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Abstract—Powerline inspection operations involve capturing
and inspecting visual footage of powerline elements from elevated
positions above and around the powerline and are currently
performed with the help of helicopters and/or Unmanned Aerial
Vehicles (UAVs). Current technological advances in the areas of
robotics and machine learning are towards enabling fully au-
tonomous operations. To this end, one of the tasks to be addressed
is the robust, precise and fast powerline object detection problem.
Recently introduced Transformer-based object detection methods
demonstrate time and accuracy advances with respect to previous
works. In this work, we present an enhanced Transformer-
based architecture that further improves the state-of-the-art by
incorporating a content-specific object query generator and by
substituting the original attention operation with a whitening-
inspired transformation at certain stages of the architecture. We
evaluate our method in a recently captured powerline detection
dataset and we show that our novel contributions offer a
significant boost regarding detection accuracy.

Keywords—deep learning, object detection, attention mod-
els, powerline inspection

I. INTRODUCTION

Powerline inspection operations involve gathering detailed
video footage from elevated positions close and around pow-
erline elements [1]. To this end, we turn our focus on the
object detection task, where the goal is to visually localize,
identify and monitor specific elements and components in
high-voltage transmission lines, such as towers, insulators
and dumpers. This task, however, poses challenges that may
not be present in standard benchmark datasets such as MS-
COCO [2]. More specifically, the successful detection of
powerline elements requires high precision in both small and
big powerline elements appearing on the same image frame
(e.g. towers and insulators), robustness in difficult illumination
conditions (sometimes even against the sun), and the ability
to discriminate visually similar and small elements on the
powerline against an indistinguishable background.

To tackle the aforementioned task we examine employing a
state-of-the-art object detection method, namely the Detection
with Transformers (DETR) [3] detector. DETR’s major benefit
is attributed to the attention [4] mechanism encountered in the
Transformers [5] architecture. Given N input data sequences
(e.g. image patches), attention mechanisms aggregate infor-
mation from the entire sequence (i.e., the whole image) to
each sequence element. This aggregated information explicitly

models all pairwise interactions between all elements in the
sequences thus being able to use the whole sequence as
context.

DETR, however, despite its fascinating design and
formidable performance comes with its own shortcomings.
One such is its rather poor ability to detect small objects such
as in our experimental application scenario, mainly attributed
to the fact that it ends up utilizing low-resolution feature maps,
hence small depicted objects in the original image become in-
distinguishable in the intermediate representation stages. This
issue could be addressed by utilizing higher resolution feature
maps but simultaneously leading to unacceptable computa-
tional complexities imposed by the attention operation when
dealing with large sequences [6]. Another possible drawback
could derive from the fact that DETR uses an arbitrary number
of randomly initialized learnable object queries (explained in
following sections). This random initialization could possibly
tamper with the framework’s performance as much of the
network’s domain knowledge is stored in these object queries.

In this paper we propose two novel contributions in order
to address the aforementioned problems and offer a boost in
detection performance. Firstly, we propose a content-specific
object query generator, in the form of a very shallow convolu-
tional neural network (CNN) which produces object queries
that hold information related to the images in the dataset.
Secondly, we present a whitening transformation-inspired [7]
self-attention definition and we use this re-formulation to
substitute the original attention definition only at certain stages
of the whole framework. This has the attribute of regularizing
illumination change variations and at the same time, allowing
the model to capture semantic dependencies between the
image depicted objects.

The rest of the paper is structured as follows. Section II
overviews the object detection task and reviews the key points
of attention and whitening transformation. In Section III we
introduce and analyze our novel contributions. In Section IV
we present and discuss the experiments conducted on our
powerline element dataset. Finally, Section V concludes and
summarizes our work.



II. REVISITING OBJECT DETECTION AND ATTENTION

The task of object detection [8] consists of classifying
and localizing every object of interest depicted in an image
frame, in the form of rectangular Regions of Interest (ROI).
In this work, we focus on the application scenario of linear
infrastructure inspection, which requires the precise localiza-
tion of powerline elements and components on the power
transmission lines. The most common way of representing
these objects is through predicting a set of bounding boxes
associated with category labels. Most of the popular Deep
Learning (DL) Convolutional Neural Network (CNN)-based
object detectors [9] treat this task as a combination of classifi-
cation and bounding box regression and depending on whether
or not they rely on region proposals they fall into one of
two categories, namely two-stage [10], [11] or single-stage
detectors [12], [13], respectively. Finally, a Non-Maximum
Suppression (NMS) step is performed to eliminate multiple
detections of the same object in overlapping regions.

