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ABSTRACT

This paper presents a novel framework for skeleton-based Hu-
man Action Recognition (HAR) based on Graph Convolution
Networks (GCNs). The proposed framework aims to increase
human action recognition performance of GCN-based meth-
ods by incorporating a missing-joint-handling pre-processing
step and a novel adjacency matrix construction method in
a single human action recognition pipeline. The missing-
joint-handling pre-processing step is utilized to infer missing
data in the input sequence, which may occur due to imperfect
skeleton extraction, based on imputation methods. The novel
adjacency matrix construction method is executed offline to
compute an improved weighted adjacency matrix specifically
designed for HAR, which is utilized in every layer of the em-
ployed GCN. Moreover, both the pre-processing step and the
adjacency construction method can be utilized along with any
GCN architecture, allowing any GCN-based HAR method to
be employed in the proposed framework. Experimental eval-
uation on two public datasets indicate favorable human action
classification scores compared to the employed baseline and
all competing methods both for 2D and 3D skeleton-based hu-
man action recognition, while using a GCN architecture with
less learnable parameters.

Index Terms— Skeleton-based human action recogni-
tion, Graph Convolutional Networks, graph node clustering,
feature imputation.

1. INTRODUCTION

Human Action Recognition (HAR) objective is to identify hu-
man actions that are depicted in videos [1, 2]. In general,
HAR research involves enhancing monitoring processes from
environmental, spatial and temporal data. However, due to
background variation and illumination changes, human ac-
tions are typically represented by skeleton data sequences that
derive by extracting the 2D or 3D human skeleton spatial co-
ordinates from video frames using 2D/3D human pose estima-
tion methods [3, 4]. Skeleton-based HAR methods [5, 6, 7, 8]
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analyze these sequences to classify each sequence to the cor-
responding action that is performed in that sequence.

However, skeleton-based HAR also faces some chal-
lenges that hinder skeleton-based HAR methods, such as
camera viewpoint variations, potential body parts occlusions
and noisy human skeleton data. Many of these issues can
be alleviated by representing actions as graphs that change
over time. This can be achieved by representing a human
skeleton as a graph: the human skeleton joints serve as graph
nodes and together with edges connecting those nodes, they
constitute the human skeleton graph.

Graph Convolution Networks (GCNs) [9] were success-
fully utilized to process human skeleton graphs for human
action recognition [5, 10, 11, 12]. One example is [5], which
proposed a Spatio-Temporal Graph Convolutional Network
(ST-GCN) that acts on human graph sequences to compute
spatio-temporal features that enable human action recogni-
tion. An important component of such GCN-based HAR
methods is the adjacency matrix, which encodes the human
graph structure and is utilized in each graph convolutional
block of GCNs. Different ways of constructing the adja-
cency matrix can have a great impact on GCN-based HAR
performance [12]. Moreover, another issue that may cause
the degradation of GCN-based and skeleton-based HAR per-
formance is the fact that some skeleton joints may be often
missing from the 2D/3D skeletons (e.g., due to occlusions or
imperfect skeleton extraction from the 2D/3D human pose es-
timation methods) that are used to construct the input human
graph sequences.

In this direction, a GCN-based human action recognition
framework is proposed, which aims to increase GCN-based
HAR performance by addressing both the missing joints and
the adjacency matrix construction problems. More specifi-
cally, the missing joints problem is addressed by introduc-
ing a pre-processing step to effectively infer missing data in
the 2D/3D skeletons, which are used to construct the human
graphs, based on feature imputation (FI) algorithms. Further-
more, a novel adjacency matrix construction method is uti-
lized to construct an improved, weighted adjacency matrix for
GCN-based HAR which considers the human skeleton/graph
as a set of joint/node clusters. This is inspired from the fact
that a human action can be modeled from the actions of small
groups/clusters (e.g., arms, legs), each of which has a dif-



ferent contribution to the complete action. Finally, both the
missing-joint-handling pre-processing step and the adjacency
matrix construction method are compatible with any GCN ar-
chitecture, allowing any GCN-based HAR method to be uti-
lized in the proposed framework.

The superiority of the proposed framework is verified by
conducting experiments both on 2D and 3D skeleton-based
HAR datasets, demonstrating increased performance com-
pared to the baseline and all competing HAR methods, in
both cases.

