantic information that is partially com-
plementary to that captured by the main image segmentation
branch and passes it to the latter one, thus enriching its se-
mantic features. To achieve this, the auxiliary neural branch is
trained under the Generative Adversarial Network (GAN) [6]
framework, so as to recreate RGB images that resemble the
ground-truth segmentation maps. In contrast to the typical
supervised objective used to train the segmentation branch,
GAN training is facilitated by a Discriminator classifier that
validates the outputs of the auxiliary neural branch and pro-
vides it with indirect supervision signals through the adver-
sarial loss. Thus, the auxiliary branch (acting as a Generator
in GAN terminology) learns to capture semantic information
that may have been missed by the main segmentation branch.
Information flow between the auxiliary and the segmentation
branches is realized through attention-based neural synapses
that are placed between them.

Overall, the novel contributions of the proposed architec-
ture are: i) the auxiliary neural branch, and ii) the attention-
based synapses linking it with the main semantic segmenta-
tion branch. They are both designed to be lightweight and,
therefore, to have negligible effect to the overall execution
speed during inference. This was experimentally confirmed
on three public datasets: two for autonomous driving and one
for aerial-perspective semantic image segmentation.



Fig. 1. The proposed deep neural architecture.

2. FAST SEMANTIC IMAGE SEGMENTATION

Semantic image segmentation is a heavily researched topic.
Recent methods achieve remarkable performance with the
help of complex deep neural architectures [7, 8]. In this
work, however, only real-time image segmentation is con-
sidered, due to its importance in autonomous systems. Real-
time image segmentation methods aim to accomplish both
increased segmentation accuracy and fast inference, typically
by utilizing lightweight neural architectures [2, 3, 4, 5, 9, 10].

Having this goal in mind, an image cascade network
was proposed in [2], which processed the input image in
multiple resolutions and effectively fused the encoded multi-
resolution information to obtain accurate high-resolution
semantic maps. Similarly, [10] employed lightweight vari-
ants of general purpose network architectures (e.g., ResNet18
[11]) to process the input image in two different resolutions.
Then, by simply upsampling and fusing outputs of intermedi-
ate layers, the network was able to predict accurate semantic
maps while retaining a high execution speed. Similarly, a
lightweight two-branch neural architecture for image seg-
mentation was proposed in [3]. The first branch consisted of
a shallow CNN in order to encode the low-level information
in the input image, while the second one captured high-level
context. The feature maps of the two branches were subse-
quently combined using a fusing module to produce the final
semantic maps. This approach was extended in [5] by intro-
ducing more efficient semantic image segmentation network
modules for the two-branch network architecture, along with
an improved feature aggregation layer for information fusion.
Finally, [1] proposed a variation of the two-branch network
architecture approaches, which greatly increased execution
speed. However, this increase in inference speed came at the
expense of segmentation map estimation accuracy.

The proposed framework follows an entirely different ap-
proach which is explained in the following Section. Thus,
segmentation accuracy is increased without compromises in
real-time execution speed.

3. AUGMENTING SEMANTIC IMAGE
SEGMENTATION NETWORKS

This paper presents a novel deep neural architecture for fast
and accurate semantic image segmentation. It introduces an
auxiliary neural branch to augment the main semantic image
segmentation branch and provide it with additional semantic
information, in order to increase its estimation accuracy. This
information is able to flow from the auxiliary branch to the
main one, during both the training and the inference stage,
through a novel type of neural synapses that are placed be-
tween the two branches. Since fast execution is essential,
both novel components of the proposed method (i.e., auxil-
iary neural branch, neural synapses) are carefully designed to
maintain fast inference. The overall architecture can be seen
in Fig. 1.