However, DETR addresses the object detection as a direct
set prediction problem and completely eliminates the need of
any geometric priors resulting in the first fully differentiable
end-to-end object detector. One major novelty introduced
in DETR was the incorporation of Transformer [5] neural
network blocks in conjunction with a CNN model, in an object
detection pipeline. Transformer’s dominance over a range of
different tasks [14], [15], [16] derives from the attention
operation and in the following subsections we review in details
this mechanism.

A. Attention

In general, Transformers constitute an attention mechanism
that receive two sequence of elements as inputs (e.g. texts or
image feature maps), and updates the elements of one of them
by aggregating information from every element of the other.

Let X ∈ RN×n and Y ∈ RM×n be two input matrices
consisting of N and M elements respectively of n dimension
each. Based on X,Y the following three matrices can be
created: i) a query matrix Q = XWQ + 1N×1bQ, ii) a
key matrix K = YWK + 1M×1bK , and iii) a value matrix
V = YWV + 1M×1bV . WQ ∈ Rn×nq ,WK ∈ Rn×nk and
WV ∈ Rn×nv are linear transformation matrices applied on
the input matrices and bQ ∈ Rnq ,bK ∈ Rnk ,bV ∈ Rnv

are their respective biases. For simplicity we can consider
nq = nk = nv = n. Based on the above, the operation of
attention is now defined as:

A =

S︷ ︸︸ ︷
σ(

QKT

√
n

)V, (1)

where σ(·) is the softmax operator applied on every row of
the matrix QKT

√
n

. This type of attention is also called cross-
attention. Self-attention is defined when Y coinsides with X
(i.e. Y = X) or vice versa. Self-attention is the basic building
block of a Transformer model and allows it to associate each

element in an input sequence to every other element in the
same sequence.

The above definition describes a naive attention computa-
tion. In practice, however, Transformers usually leverage a
multi-headed attention mechanism. In this case we have Nh

number of attention heads and we split the WQ,WK ,WV

matrices into Nh matrices of dimensions n × n
Nh

(n should
be divisible by Nh). The attention for every single head,
Ah, h = 1, . . . , Nh is defined as:

Ah =

Sh︷ ︸︸ ︷
σ(

QhKT
h√

n
)Vh, (2)

where Qh = XWQh
,Kh = YWKh

, and Vh = YWVh

(biases are omitted for simplicity) for h = 1, . . . , Nh. The
overall attention is the concatenation of the attention of every
single head and is defined as:

A = (A1 ⊕A2 ⊕ · · · ⊕Ah)WO, (3)

where ⊕ represents the concatenation of two 2D matrices
along the horizontal dimension and WO ∈ Rn×no is a linear
projection matrix. Again we can consider no = n.

B. Whitening transformation

Given a data matrix X ∈ RN×n consisting of N
n−dimensional elements the goal is to apply a linear transfor-
mation in order to decorrelate the data dimensions from one
another. This can be achieved by using a linear transformation
matrix W ∈ RN×N which will transform the data matrix X
such as Xw = WX.

In order for W to be a decorrelating matrix it should satisfy
the condition WWT = Σ−1, where Σ is the covariance
matrix of X.

III. PROPOSED METHOD

As already stated, we employ DETR [3] as a testbed for
implementation and performance comparison. DETR consists
of a CNN backbone for extracting feature representations from
input images and an encoder-decoder Transformer module.
The CNN follows a standard procedure by receiving an input
image x ∈ RH0×W0×3, where H0,W0 are the height and width
of the input image, and produce lower-resolution feature maps
f ∈ RH×W×C , where C is the number of output channels.
The Transformer encoder receives these unrolled feature maps
z ∈ RHW×C and calculates self-attention as described by
equations (2) and (3). The rest of encoder follows a standard
architecture as described in [5]. The decoder is of similar
structure, however, its input includes both the output of the
encoder and Nq in number n−dimensional object queries
represented by learnable and random initialized query embed-
dings o ∈ RNq×n. Decoder calculates self-attention between
the object queries and subsequently performs cross-attention
between the transformed object queries and the transformed
feature maps from the encoder. Finally, DETR passes the final
output of the decoder, i.e. the transformed object queries, to



a feed forward network that predicts for every object query
either a detection (bounding box and class) or a no object
class. A simplified representation of the overall architecture
along with our novel modifications is illustrated in Fig. 1.

We will now describe our two novel contributions for tack-
ling the powerline element detection using the Transformer-
based object detector.

A. Whitened self-attention

As mentioned in the introduction Section, our application
scenario for testing our detection models is that of detecting
elements and components most commonly found in high-
voltage transmission lines for inspection purposes. However,
this detection task comes with quite a few challenges. Maybe
the most prominent challenges include the requirement to
simultaneously detect small and big electrical components that
appear from short and long distances, diverse viewing angles
and with various illumination conditions. Further challenges
could be imposed when the objects of interest are clutched
against an indistinguishable background. In order to address
these challenges, we introduce the whitening self-attention
variation, which eliminates some of the variability of the
feature space-related mostly to illumination changes. This in
turn provides the model for the opportunity to work in a
more standardized input space, thus the learning problem can
focus more on addressing the semantic challenges, related to
small/big item appearances.