2. SKELETON-BASED HUMAN ACTION
RECOGNITION

In skeleton-based Human Action Recognition, deep learning
approaches [5, 6] outperformed methods that used hand-
crafted features to model the natural connections between the
skeleton graph nodes [13, 14]. Early deep learning methods
represented skeletons as 2D or 3D Euclidean grids, which
were fed into Recurrent Neural Networks (RNNs) [15, 16]
or Convolutional Neural Networks (CNNs) [17, 18]. For
example, DD-Net [6] utilized 2D human skeleton data in a
lightweight CNN architecture to encode slow and fast body
joint movements in an action and compute pairwise body joint
distances, which were exploited to improve action recognition
performance.

With the rise of Graph Convolutional Networks (GCNs)
[9], 2D or 3D skeletons could also be represented as graphs
and thus, perform the operation of convolution on non-
Euclidean grids, resulting in more flexible and efficient
models [5, 10, 11, 12]. For example, the human skeleton
was represented as a directed acyclic graph in [12], which
was subsequently utilized in a Directed Graph Neural Net-
work (DGNN) to compute features for action recognition.
Spatio-Temporal Graph Convolutional Network (ST-GCN)
[5] utilized GCNs to encode both spatial and temporal in-
formation from human graph sequences. More specifically,
its input consists of two parts: the adjacency matrix and the
human graph sequence that represents a human action. The
human graphs in the sequence are connected via undirected
and unweighted edges that bridge the same nodes between
consecutive human graphs. As a result, the entire action is
represented by one spatio-temporal graph. The input action
graph is then passed through a number of spatio-temporal
graph convolutional layers to obtain spatio-temporal human
action features. These features are finally utilized by a simple
classifier to predict human action classes.

In an orthogonal research direction, the proposed HAR
framework introduces a missing-joint-handling pre-processing
step and an adjacency matrix construction method to comple-
ment existing GCN-based HAR methods, towards increasing
their performance.

3. EFFICIENT GCN-BASED HAR RECOGNITION

This work introduces an efficient framework that aims to im-
prove GCN-based human action recognition. The proposed
framework consists of three building blocks: the missing-
joint-handling pre-processing step, the proposed adjacency
matrix construction method and the human action classifica-
tion/recognition GCN.

Let G(V, E) be a human graph, where V is a set of K
body joints/nodes and E is a set of M bones/edges. Also let
S ∈ RN×K×D be a tensor representing an input human graph
sequence, where N is the number of human graphs compris-
ing the sequence, K is the number of the human graph nodes
(body joints) andD is the graph nodes’ feature vector (spatial
coordinates) dimensionality (D = 2 and D = 3 in the 2D
and 3D skeleton cases, respectively). The pre-processing step
is applied to the input skeleton/graph sequence S to fill any
missing data before given to the employed GCN for action
classification/recognition. In addition, an improved weighted
adjacency matrix is calculated offline using the proposed ad-
jacency matrix construction method and is subsequently uti-
lized in every graph convolution block of the employed GCN,
which can be any human action recognition GCN from the
literature.

3.1. Missing Joint Handling with Feature Imputation

In order to obtain the input sequence S that is fed to the GCN
for human action recognition/classification, the 2D/3D human
skeletons X ∈ RK×D need to be extracted using sensors or
human pose estimation methods [3, 4]. This skeleton extrac-
tion process often leads to missing data (body joint 2D/3D
coordinates) in the input sequence, e.g., due to body joint oc-
clusions.

Missing joints are typically handled by setting their re-
spective coordinates to zero. However, this is not an opti-
mal approach, since these joints may be crucial for recogniz-
ing specific actions. In contrast, the proposed method han-
dles missing joints by utilizing a pre-processing step that per-
forms feature imputation (FI). That is, feature imputation is
performed by separately processing each input sequence S,
which may contain human graphs with missing node features
(body joint spatial coordinates), using the Multivariate Impu-
tation by Chained Equations (MICE) [19] algorithm.

Initially, all missing graph node features in the input se-
quence are labeled as “missing” and are replaced with the
mean feature of this specific node in the sequence. After this
initialization, each human graph that contains node features
labeled as “missing” is processed sequentially. For each node
feature labeled as “missing” in the human graph that is cur-
rently being processed, a linear regression model is first fitted
by utilizing all remaining human graphs in the sequence. The
fitted model is subsequently used to infer the feature values
for this specific node. This process is repeated for all human



Fig. 1. Louvain [20] output at a lower hierarchical level. Dif-
ferent colors indicate different node clusters.

graphs with missing node features in the sequence, until all
node features labeled as “missing” are inferred.

