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Abstract—Powerline inspection operations involve capturing
and inspecting visual (RBG/thermal/LiDAR) footage of powerline
elements from elevated positions above and around the powerline,
which are currently performed with the help of helicopters
and/or Unmanned Aerial Vehicles (UAV). Current technological
advances in the areas of robotics and machine learning are
towards enabling fully autonomous operations. To this end, one
of the tasks to be addressed is the robust, precise and fast
powerline object detection problem. End-to-end Object Detection
with Transformers (DETR) was a recently introduced method
that demonstrates time and accuracy advances with respect to
other detectors. However, this architecture comes with some
computational complexity issues, which can mainly be attributed
to Transformer encoder/decoder components, limiting its ap-
plicability in fast processing high-resolution feature maps and
long sequences in general. To address these issues, we propose
incorporating low-complexity Transformer implementations and
evaluate them in a recently captured powerline detection dataset.

I. INTRODUCTION

The task of object detection consists of classifying and
localizing every object of interest depicted in an image frame,
in the form of rectangular Regions of Interest (ROI). We
focus on the application scenario of linear infrastructure in-
spection, which requires the precise localization of powerline
elements and components on the power transmission lines
(i.e., insulators, dumpers and towers). The most common way
of representing these objects is through predicting a set of
bounding boxes associated with category labels. Most of the
popular Deep Learning (DL)-based object detectors [1] treat
this task as a combination of classification and bounding
box regression and usually employ many trivial hand-crafted
components such as region proposal or anchor generation and
non-maximum suppression post-processing. Detection with
Transformers (DETR) [2] is a recently introduced state-of-
the-art object detector that totally reshaped the way object
detection is viewed. DETR addresses the object detection
as a direct set prediction problem and completely eliminates
the need of any geometric priors resulting in the first fully
differentiable end-to-end object detector.

One major novelty introduced in DETR was the incorpo-
ration of Transformer [3] encoder-decoder modules in con-
junction with a convolutional neural network (CNN) model,
in an object detection pipeline. However, DETR, despite its
fascinating design and formidable performance suffers from
two important issues: (i) In order for its model to converge

it requires a much longer training schedule than many of the
existing object detectors. As the authors claim, in order for
DETR to converge in the COCO [4] dataset it required over
300-500 epochs using the most advanced processing units.
(ii) DETR models perform rather poorly in detecting small
objects, such as in our experimental application scenario. The
latter issue could easily be addressed by utilizing higher reso-
lution feature maps but simultaneously leading to unacceptable
complexities, as far time and memory are concerned. The
aforementioned bottlenecks can mainly be attributed to the
limitation of Transformer components in fast processing large
image feature maps and sequences in general.

In this paper, we propose the incorporation of an efficient
Transformer architecture, based on the Linformer [5], and we
benchmark the overall detection pipeline in our composed
dataset of powerline elements. By examining this straight-
forward but non-trivial incorporation, we answer the question
of what do we gain and what do we miss by minimizing
the computational complexity of the Transformer architecture,
in the powerline element detection task. Our experimental
evaluation shows that efficient transformer implementations
will eventually allow the implementation of Trasformer-based
architectures in embedded computing devices, in the near
future.

The remainder of this paper is structured as follows.
Section 2 revisits the attention mechanism introduced in
Transformers and presents how DETR utilizes a Transformer
encoder-decoder module. In Section 3 we analyse why Trans-
formers constitute a computational expensive module and we
describe an efficient DETR-based detection framework that
compromises between accuracy and speed. In Section 4 we
present and discuss the experiments conducted on our power-
line element dataset. Finally, Section 5 concludes our findings
and summarizes for future research and improvements.

II. REVISITING ATTENTION AND DETR

In this section we review the attention mechanism encoun-
tered in Transformers and describe how DETR utilizes this
mechanism in a Transformer encoder-decoder module.

A. Attention

Transformers, originally proposed for natural language
processing [6] tasks, have made their way across a range of
different domains such as speech recognition [7] and image



processing [8], [9], [10]. In general, Transformers constitute an
attention mechanism that receive two sequences of elements
as inputs (e.g. texts or image feature maps), and updates the
elements of one of them by aggregating information from every
element of the other.