In Section II we described the original attention definition
and by examining equation (1) (for simplicity) we can deter-
mine that the most important term is the calculation of the
similarity matrix S = σ(QKT ) which in the case of self-
attention can be rewritten as:

S = σ(XWQ(XWK)T ) = σ(XWQWT
KXT ). (4)

By requiring that the auxiliary matrices WQ = WK = W
such that W is a decorrelating matrix, equation (4) can be
re-formulated as:

S = σ(XΣ−1XT ), (5)

where Σ = WWT is the covariance matrix of X. The
covariance matrix Σ can be computed as follows:

Σ =
1

N

N∑
i=1

(xi − x)T (xi − x) = XT

L︷ ︸︸ ︷(
1

N
I− 1

N2
11T

)
X

= XTLX.
(6)

The next step is to calculate the inversion of this matrix
Σ−1. Based on all of the above we re-formulate the self-
attention operation as:

A =

S︷ ︸︸ ︷
σ

(
XΣ−1XT

√
n

)
XWV =

S︷ ︸︸ ︷
σ

(
L−1√
n

)
XWV . (7)

Based of equation (7) we observe that for computing the
similarity matrix S of the self-attention operation we require
only the matrix L, the softmax inverted version of which can
be precomputed before initiating any training phase. However,
in order to avoid singularities arising from matrix invertion, we
introduce a regularization parameter that increases the rank of
the covariance matrix Σ by adding tiny values to the diagonal
elements:

Σ = XTLX + rI, (8)

where r is typically set to very low values (a value of r =
10−3 was employed in our experimental study). For all of our
experiments that include our novel self-attention definition we
use (8) for computing equation (7).

In all of the above we eliminated the WQ and WK

learnable matrices with the additional cost of having to invert
the quantity inside the parenthesis. The above definition is
only recommended to be employed at the first layer of the
Transformer encoder whereas for the rest of the encoder we
use the standard attention definition. This is done in order
to both eliminate the inversion operation in multiple layers,
but also to avoid one additional particularity. Whitening in
the first layer might decorrelate variations of illumination
conditions, however, applying it to later stages might also
eliminate the semantic information that the model is trying to
learn. Our approach replaces the WQ and WK matrices with
appropriate non-learnable ones that perform the whitening
transform instead of a random transformation. This operates as
adapting the input domain of the self-attention operation to a
latent space domain, where only query and key image features
have been normalized according to their own distribution.
At this point, we should note that applying our novel self-
attention, only at the first layer of a Transformer encoder, is
not the same as simply applying whitening or some standard
layer normalization to the input data X before feeding them to
a standard self-attention architecture because this would imply
whitening of the value matrix V as well. In our experimental
study we conduct such comparisons to prove the superiority
of our approach.

B. Content-specific object query generator

As explained in previous sections, DETR uses a set of
learnable object queries that will eventually be transformed
to a set of detections. However, the random initialization of
those object queries could impose certain limitations to the
whole framework’s performance. To this end, we propose
the employment of a content-specific object queries gener-
ator whose job is to produce better initializations directly
related to the image features. Our object queries generator
is implemented in the form of a very shallow 2-layer CNN
that receives image feature maps, as produced by the CNN
backbone, and generates content-related start points for the
object queries. Specifically, the feature maps f ∈ RH×W×C

initially pass through a first convolutional layer with C1

number of channels and 3 × 3 kernel size with padding, fol-
lowed by a batch normalization layer [17], a ReLU activation



Fig. 1. A simplified illustration of DETR’s architecture utilizing Transformer blocks. In red squares we highlight our novel contributions, i.e., a) the re-
formulation of the self-attention operation in the first Transformer encoder layer, and b) the object query generator. The object query generator specifically is
implemented as a 2-layer CNN receiving image features from the CNN backbone and producing content-specific object queries.

function and a dropout layer [18]. The second layer is of
similar structure with C2 number of channels without applying
padding. The output of this query generator is a new set of
feature maps f ′ ∈ RH′×W ′×C2 . These flattened feature maps
p ∈ RH′W ′×C2 constitute the initializations for the object
queries. It can be noticed that our number of object queries,
i.e. H ′W ′, is not so arbitrary chosen as is the case of original
DETR (e.g. Nq = 100). As we show in the experimental
section this contribution alone offers an increment in detection
performance over using the content-agnostic object queries of
the original implementation. The employment of this module
imposes unnoticeable complexities in the overall architecture.