Let X ∈ RM×N×3 be an RGB input image and Y ∈
RM×N×C be the corresponding ground-truth semantic map
that must be estimated by the semantic image segmentation
branch, where C is the total number of semantic classes. In
order to ensure that the auxiliary branch captures information
that is both useful and complementary to the one encoded by
the main semantic image segmentation branch, it is tasked
to reconstruct an RGB representation of the ground-truth se-
mantic map, Ỹ ∈ RM×N×3, where each semantic class is en-
coded with a different RGB color. This is achieved by training
the auxiliary neural branch under the conditional GAN [12]
framework, where an additional Discriminator network is em-
ployed to validate the outputs of the auxiliary branch. That
is, the auxiliary branch aims to output “realistic” RGB repre-
sentations of the ground-truth semantic maps that can not be
identified by the Discriminator network, which is adversari-
ally trained to detect the “fake” RGB semantic map represen-
tations that are produced by the auxiliary branch. Therefore,
the auxiliary branch tries to minimize the conditional GAN
objective LcGAN , while the Discriminator aims to maximize
it, where:

LcGAN = E(X,Ỹ)[logD(X, Ỹ)]+

EX[log(1−D(X, G(X))], (1)

G, D are the auxiliary neural branch and the Discriminator
network, respectively.



Along with the conditional GAN objective, two additional
loss functions are utilized, in order to balance the strength
of the two subnetworks during the adversarial training pro-
cess and thus, ensure a smooth training of the auxiliary neural
branch [13]. The utilized costs are the similarity loss func-
tion Lsim = ∥Ỹ − G(X)∥1, which is used to help the aux-
iliary branch produce “realistic” outputs, and the multi-label
classification loss function Locc that is used to strengthen the
Discriminator network by tasking it to predict semantic class
occurrence in Ỹ. Therefore, the overall objective that is uti-
lized to train the auxiliary neural branch is given by:

Laux = min
G

max
D

LcGAN + λ1Lsim + λ2Locc, (2)

where λ1, λ2 are hyperparameters used to scale the contribu-
tion of Lsim and Locc in the total loss.

Information captured by the auxiliary neural branch must
be able to flow to the main semantic image segmentation
branch during inference, in order to enrich its features and
enable it to predict accurate semantic maps. However, any in-
formation exchange of this nature requires special treatment,
since in the majority of cases it will only partially be truly
useful for semantic segmentation; a significant portion may
essentially act as noise, thus eventually harming performance.
Therefore, the two branches are interlinked in the proposed
neural architecture using attention-based synapses. These
allow the semantic image segmentation branch to actively
query the auxiliary branch about the exchanged information.
They rely on the dot-product attention mechanism [14], which
enables the segmentation branch to select features from the
auxiliary branch based on the cross-attention map, calculated
between their feature maps. The exchanged information CA
is then computed as follows:

CA = softmax(M1M
T
2 )M2, (3)

where M1, M2 are feature maps of the semantic image seg-
mentation and the auxiliary networks, respectively, after they
have been transformed by a simple linear layer.

Our implementation of the proposed framework adopts
the real-time network architecture of [3] for the main seman-
tic image segmentation branch. However, any real-time se-
mantic image segmentation network architecture could be uti-
lized in its place. The employed semantic image segmentor
calculates the final semantic maps by fusing the outputs of
two parallel neural pathways, which act on the input image.
It is trained in a fully supervised manner using the following
objective [3]:

Lmain = Lp + α

2∑
i=1

Lai
, (4)

where Lp is the principal loss used to supervise the entire seg-
mentation branch and Lai

, i = 1, 2, are auxiliary loss terms

for deep supervision [15]. Both Lp and Lai
are typical Soft-

max loss functions, while α is used to scale the contribution
of the deep supervision loss terms.

All building blocks of the proposed method are combined
together to form an efficient network architecture for seman-
tic image segmentation. The auxiliary neural branch consists
of three convolution-BatchNorm-ReLu blocks [16] and two
deconvolution-BatchNorm-ReLu ones, while the Discrimina-
tor network is a PatchGAN [17] classifier extended by a sim-
ple classification layer for the semantic class occurrence pre-
diction task. The unified network architecture of the proposed
method is trained using a multitask loss function that consid-
ers the objectives of both the auxiliary and the main segmen-
tation branch:

L = βLmain + (1− β)Laux, (5)

where β is a hyperparameter for adjusting focus between the
two tasks. The Discriminator network and the final layers of
the auxiliary neural branch are only necessary during training
and, therefore, are simply discarded afterwards, in order to
avoid additional computational costs during inference. This
is depicted in Fig. 1.