Let X ∈ RN×n and Y ∈ RM×n be two input matrices
consisting of N and M elements respectively of n dimension
each. Based on X,Y the following three matrices can be
created: i) a query matrix Q = XWQ + 1N×1bQ, ii) a
key matrix K = YWK + 1M×1bK , and iii) a value matrix
V = YWV + 1M×1bV . WQ ∈ Rn×nq ,WK ∈ Rn×nk and
WV ∈ Rn×nv are linear transformation matrices applied on
the input matrices and bQ ∈ Rnq ,bK ∈ Rnk ,bV ∈ Rnv

v
are their respective biases. For simplicity we can consider
nq = nk = nv = n. Based on the above, the operation of
attention as defined in [2] is expressed as:

A =

S︷ ︸︸ ︷
σ(

QKT

√
n

)V, (1)

where σ(·) is the softmax operator applied on every row of
the matrix QKT

√
n

and S = σ(QKT

√
n

). This type of attention is
also called cross-attention. Self-attention is defined when Y
coincides with X (i.e. Y = X) or vice versa. Self-attention is
the basic building block of a Transformer model and allows it
to associate each element in an input sequence to every other
element in the same sequence.

The above definition describes a naive attention compu-
tation. In practice, however, Transformers usually leverage a
multi-headed attention mechanism. In this case we have Nh

number of attention heads and we split the WQ,WK ,WV

matrices into Nh matrices of dimensions n × n
Nh

(n should
be divisible by Nh). The attention for every single head,
Ah, h = 1, . . . , Nh is defined as:

Ah =

Sh︷ ︸︸ ︷
σ(

QhK
T
h√

n
)Vh, (2)

where Qh = XWQh
,Kh = YWKh

, Vh = YWVh

(biases are omitted for simplicity) for h = 1, . . . , Nh, and
Sh = σ(

QhK
T
h√

n
). The overall attention is the concatenation of

the attention of every single head and is defined as:

A = (A1 ⊕A2 ⊕ · · · ⊕Ah)WO, (3)

where ⊕ represents the concatenation of two 2D matrices
along the horizontal dimension and WO ∈ Rn×no is a linear
projection matrix. Again we can consider no = n. In the
following section we will discuss how the multi-head attention
mechanism is employed in the DETR framework.

B. DETR architecture

DETR is mainly composed of two components: a CNN
backbone for extracting image feature representations from
input images and an encoder-decoder Transformer. We review
the network’s architecture and function in detail as follows:

Backbone: It is a typical CNN backbone which receives an
image x ∈ RH0×W0×3, where H0,W0 are the height and width
of the input image, and produces lower-resolution feature maps
f ∈ RH×W×C , where C is the number of output channels.
Following the main backbone the output f passes through
a convolutional layer with 1 × 1 kernels which reduces the
feature maps from C to a smaller dimension d, thus creating
a new feature map z ∈ RH×W×d. Typical values used are
C = 2048, H = H0

32 ,W = W0

32 and d = 256.

Transformer encoder: The encoder expects a 2-dimensio
nal tensor as input so the spatial dimensions of the previ-
ously produced 3-dimensional tensor z are unrolled resulting
in a new feature map z′ ∈ RHW×d. The new tensor is
then additively combined with a positional encoding matrix
p ∈ RHW×d which holds information regarding the position
of every pixel in the feature map z′, resulting in a new feature
map z′p ∈ RHW×d. This feature map is then fed to a standard
Transformer encoder layer. An encoder layer contains two
sub-modules, a multi-head self-attention layer followed by a
fully connected feed forward network (FFN). Given the query,
key and value matrices Qh,Kh,Vh, which in the case of
DETR are Qh = Kh = z′pWQh

and Vh = z′WVh
, and Nh

attention heads, the attention matrix is calculated as described
by equations (2) and (3). At this point, the input and output
of the multi-head attention module are connected by residual
connections and a layer normalization layer [11]. The output
of the normalization layer is then passed through a FFN with
two linear layers which has its input/ouput similarly connected
in a residual fashion with a normalization layer producing the
final output. The encoder could consist of several such layers
stack on top of each other.

Transformer decoder: The decoder is of similar structure
as the encoder but consists of two multi-head attention layers.
The first multi-head self-attention layer receives Nq in number
n−dimensional object queries represented by learnable, and
initially random initialized, query embeddings o ∈ RNq×n.
After passing trough a normalization layer the output of the
first self-attention layer is then fed to a second cross-attention
layer that also receives input from the final layer of the encoder
combined with positional encodings. Finally, the output of the
second multi-head cross-attention is fed to normalization layers
and a FFN with similar residual connections as described in
the encoder. Decoder layers can also be stacked on top of each
other.

Finally, DETR passes the output of the decoder to a FFN
that predicts either a detection (class and bounding box) or a
no object class.