IV. EXPERIMENTAL STUDY

A. Dataset
In this Section, we present the experimental setup and we

discuss the obtained results in the powerline element detection
task. To the best of our knowledge there are no publicly
available datasets depicting the desired objects or big enough
for satisfactory results. Individual researcher efforts so far,
such as the CPLID dataset [19] only include a few hundred
images and insufficient amount of classes.To this end, we
collected and experiment on the AERIAL-CORE powerline
inspection dataset. The objects of interest encountered in this
dataset are insulators, dumpers and electric towers. Our dataset
consists of 11587 images, acquired from video footage of
aerial inspection, 8422 of which were used for training and
the remaining 3165 for evaluation. Examples of the dataset
along with visual results of the experimented detection models,
discussed in the following section, are presented in Fig. 2.

B. Experimental setup and results
DETR Resnet50 was chosen as our baseline model. It uses

Resnet50 [20] as backbone for image feature extraction and 6
encoder/decoder layers with 8 attention heads each.

The comprehensive results of our experimental study are re-
ported in Table 1. In all of our experiments a COCO-pretrained
model was used for capturing general image features, which
was then fine-tuned in the AERIA-CORE dataset in order to
capture task-specific patterns. A fixed resize on the images was
applied at the input layer of the CNN backbone. Specifically,
our experiments were conducted using reshaped images of
size 448× 256. Feeding images of the aforementioned size to
the CNN backbone resulted in H

32 ×
W
32 downscale leading to

feature maps of size 14×8. As these feature maps will be given
as input to the content-specific object query generator based
on our previous discussion the output of our query generator
will be of temporal sizes 12× 6(= 72). We use this result as
the number of learnable object queries (i.e. Nq = 72) for all
of our DETR-based models.

TABLE I
COMPARISON OF STATE-OF-THE-ART OBJECT DETECTORS IN THE

AERIAL-CORE POWERLINE INSPECTION DATASET. AVERAGE PRECISION
(AP) WAS USED AS AN EVALUATION METRICS.

Model AP AP50

SSD [12] 48.3 73.6
Sparse-RCNN [21] 38.9 65.7
DETR [3] 48.7 80.3
DETR† [3] 47.7 75.6
CSOQ-DETR 50.6 81.2
WHIT-DETR 51.1 82.0
CSOQ+WHIT-DETR 51.6 82.5

At this point, we split our experiments in two stages. In
the first stage (top section of Table 1) we compare two state-
of-the-art object detectors, namely the Single-Shot multibox
Detector (SSD) [12] and the Sparse-RCNN [21] detectors,
against baseline DETR models. The same Resnet50 was used



Fig. 2. Image samples of our AERIAL-CORE powerline inspection dataset and elements (e.g. insulators, dumpers and electric towers) detected by DETR
detector. The dataset contains a high variety of image shots. Images on the right part of the figure demonstrate the challenges of powerline inspection as some
of the objects, e.g. dumpers. are falsely detected or are too small (322 < area < 962 pixels) against an indistinguishable background.

as a CNN backbone in order to establish a more objective
comparison between all these different detection methods.
SSD and Sparce-RCNN models were trained with all the
hyper-parameters values and configurations proposed by the
respective authors. For this stage, two baseline DETR mod-
els were trained. DETR entry refers to a baseline model
with no changes other than those already mentioned. DETR†

is of exactly the same architecture except that a instance
normalization [22] layer has been applied to the input data
before feeding them to the Transformer encoder. All remaining
parameters settings (e.g., learning rate, optimizer, dropout etc.)
were set equal to the values proposed by the respective authors.
By observing the recorded detection metrics we immediately
notice that DETR vastly outperforms the its contestants.

In the second stage (bottom section of Table 1) we com-
pare DETR variants to which we have applied our novel
contributions. We initially measure the effect of each of our
two contributions individually and finally we measure the
combined affect. As can be noticed, by solely employing
our whitening self-attention variation (WHIT-DETR entry),
only at the first layer of the Transformer encoder, we achieve
better results than individually incorporating the query gen-
erator (CSOQ-DETR entry). However, each of these models
manages to outperform the baseline DETR model. Finally,
by combining these two contributions we achieve the best
recorded performance managing to outperform the baseline
DETR model by 2.9% and and 2.2% regarding the AP and
AP50, respectively.

V. CONCLUSIONS

In this work, we studied a Transformer-based object de-
tector, namely the DETR method and we highlighted certain
limitations when specific dataset conditions are met. In order
to address those limitations we proposed two novel contribu-
tions, the first regarding the attention definition and a second
one related with DETR’s particular architecture. i.e. a whitened
self-attention definition and a content-specific object query
generator. Finally, we demonstrated that the incorporation
of these two novelties further improves the state-of-the-art
in a powerline element detection scenario. Our future work
will include studying different definitions of Graph types
and how they could be incorporated in different layers in
Transformer-based architectures, in more general computer
vision problems.
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