3.2. Weighted Adjacency Matrix Construction Method

Defining the adjacency matrix is an important step of GCN-
based methods. The proposed adjacency matrix construction
method aims to construct an optimal adjacency matrix for
HAR, based on the idea that human actions can be more ef-
ficiently modeled from the movements of many small body
joint clusters.

In this direction, the first step is to define the body joint
clusters. Given that the node features of the human graph G
are the 2D/3D spatial coordinates of the corresponding body
joints, node/body joint clustering is performed by utilizing
the human graph in a node clustering algorithm. Specifically,
the Louvain [20] algorithm is employed, which can find sim-
ilar groups of nodes in a hierarchical manner, offering multi-
ple node clustering options. For example, a higher clustering
level defines two clusters on the human graph that correspond
to the upper and lower body, while a lower clustering level
results in groups of nodes that corresponds to human body
parts (e.g., arms, legs, etc.) as illustrated in Fig. 1. In the pro-
posed adjacency matrix construction method the lower clus-
tering level was selected, as it can provide richer information
for action recognition compared to the higher clustering level.
As a result, five graph node clusters were selected, represent-
ing left/right hand, left/right leg and body, respectively.

After the definition of the node clusters, the improved
weighted adjacency matrix Aw ∈ RK×K is constructed as
follows: a group of weights are set to the edges connecting
nodes that belong to the same node cluster, while a separate
group of weights are set to edges connecting nodes that be-
long to different node clusters. The improved weighted adja-
cency matrix is subsequently equipped with self-connections,
Ãw = Aw + I, before being normalized using:

Âw = D̃
−1/2

ÃwD̃
−1/2

, (1)

where D̃ ∈ RK×K is the diagonal degree matrix of Ãw,
D̃i,i =

∑
j Ãwi,j

.

Fig. 2. The proposed human action recognition framework.

3.3. Human Action Recognition

The improved weighted adjacency matrix Âw obtained by the
proposed adjacency matrix construction method, along with
the human graph sequence S are given to the employed GCN
for action classification/recognition. The employed GCN ar-
chitecture is the one used in [5], however any GCN architec-
ture could be utilized in its place. The general scheme of
the proposed framework is shown in Figure 2. Moreover,
since different node/body joints clusters may have different
levels of importance for specific actions, a learnable mask
M ∈ RK×K is also used in each layer of the employed GCN
to scale the contribution of each node feature. If Xl

t represents
the human graph at time t and GCN layer l, each GCN layer
performs spatio-temporal graph convolution, formulated as:

Xl+1
t = σ

( t+µ∑
τ=t−µ

Wl
t−τσ(Ml ⊗ ÂwXl

τW
l
s)

)
, (2)

where Wl
s is the spatial convolution kernel and Wl

t is the
temporal convolution kernel of length 2µ + 1 at layer l,
while σ is a non-linear activation function and ⊗ denotes
the Hadamard product. Moreover, it can be easily seen that
X0 = S. Before passing Xl+1 to the next GCN layer, a
residual connection is also added. Therefore, the input of the
(l+2)th layer equals to Xl+1+f(Xl), where f is represented
by a single convolutional layer.

Finally, after a specified number of GCN layers, graph
classification is performed using a simple SoftMax classifier,
which outputs the final action classes.

4. EXPERIMENTAL EVALUATION

The employed GCN architecture consists of three GCN lay-
ers, resulting in a very lightweight architecture with 0.53M
learnable parameters. The number of filters of the first, sec-
ond and third layer is 90, 100 and 180, respectively. The tem-
poral kernel size was set to 9 in all cases. Dropout with 0.5
probability is also added after each GCN layer to avoid over-
fitting. The strides of the first and second temporal convolu-
tion layers was set to 1, while for the last one it was set to



Table 1. Evaluation using the 1st protocol of JHMDB [22] dataset.
Method FI #Parameters Acc (%)
ST-GCN [5] no 0.60M 65.45
ST-GCN [5] yes 0.60M 66.21
DD-Net [6] — 1.82M 77.16
Proposed no 0.53M 77.05
Proposed yes 0.53M 79.89

2. The non-linear activation function σ is the rectified lin-
ear unit (ReLU). The model was trained using the Adam [21]
optimizer. Note that all experiments were conducted using a
GeForce RTX 2060 graphics card.