4. EXPERIMENTAL EVALUATION
The proposed framework was evaluated for a self-driving car
scenario using the Cityscapes [18] and Cambridge-driving
Labeled Video Database (CamVid) [19] datasets and for an
autonomous Unmanned Aerial Vehicle (UAV)/drone flight
scenario using the DroneCrowd [20] dataset. Cityscapes con-
sists of 5000 finely annotated, high-resolution (1024 × 2048
pixels) images of urban street scenes, out of which 2975, 500
and 1525 are for training, validation and testing purposes,
respectively. CamVid is a smaller dataset, consisting of 701
images with a resolution of 720 × 960 pixels. The total im-
age set is split into three groups: 367 for training, 101 for
validation and 233 for testing. DroneCrowd consists of 1790
images depicting human crowds in a wide range of scenes.
These images are annotated with their ground-truth segmen-
tation maps that represent crowd regions and are split in two
sets, containing 1199 training and 591 test images. The eval-
uation metrics in all cases were the class Intersection over
Union (IoU) and the inference speed in frames-per-second
(FPS).

For all datasets, the training data were augmented online
using random scaling in the range of [0.5, 2] as well as ran-
dom horizontal flipping. The unified network architecture of
the proposed framework was trained for both objectives for
120 epochs using the SGD optimizer with a momentum of
0.9, weight decay of 0.0005, batch size equal to 8 and initial
learning rate equal to 0.001, which is reduced in each epoch
using the “poly” learning rate strategy with the power of 0.9.
The Discriminator network was trained using the Adam op-
timizer [21] with a constant learning rate of 0.0002. β was



Table 1. Evaluation on Cityscapes [18] validation and test
sets in terms of mIoU and inference time in FPS. Backbone
indicates the backbone CNNs pretrained on ImageNet [22].

Backbone Input size
mIoU (%)

FPS
val test

ESPNetV2 [23] ESPNetV2 512× 1024 66.40 66.20 —
ERFNet [24] — 512× 1024 70.00 68.00 41.7
Fast-SCNN [1] — 1024× 2048 68.60 68.00 123.5
DFANet A [4] Xception A 1024× 1024 — 71.30 100.0
DABNet [25] — 1024× 2048 — 70.10 27.7
GUN [26] DRN-D-22 512× 1024 69.60 70.40 33.3
SwiftNet [10] ResNet-18 1024× 2048 75.40 75.50 39.9
BiSeNet [3] ResNet-18 768× 1536 74.80 74.70 65.5
Proposed ResNet-18 768× 1536 76.03 76.14 52.9

Table 2. Evaluation on the CamVid [19] test set. Input size in
all cases is 720× 960. Backbone indicates whether a specific
CNN is used as the backbone network and Pretrain denotes
the dataset used for pretraining it.

Backbone Pretrain mIoU (%) FPS
DFANet A [4] Xception A ImageNet 64.70 120.0
ICNet [2] PSPNet-50 ImageNet 67.10 27.8
SwiftNet [10] ResNet-18 ImageNet 72.58 —
BiSeNet [3] ResNet-18 ImageNet 68.70 89.4
Proposed ResNet-18 ImageNet 73.97 68.2
BiSeNet [3] ResNet-18 Cityscapes 75.09 89.4
Proposed ResNet-18 Cityscapes 76.92 68.2

empirically set to 0.7, balancing the two objectives in favor of
semantic image segmentation, while α was set to 1. λ1 and λ2

were set to 10 and 0.1, respectively, in order to ensure smooth
training of the auxiliary neural branch.

