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Abstract—This work studies and defines the problem of pro-
viding extensive and opportunistic Edge AI-based area coverage
in smart city application scenarios, by researching and deter-
mining the optimal configuration of sensing and computational
resources for minimizing the environmental/technology footprint
of the solution. A typical smart city computing continuum
consists of statically installed multimodal sensing Internet-of-
Things (IoT) nodes at various city locations, accompanied by
interconnected computational Cloud/Edge/IoT nodes. This paper
presents Optimal Trustworthy EdgeAI (OTE), an entirely novel
research pipeline, that complements existing smart city infras-
tructure with intelligent drone Edge/IoT nodes (in the form of
modularly equipped unmanned aerial vehicles), capable of au-
tonomous repositioning according to individual/collective sensing
and coverage criteria. Thereby, we envisage the emerging cutting-
edge technologies of trustworthy sensing, perceiving, modelling
technologies for predicting the behavior of moving targets (e.g.,
citizens/vehicles/objects), understanding natural phenomena (e.g.,
sea wave motion, urban flora/fauna, biodiversity) in order to
anticipate events (people’s bad habits, environmental changes),
by exploiting novel continuous data processing services across
the whole span of the enhanced Cloud-Edge-IoT computing
continuum.

Index Terms—EdgeAI, Trustworthy-AI, Smart city, Cloud-
Edge-IoT intelligence, UAVs

I. INTRODUCTION

Optimal Trustworthy EdgeAI (OTE), is a research pipeline
aiming to lay down the groundwork for research in tech-
nologies for complementing existing static Cloud/Edge/IoT
infrastructures in smart city environments, for providing a)
increased intelligence in the data acquisition phase, b) en-
hanced coverage, perception, cognition, and understanding of
the dynamically changing city environment, and c) increased
data acquisition and data processing efficiency. The research
challenges are organised in three different elements.

First, it focuses on obtaining increased IoT intelligence.
We assume that there are some existing statically installed
IoT nodes at the Edge, mainly used as sensors and have
some (but limited) computational capacity, that are utilized for

semantic analysis by developing novel TinyML AI techniques.
In addition, the Edge architecture includes advanced drone
IoT nodes in the form of Unmanned Aerial Vehicles (UAV),
having cognitive abilities for understanding and autonomously
operating in the smart city environment, featuring automatic
repositioning and perching in locations opportunistically, in
order to save energy and provide enhanced coverage in areas
not covered by the statically deployed sensor nodes.

Second, IoT intelligence is leveraged towards developing
Trustworthy AI functionalities, ranging from collective se-
mantic visual analysis and physics-informed machine learning
processes, that can be used to analyse the inputs/outputs of
all the available sensors. Smart sensor fusion technologies
are studied in a two-fold purpose: a) to provide a robust
understanding and modelling of the urban environment, and
b) to optimally derive and propose the optimal drone IoT
sensor locations, for enhanced and efficient area coverage.
These technologies combined will lead to significant compu-
tational/memory reduction and huge energy savings.

Finally, these Trustworthy AI functionalities are orches-
trated in a centralized fashion by increased Cloud intelligence,
consisting of innovative data streaming and interoperability
services at the Cloud layer. Artificial Intelligence will be the
common denominator to harmonize the resource provisioning
and services deployment, and distribute intelligence across the
Cloud-Edge-IoT continuum. This methodology will lead to
build fully adaptable and resilient intelligent ecosystems.

OTE envisions a complete Cloud/Edge/IoT system, summa-
rized in Figure 1, that provides rich semantic analysis of static
and moving targets and flows of items of interest in urban
environments. The semantic analysis outputs can be opened
up to the general public for supporting new innovative city-
wide applications beyond OTE scope, for offering services to
a) the municipality and b) to the citizens. The components and
research challenges of the proposed pipeline are analysed in
Sections II-IV. Conclusions are drawn in Section V.