The proposed framework was evaluated on two skeleton-
based HAR datasets: a) the Joint-annotated Human Motion
Data Base (JHMDB) dataset [22] and b) the MSR Action 3D
dataset [23]. JHMDB dataset consists of 928 video clips of 21
human actions, where each video frame is annotated with the
corresponding 2D human skeletons. Two evaluation protocols
were defined depending on the availability of the 2D skeleton
sequences during the inference stage. In the first protocol, the
2D skeleton sequence that contains the full action (from the
start till the end) is available before inference, while in the
second protocol only a part of the action takes place in the
available sequence. Note that in both cases, the GCN mod-
els are trained with 2D skeleton sequences that contain full
actions.

The MSR Action 3D dataset contains 20 human actions
performed by 10 different subjects. The valid number of
skeleton data sequence is 557. The available 3D skeleton
annotations are used to evaluate the proposed framework also
on 3D skeleton-based HAR. The dataset is divided into 3 sub-
sets (AS1, AS2, AS3), each one containing 8 of the 20 human
actions [23, 24]. The training and the test set splits contain
the 1/3 and 2/3 of the total number of actions, respectively.
Both sets include actions performed by all 10 subjects.

The proposed method was compared against the baseline
ST-GCN [5] and the state-of-the-art DD-Net [6] using the first
evaluation protocol of JHMDB dataset. The comparison re-
sults presented in Table 1 show that the proposed method out-
performed both ST-GCN and DD-Net, improving HAR accu-
racy up to 14% and 2.7%, respectively, despite the fact that
the GCN architecture employed in the proposed framework
has less learnable parameters. Furthermore, it is evident that
the effect of feature imputation (FI) is positive both for the
proposed method, as well as for ST-GCN baseline.

The proposed method was also evaluated using the sec-
ond evaluation protocol of JHMDB dataset, which simulates
a real-world scenario where 2D skeletons are obtained by pro-
cessing an RGB camera feed using real-time 2D human pose
estimation methods [3]. This scenario was implemented using
a sliding window for partitioning the 2D skeleton sequences.
Two cases were explored, having 0% and 30% overlapping
between consecutive sliding windows, respectively. The re-
sults reported in Table 2 show that the proposed method again

Table 2. Evaluation using the 2nd protocol of JHMDB [22] dataset.
Method FI Overlap Acc (%)
ST-GCN [5] no 0% 59.00
ST-GCN [5] yes 0% 59.38
Proposed no 0% 65.45
Proposed yes 0% 66.77
ST-GCN [5] no 30% 58.60
ST-GCN [5] yes 30% 58.09
Proposed no 30% 61.96
Proposed yes 30% 62.60

Table 3. Evaluation on the MSR Action 3D dataset [23] dataset.
Method AS1 AS2 AS3 Avg
Li et al. [23] 89.50% 89% 96.30% 91.60%
Chen et al. [24] 97.30% 96.10% 98.70% 97.40%
Ilias et al. [25] 98.68% 96.96% 96.99% 97.54%
Xu et al. [26] 98.00% 96.70% 100% 98.20%
Jin et al. [27] 98.00% 97.40% 99.30% 98.20%
ST-GCN [5] 98.63% 98.04% 98.66% 98.44%
Luo et al. [28] 100% 98.70% 100% 98.90%
Proposed 99.33% 100% 99.33% 99.55%

outperformed the ST-GCN baseline by a considerable margin
in all cases.

Finally, the proposed method was evaluated on 3D skeleton-
based HAR using the MSR Action 3D dataset to verify its
ability to successfully handle more complex data. The per-
formance comparison between the proposed method and all
directly comparable competing methods, concerning model
complexity (number of trainable parameters), that used the
same data splits is presented in Table 3. The proposed method
manages to achieve best average HAR accuracy, outperform-
ing both the ST-GCN baseline and all competing methods.

5. CONCLUSIONS

In this work, a skeleton-based human action recognition
framework was proposed, aiming to increase human action
recognition performance of GCN-based methods. It con-
sists of three building blocks: a missing-joint-handling pre-
processing step, an improved adjacency matrix construction
method and a human action recognition GCN. The missing-
joint-handling pre-processing step is applied on the input hu-
man graph/skeleton sequence to infer any missing node/body
joints features before it is fed to the GCN. The adjacency
construction method is executed offline to construct an im-
proved weighted adjacency matrix, based on the assumption
that a human action can be efficiently modeled from move-
ments of a set of small body joint clusters. The resulting
adjacency matrix is then utilized in each layer of the human
action recognition GCN. By incorporating these two steps in
a human action recognition pipeline, the proposed framework
increased human action recognition accuracy both for 2D
and 3D skeleton-based HAR, while using a lightweight GCN
architecture with less learnable parameters than competing
methods.
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