III. DETECTION WITH EFFICIENT TRANSFORMERS

As demonstrated by the analysis in Section 2, DETR bottle-
necks include its high computational and memory complexity
derived from the self-attention heads in the encoder. It is
apparent that the memory and time complexity required to
compute the attention matrix, Ah, of each attention head is
quadratic w.r.t the length of sequence N or M (from now
on reffered to as just N ). In particular, computation of the
similarity matrix Sh = σ(QKT

√
n

) requires multiplying two
N× n

Nh
matrices leading to an overall complexity ofO(N2). In

the case of DETR, where N corresponds to HW , the above



complexity heavily affects the inference response especially
when high-resolution feature maps are produced from the CNN
backbone. Hence, a mechanism that could reduce the overall
complexity would be of great importance, since it would not
only allow for speeding up inference time, but simultaneously,
allow the utilization of higher-resolution feature maps, thus
increasing the details of small depicted objects.

Recently, there has been quite a surge of proposed efficient
Transformer variants [12], [13], [14], [15], [16]. Efficient mod-
els are of crucial importance in applications that model long
sequences such as in the computer vision and image processing
domains. The efficiency of such models could refer to either
the memory footprint of the model or to its computational
costs, e.g. number of FLOPS. To this end, the primary goal of
most of the above mentioned efficient models is to propose
a way to approximate the quadratic cost of the similarity
matrix Sh. One of the emerging techniques towards improving
the efficiency is leveraging low-rank approximations of the
similarity matrix Sh [5]. The main idea behind such ap-
proaches is to assume low-rank structure in the N×N matrix.
Another popular method is to view the attention mechanism
through kernelization [13], [14]. The usage of kernels enables
intelligent mathematical ways of reforming the self-attention
mechanism in order to avoid explicitly computing the N ×N
matrix Sh.

At this point we introduce the incorporation of an efficient
Transformer model, namely the Linformer [5], that demon-
strates the reduction of complexity from O(N2) to O(N). In
[5], authors suggest an approximate way of calculating the self-
attention that has linear memory and time complexity in terms
of the sequence length. More specifically, authors, show both
theoretically and empirically that the similarity matrix, Sh,
is low rank and therefore can be constructed by an approx-
imate low rank matrix Sh. The main idea of their proposed
linear self-attention is to add two linear projection matrices
Eh,Fh ∈ RK×N that serve to reduce the dimension of key
and value matrices Kh,Vh from N to a lower dimension K.
The new attention matrix is defined as [5]:

Ah = σ(

Sh︷ ︸︸ ︷
Qh(

K
T
h︷ ︸︸ ︷

EhKh)
T

√
n

)

Vh︷ ︸︸ ︷
(FhVh), (4)

where K
T

h = (EhKh)
T ,Vh = FhVh, and Sh = σ(

EhK
T
h√

n
).

The above computation requires only O(N) time and
memory complexity because the N × N matrix Sh is now
decomposed to the N ×K matrix Sh. Hence, if a very small
projected dimension K is chosen, such that K � N , the
time and memory consumption is significantly reduced. As
an additional optimization technique for our experiments, we
use layer-wise sharing such that a single projection matrix Eh

is used, i.e. Eh = Fh, for both key and value matrices, for
all self-attention heads in an encoder layer and across all the
encoder layers.

At this point, we should also point out that computational
and memory complexity are of utmost importance in UAVs,
which incorporate embedded computers with limited capacity.

Fast performing methods in powerline inspection tasks are
important not only for being applied in embedded devices,
but will also allow higher input image resolutions to be
processed. This is tightly coupled with the successful detection
of powerline elements from longer distances, thus enabling the
coupling with autonomous tracking [17]/UAV control methods
[18].

IV. EXPERIMENTAL STUDY

A. Dataset

As mentioned in the introduction Section, our application
scenario for testing our detection models is that of detecting
elements and components most commonly found in high-
voltage transmission lines for inspection purposes. However,
this detection task comes with quite a few challenges. Maybe
the most prominent challenge is the requirement to simultane-
ously detect small and big electrical components that appear
from short and long distances, diverse viewing angles and with
various illumination conditions. Further challenges could be
imposed when the objects of interest are clutched against an
indistinguishable background. Moreover, in order to accurately
detect the desired elements any DL-based detector would
require a large amount of training data. To the best of our
knowledge there are no publicly available datasets big enough
for satisfactory results. Individual researcher efforts so far, such
as the CPLID datasets [19] only include a few hundred images
and insufficient amount of classes.

We perform experiments on our own composed powerline
inspection dataset. The objects of interest encountered in this
dataset are insulators, dumpers and electric towers. Our dataset
consists of 11587 images, acquired from video footage of
aerial inspection, 8422 of which were used for training and
the remaining 3165 for evaluation. The images where then
annotated with ROIs of the aforementioned object classes.
Examples of the dataset along with visual results of the
experimented detection models, discussed in the following
section, are presented in Fig. 1.