Fig. 1. OTE conceptual block diagram. Interplay between IoT intelligence (Green), Trustworthy Edge AI technologies (Blue) and Cloud Intelligence (Grey)

II. IOT INTELLIGENCE

A. Privacy-by-design EdgeAI

Smart city environments require the installation and oper-
ation of IoT nodes in public environments, thus IoT sensors
unavoidably capture sensitive information that may be used
to infringe an individual’s privacy. Such sensitive data infor-
mation might include human facial images or other biometric
identifiers, including clothes, tattoos etc, or even people on
vehicles wearing helmets, or the vehicle plates. Assuming
that we have the outputs of human detection algorithms, the
privacy preservation task requires the generation of gender-
neutral image samples that will be used to replace the detected
ones. This problem can be viewed as determining an iterative
transformation f(·) : X 7→ X , such that the images in the
resulting (same) space are no longer identifiable, according
to k-anonymity principles [1]. De-identification technologies
in existing products (see Google Maps, media industry) apply
face/plate detection and aggressively corrupt the images using
blurring. In general, privacy and gender neutrality are not
guaranteed. Generative Adversarial Networks (GAN)-based
methods which employ style transfer [2] are the state-of-
the-art approach for privacy protection, but have only been
evaluated in experimental datasets, in limited viewing angles.
Gender/Race/Body related [3], [4], de-identification have been

considered by individual efforts. Data utility has only been
evaluated qualitatively.

The main research challenge is to design novel k-
anonymity-based deep Neural Network (DNN) approaches
that will be trained by incorporating novel-joint optimization
criteria for de-identification performance, gender neutrality
and data utility. The technology must provide continuous on-
the-fly video de-identification in real-world city-captured data
and different viewing angles. Such methodology could be
based on embedded generative DNN approaches optimized
for creating aesthetically pleasing and utilizable results for the
remainder analysis, carried out by the rest of the system (e.g.,
human detection will still work). Focus should be given on
real-time operation. To this end, research efforts may consider
employing only the outputs of a human detection algorithm
(in the form of a human localized in the 2D spatial domain)
as input, and will reduce the resolution until reaching some
acceptable execution time levels. If that fails, alterations in
the employed DNN architecture, DNN compression, should
be considered as well.

B. IoT Node sensing for seamless and safe operation

We envision autonomous IoT nodes that will seamlessly
and safely operate in urban environments, by combining



embedded knowledge about their assigned use-case task of
interest (e.g., traffic monitoring) with the ability to sense
and understand potential mobility constraints prior to/during
(re-)deployment (e.g., flight is not permitted above humans).
Such tasks require the localization of moving targets (e.g.,
human crowd, humans, cars) that might freely roam around
the environment, thus appearing from different viewpoints, in
various scales, different lighting conditions or perhaps even
occluding each other. Additional challenges are introduced
when considering the mobilization (e.g., flying) phase, related
due to camera vibrations and and/or the parallax problem. The
design of such techniques must also take into consideration
the computational and memory constraints imposed by the
embedded IoT computational units. Taking into account the
above challenges, the sensing modules should be based on
DNNs, similar to those applied on human crowd detection [5]
and top-down person detection [6], safe-landing spot detection
[7] and embedded DNN implementation. The research focus
should be to further decrease execution times, by using e.g.,
DNN compression or knowledge-transfer methods to transfer
knowledge from deep complex architectures to lighter ones
[8].

C. IoE infrastructure for data space

Distributing IoT nodes all over the cities causes a daily
production and storage of huge amounts of data coming from
different stakeholders. Data format and shape is therefore
different because based on non-standard protocols and data
models, thus preventing knowledge exchange with external
users, projects and systems. Interoperability and integration
of data from various sources is a key challenge that has
to be tackled to extract insight and give an understandable
value with the purpose to build new and precious services.
For this reason, it is necessary to have adequate technologies
that allow breaking the silos where data stay, enabling the
possibility to access, fuse, and consume cross-domain and
multi-scale data, models, and observations independently from
data sources, enabling data analysis and tools for data-driven
decision making.