First, the proposed framework was evaluated on the
Cityscapes validation and test sets. Comparison results are
depicted in Table 1, along with the backbone CNN, the input
image resolution and inference speed in FPS. Note that in-
ference speed measurements in this case are conducted using
a single Nvidia GTX 1080 Ti GPU. The results show that
the proposed framework outperforms all competing meth-
ods in terms of mIoU. Specifically, when compared to the
best-performing competitors, the proposed framework out-
performs both the baseline BiSeNet and SwiftNet by a margin
up to 1.4% and 0.6%, respectively. In the latter case, this
is despite the fact that SwiftNet uses higher resolution in-
puts, which also impacts its execution speed, rendering it
slower that the proposed framework by 13 FPS. Moreover,
the comparison between the proposed method and the base-
line BiSeNet shows that the additional auxiliary neural branch
and neural synapses do not hurt its real-time execution.

Evaluation results on the CamVid test set are reported in
Table 2. As it can be seen, the proposed framework improves
mIoU by 5.2% and 1.4% when compared to the best perform-
ing competing methods BiSeNet and SwiftNet, respectively.
Furthermore, the impact of pretraining the entire model (in-
stead of the backbone feature extraction CNN only) is also
investigated, using the Cityscapes dataset during pretraining.

Table 3. Crowd detection performance in IoU of both crowd
and n-crowd classes on the DroneCrowd [20] dataset.

640 × 360 1280 × 720
crowd n-crowd FPS crowd n-crowd FPS

FCNt [27]⋆ 49.5 92.2 10.2 61.8 95.0 4.4
FCNp [27]† 50.6 92.6 7.9 64.9 95.3 3.2

CSRNet [28]⋆ 78.6 97.9 5.8 79.4 97.9 1.5
BiSeNet [3] 80.6 98.0 32.5 83.5 98.1 28.0
Proposed 86.4 98.8 22.3 86.9 99.0 20.1

⋆ Output thresholding was applied to obtain semantic maps.
† Output thresholding and Gaussian blur was applied to obtain semantic

maps.

This further increases the accuracy of the proposed frame-
work, which still outperforms the BiSeNet baseline.

Finally, comparison results on DroneCrowd dataset are
presented in Table 3. The IoU for both crowd and n-crowd
classes of all models are reported in two different input res-
olutions, along with inference speed in FPS. Inference speed
is measured using a Nvidia Jetson Xavier computing board,
in order to simulate an embedded execution scenario. When
compared to FCNt and FCNp, the proposed framework signif-
icantly increased crowd class IoU in both input resolutions.
Comparison against CSRNet and BiSeNet also shows that
the proposed framework increased crowd class IoU by 7.8%
and 5.8%, respectively. In addition, the proposed framework
manages to detect the n-crowd class more efficiently. Infer-
ence speed results show the the proposed framework is much
faster that FCNt, FCNp and CSRNet. When compared to the
BiSeNet baseline, the proposed network architecture is slower
by 10.2 FPS in the worst-case scenario. However, this is not
critical, as inference speed remains near-real-time.

5. CONCLUSIONS
This paper presented a novel semantic image segmentation
framework that achieves both increased test accuracy and fast
inference. The proposed framework can augment any real-
time semantic image segmentation network by an auxiliary,
parallel neural branch, whose objective is to recreate RGB
representations of the semantic maps. This alternative seman-
tic map prediction approach enables it to capture complemen-
tary semantic information and pass it to the main segmen-
tation branch, in order to enhance its features. Information
exchange is realized through a set of novel attention-based
neural synapses that are added between the two branches and
allow the main one to actively select only the useful portion
of the information encoded by the auxiliary branch. Exper-
iments on public datasets (concerning autonomous driving
and drone-perspective visual analysis) and extensive compar-
isons against competing methods showed that the proposed
framework indeed increases semantic map estimation accu-
racy, without compromising fast execution. This was con-
firmed both on a desktop GPU and on an embedded comput-
ing board suitable for autonomous systems.
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