B. Experiments and results

At this point, we present the experimental setup and we
discuss the obtained results. DETR-R50 was chosen as our
baseline model. It uses Resnet50 [20] as backbone for image
feature extraction and 6 encoder/decoder layers with 8 atten-
tion heads each. We then replace the initial quadratic attention
head with the linear one while keeping all of the other parts
unchanged. For all of our DETR-based models a COCO pre-
trained model was used for capturing general image features,
which was then fine-tuned on our powerline inspection dataset
in order to capture task specific patterns. During fine-tuning
we discarded the initial random resize transforms and replaced
them with a fixed resize that maintains the aspect ratio of our
images. Specifically, our experiments were conducted for two
different image input sizes, i.e. 256 × 448 and 448 × 796.
Feeding images of the aforementioned sizes to the CNN
backbone resulted in H

32 ×
W
32 downscale leading to feature

maps of size 8×14(= 112) and 14×24(= 336) , respectively.
For the linear self-attention models (Lin-DETR entries in Table
1) the corresponding values of K were set to 64 and 128
respectively.



Fig. 1. Examples of our powerline inspection dataset and elements detected by DETR.

Lastly, the models were trained using AdamW [21] op-
timizer with a learning rate of 10−5, weight decay of 10−2

and dropout set to 10−1. The comprehensive results of our
experimental study for different number of input image’s size
are presented in Table 1.

TABLE I. COMPARISON OF SSD AND DETR-BASED MODELS WITH A
RESNET50 BACKBONE. THE MIDDLE AND BOT SECTION SHOWS RESULTS
FOR DETR MODELS WITH QUADRATIC AND LINEAR ATTENTION, NOTED

AS DETR AND LIN-DETR RESPECTIVELY. TOP SECTION SHOWS THE
RESULTS FOR SSD MODELS. FPS WERE MEASURED IN AN NVIDIA 2080

SUPER GPU.

Model FPS Input Size AP AP50 AP75

SSD R50 40 256× 448 48.3 73.6 55.5
SSD R50 31 448× 796 52.3 79.8 54.7
DETR R50 35 256× 448 52.4 83.1 55.3
Lin-DETR R50 37 256× 448 50.7 81.2 51.8
DETR R50 27 448× 796 56.3 86.0 61.3
Lin-DETR R50 30 448× 796 53.2 83.1 55.5

For performance metrics we use average precision (AP)
and frames per second (FPS). As can been noticed, by in-
corporating the linear attention mechanism we obtained some
noticeable increase in FPS with some moderate dropout in
AP compared to the baseline models and for fixed input size.
These results leads us to the assumption that increasing the
input size of an image combined with an efficient attention
mechanism could result in even greater performances in the
speed section while maintaining an acceptable detection accu-
racy. For comparison purposes, all of DETR-based models are
compared to a single-stage detector, namely the Single Shot
multibox Detector (SSD) [22]. We observe, that except for the
case when low input size is used where SSD dominates in FPS,
in all of the other cases DETR models, regardless of quadratic
or linear attention, are superior in detection accuracy while
keeping in par in speed.

As an additional experiment, to enhance our claim that
exploiting larger feature maps and an a linear-attention mech-
anism does indeed offer incremental gains we measure the
average times it took our models to separately process a single
image in the backbone and in the Transformer components
only. Those results are presented in Table 2. As we can see,
for a lower input resolution, i.e. 256× 448, by integrating the
linear-attention we notice a 31% gain in the Transformer pro-

cess time. Moreover, by increasing the input size to 448×796
we obtain a 34% gain.

All of the aforementioned results lead us to conclude
that leveraging higher image resolutions along with a more
lightweight feature extraction architecture, i.e. Mobilenets,
could potentially lead into a faster DETR-based detection
pipeline with only some moderate dropout in detection ac-
curacy.

TABLE II. COMPARISON OF THE AVERAGE PROCESSING TIMES IN THE
BACKBONE AND THE TRANSFORMER MODULES OF DETR AND LIN-DETR

RESPECTIVELY. THE RECORDED TIMES ARE MEASURED IN SECODS.

Model Input Size Backbone Time Transformer Time
DETR 256× 448 0.008 0.013
Lin-DETR 256× 448 0.008 0.009
DETR 448× 796 0.016 0.015
Lin-DETR 448× 796 0.016 0.010

V. CONCLUSION

In this paper we studied the DETR object detection method
and how it utilizes a Transformer architecture in an overall
detection pipeline. Moreover, we discussed the bottlenecks of
Transformers and their limitation in fast processing large image
feature maps in computer vision applications. We benchmark
on an powerline inspection dataset and we demonstrated that
the incorporation of an efficient Transformer model with linear
attention can provide an acceptable trade-off between detection
accuracy and inference speed. Our results showed that exploit-
ing higher resolution images, in conjunction with an efficient
Transformer model, could help improve the aforementioned
trade-off.
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