In the next few years, advances in technology should
produce mechanisms specifically developed to provide cost-
effective mechanisms for data management and AI also over
the Edge in line with the distributed [9] and federated ar-
chitecture paradigms [10]. Additional capabilities must be
implemented to facilitate the discovery and evaluation of Edge
AI data and any other useful data sources available online
(as example, Earth Observation repositories, apps for citizen
science initiatives), as well as their federation and easy “plug-
in”. Innovative modelling tools based on “no coding” approach
will assist and make semi-automated the activities required to
fuse, transform, refine, and harmonise raw and unstructured
data in the standard data models, in order to be used by any
data consumer. New data models for biodiversity information
must be defined to contribute to the reference standardisation
programs, such as FIWARE [11].

D. Drone IoT node mobility
OTE pipeline envisions a fleet of intelligent aerial robots

that will continuously and non-invasively survey the city
autonomously building accurate maps, detecting, localizing,
and tracking target objects/events of interest [12]. In order
to operate in a city environment, each aerial robot must be
endowed with all required onboard sensors, computational
resources, and functionalities for fully autonomous operation
including take-off, perch on safe locations to save energy e.g.,
on traffic lights, safe navigation, trajectory planning, flight
control, and advanced intelligent perception methods. In order
to achieve safe and autonomous navigation of aerial robots,
the platforms should include propeller protections and energy-
absorption components. Also, they must be endowed with
flight safety supervision that will detect mechanical, sensor,
or software malfunctioning, to timely take safety actions.
Aerial robots should also endowed with fully autonomous
navigation capabilities including mission planning, trajectory
planning, obstacle detection and avoidance, and autonomous
takeoff/perching. Although all of these challenges have been
studied individually, implementing everything in the same
platform remains a challenge.

The second challenge is how to organise the fleet or aerial
robots as a team. Centralized optimal zone partition robot
fleet planning methods should be used to coordinate the
aerial robots deployed in the site, each assigned with an area
depending on the site geometrical or monitoring requirements.
Multi-robot trajectory planning methods must be used to
define optimal aerial robot trajectories. Obstacle detection and
avoidance methods will monitor the pose and velocity of
each robot to detect risks and timely change trajectories or
command safety actions [13]. Perception-aware aerial robot
planning methods must be developed to optimize the amount
of information gathered during the flight for (a) target tracking
and for (b) map building. During target tracking missions, the
trajectories and planning of the aerial robots of the fleet should
be performed using the real-time greedy optimization of a
utility function that considers the target tracking uncertainty
and also the energy consumption required by the aerial robots.
During mapping missions, the aerial robot trajectories must
be optimized using entirely novel cost-reward utility functions
that trade between the time in building an accurate map and the
energy consumed by the drone fleet. Finally, the robots must
be endowed with autonomous takeoff/perching functionalities
based on visual servoing.

III. TRUSTWORTHY EDGE AI FOR WORLD MODELLING

A. Distributed static 3D world modelling
Smart city missions require accurate real-time updated

large-scale georeferenced maps with geometrical and photo-
realistic content. Cities are complex, unstructured and highly
dynamic environments with poor Global navigation satellite
system (GNSS) reception which poses significant challenges
for autonomous real-time mapping using aerial robots. Dy-
namic objects pose particularly challenging issues in map-
ping [14]. Differentiating between static and dynamic objects



for mapping requires providing semantic information to the
objects in the map. Besides, since several drones will be
used in smart cities, multi-drone mapping techniques are
necessary, which also will allow faster mapping of large-
scale environments and will enable sharing the maps between
different drones to improve mapping accuracy.

The research challenge is to develop multi-drone mapping
functionalities with advanced AI-based object recognition that
will provide semantic content. The local mapping method on
each IoT drone node should be based on a multisensor Simul-
taneous Localization and Mapping (SLAM) scheme capable
of fusing robot 6-DoF location (e.g., computed by GNSS
& inertial measurement unit (IMU)), 3D light detection and
ranging (LIDAR) scans, and image features (e.g. SIFT, SURF,
ORB) [15]. Multisensor optimal data registering methods may
be used to generate minimum-drift georeferenced maps with
geometrical and pixel information. Multisensor SLAM meth-
ods are naturally robust to lack of features, and may integrate
GNSS measurements if available. In case of lack of GNSS, the
SLAM must integrate LIDAR and cameras providing maps of
sufficient accuracy. Next, the semantic information provided
by the AI perception methods must be added to the map.
Finally, local map sharing and merging techniques must be
developed in order to enable creating an unique global map
resulting from the entire drone fleet. The IoT nodes can be
also localized and mapped by the drones using radio range
information, see e.g., [16]. The identifiers and locations of
these IoT nodes may be used as reference to improve the
accuracy of local map merging.

B. Semantic video instance segmentation

The dynamic/static node operational environment will have
to be on-the-fly-analyzed from a semantic standpoint, us-
ing dynamically acquired camera input and AI methods for
computer vision. The research challenge includes the devel-
opment of corresponding DNN modules that will perform
video instance segmentation, in real-time. The state-of-the-
art approach is to employ Transformer [17] or CNN neural
architectures [18] and to exploit adversarial learning strategies
to compensate for occlusions or distortions [19] and/or employ
novel training goals that augment regular supervised training
with unsupervised [20] or adversarial objectives [5], in order to
increase accuracy in potential use-cases. Another challenge is
to accelerate those algorithms for on-board execution without
sacrificing accuracy, e.g., by combining multitask training
on auxiliary tasks (such as scene geometry extraction by
unsupervised depth map estimation).

C. Dynamic Multi-view Target detection/recognition

A global 3D map can be derived after fusing/merging
information from the instance segmentation performed by each
camera-equipped IoT node. It should contain the location of
each tracked target in a common 3D coordinate system at
all times. This can be exploited in repeated post-hoc steps
of fine-tuning the instance segmentation models in the IoT
nodes, using on-line continual learning [21], during mission

execution. For example, the 3D location of each target can
be prospectively projected using the camera parameters of
each IoT node, while the spatial difference of the resulting
target 2D location (in pixel coordinates) from the last instance
segmentation map prediction can be used to form a loss value,
to be back-propagated through the corresponding instance seg-
mentation DNN. The end-result will be a gradual building of
increased DNN robustness at each operating drone IoT node,
through indirectly exploiting the collective fleet intelligence.

D. Robustness in edge node perception

One definition of robustness refers to the ability of a system
to withstand or overcome input or parameter perturbation
(hardware malfunction, data acquisition/transmission noise,
adversarial attacks etc.). Assuming a system y = f(x;θ)
(model f with inputs x, parameters θ and outputs y), ro-
bustness is quantified by determining its tolerance to per-
turbation ∥p∥ < ϵ per se, i.e., f(x;θ) = f(x + p;θ) or
f(x;θ) = f(x;θ + p). Recently, particular interest has been
paid to the problem of adversarial robustness, that involves
studying and addressing the inherent model weaknesses that
allow adversaries to easily fool a neural network classifier by
carefully crafting input perturbations, the so-called adversarial
attacks.

In urban environments, there are also adversarial threats
present in the physical world [22] (e.g., stickers, people
hats/masks, dirty road signs etc.). The root causes of DNN
model weaknesses that make them vulnerable to adversarial
threats, have not been properly identified yet, however, they are
somehow related with the unified deep learning optimization
procedure that involves feature learning and classifier learning
at the same time. Robustness to adversarial attacks in visual
classification problems can be achieved both by detecting
them by exploiting one-class classification models [1], or
by robustifying the DNN learning process by incorporating
geometrically-inspired optimization criteria in the training
phase [23]. Nevertheless, the problem remains far to be solved,
especially in relevant visual perception tasks (e.g., object
detection, semantic segmentation), which lie in the core of
OTE pipeline. In the near future, the problem variants in visual
perception tasks must be addressed in order to devise entirely
novel neural network training strategies, robust to adversarial
threats.

E. Explainable event detection/recognition

In environmental monitoring scenarios there is a need to
identify changes/events related to e.g., garbage disposal in
a previously clean environment. The challenge of this task
is that both the environment and the event are very difficult
to model/predict, i.e., no easily identifiable features can be
extracted in some cases (e.g., at the sea), or the exact opposite
may happen in other cases (places at the peripheral districts
of the city parks). Assuming that a distribution about the
relevant environment has been captured using an appropriate
neural architecture e.g., neural autoencoders based on 3D
convolutional, Long short-term memory (LSTM) [24] and/or



Transformer-based architectures [17], events can be identified
in the cases where the perceived distribution changes dramat-
ically.

For the modelling part, two different classes of algorith-
mic approaches may be employed, i.e., (a) the unsupervised
modelling case and (b), the supervised modelling case. In
the former case, it is assumed that the instances of “nor-
mal” sensed data can be used to reconstruct a significantly
longer temporal sequence (e.g., video), while an event can
be detected when the sensed data no longer reconstructs the
previous sequence with the same quality. This problem is
typically known as the Out-of-distribution detection [25]. For
the latter case, one-class classification methods [26], [27]
may be employed to model the normal distribution of the
sensed data. Events can thereby be identified by the output
of the novelty detector (i.e., the one-class classifier). One
of the most important challenges is that the analysis of the
temporal axis introduces significant computational/memory
burdens to the modelling problem. This can be addressed by
many different approaches e.g., clipping similar sensing inputs,
designing tailor-made lightweight modelling architectures and
optimization options, as well as by offloading computations to
stronger computational grid units (e.g., to the Cloud).

F. Model-based AI: modeling spatial dynamics

In many applications the processes of interest, such as
city traffic density, or concentration of air pollutants over a
residential area, vary both in time and space. A brute-force
approach to capture these variations typically implies a high-
resolution spatial and temporal sampling of such processes.
Unfortunately, such an approach turns out to be quite im-
practical: while in some cases temporal sampling can be real-
ized thanks to modern high-speed processing and acquisition,
spatial sampling can be very costly. For instance, air quality
monitoring in the city relies on sparsely distributed measure-
ment stations equipped with chemical sensors that provide
only in-situ measurements. Moreover, non-visual sensors, and
in particular chemical sensors, such as those used for gas
or particle measurements, are often characterized by a low
information acquisition rate. Specifically, measurements with
a frequency in fractions of Hz per sampling point are not
uncommon. This is a challenge for a robotic system relying
on such sensors for decision making and inference.

The solution investigated in OTE pipeline foresees augmen-
tation of the available fixed sensing networks with intelligent
drone-based IoT sensor carrying platforms. These can be dis-
patched to optimal measurement locations and augment fixed
sensor networks. For a successful and efficient deployment
of such drone IoT sensors for these purposes, deficiencies of
sensors must be compensated by prior information in terms of
process models describing the dynamics of the phenomenon of
interest and related inverse modeling approaches. The choice
of the model is essential for this purpose.

Two approaches can be typically used for this purpose. On
the one hand, it is (a) data-driven approaches [28], where
neural networks or other non-parametric techniques are used.

These methods are quite versatile and powerful provided suf-
ficient training data is available, which is not always the case.
On the other hand, (b) physics-based models [29] can be used.
For instance, for modeling a distribution of chemicals/particles
in the air, a model based on convection-diffusion partial
differential equation can be used. To be precise, the physical
model for the gaseous material propagation in some region
Ω of interest within the time frame (0, T ) can be represented
with a time-dependent convection-diffusion equation in 3D as

∂tu− ϵ∆u+ (βw + βr) · ∇u = qδs, (1)

supplemented by appropriate boundary and initial conditions.
Here, ∂tu denotes a partial time-derivative of a concentration
u ≡ u(x, t) of some material of interest, ϵ is diffusivity
of the material, ∆ is a Laplace operator, βw and βr are
wind velocity fields due to wind and, e.g., a drone taking
the measurements, respectively, and qδs is a function that
models a spatial distribution of material sources. Although (1)
has relatively few parameters and can describe the physics
of the process quite accurately, estimation of these param-
eters from measurements is a numerically complex inverse
problem. Therefore, researchers should combine data-driven
modeling approaches and physics-based models in a unified
framework known as model-based machine learning. Such a
combination either incorporates data trainable elements into
the equations of the spatial dynamics of the process, or trains
the network subject to constraints imposed by the differential
equation (which are also known as Physics-Informed Neural
Networks [30]). For instance, to represent the influence of
the drone on the local wind conditions we will rely on data-
driven models instead of employing physical models, such
as the compressible Navier-Stokes equations. The goal is to
obtain numerical representations that are accurate enough, yet
sufficiently tractable to be estimated and learned in real-time
using computing resources on the drone. The latter is an
essential element for deriving optimal sampling strategies for
the robots. This can find application in the cases of air quality
monitoring in a smart city environment.

G. Multimodal robust world sensing and perception

Given models of the process dynamics and sensor data, the
next step is to apply algorithms to cooperatively learn model
parameters and thus “understand” the world as “seen” by the
robots. The intention is not to collect the measurement data at
a central location, but instead use methods of distributed signal
processing and estimation. In this way “locally” collected
measurements or computations can propagate through the
whole network without the need of a central server. The
advantage of such an approach is the absence of single point
of failure of the system. This failure does not need to be
physical breakdown of a component. Network connectivity
to a central computer can disrupt the system functionality
in centralized architectures. Distributed systems are robust to
such disruptions.

The two basic concepts of distributed signal processing that
should be investigated are consensus-based [31] strategies and



diffusion-based strategies [32]. Consensus strategies are simple
distributed protocols that allow achieving agreement between
multiple entities in a network on some quantity of interest.
It has been studied extensively in the literature and there are
multiple efficient algorithms that implement, e.g., parameter
estimation using consensus. While consensus is useful for
processing batch data, diffusion strategies are handy for online
or streaming data, when constant adaptation is needed. Both
strategies may be used and compared in the project for solving
inference and learning problems in a decentralized manner.

H. Adaptive and optimal IoT node deployment planning

Adaptive and optimal deployment of IoT and drones aims
at finding sampling locations that (a) accelerate and improve
the accuracy of learning under realistic time constraints, and
(b) using as few measurements as possible. The latter is
particularly important when a limited number of IoT or drones
is available for measurements at a particular time. The most
recent approach follows a so-called reactive strategy that
responds in real time to measurements and adapts the decisions
accordingly. One approach to design such an exploration strat-
egy based on optimal sensor placement problem or optimal
experimental design.

The key assumption underlying these approaches lies in the
fact that due to measurement errors, the estimated physical
parameters of the model, e.g., spatial concentrations of the
material determined as solutions to the inverse problems, can
only be approximations. In order to improve the quality of
those estimates, an exploration strategy can be defined as a
solution to a sequential optimal design problem with two-
level structure, where the size of the confidence regions is
minimized with the passing of time around the estimated
parameters by optimizing the measurement or deployment
positions. In this regard, the simpler, yet still realistic, situation
is that the measurements are stationary and the process change
very little during the measuring phase. As a consequence,
determining for each measuring phase only requires a set of
measuring positions in space (but not in time). This can be
done in a sequential manner. Specifically, alternate measure-
ments from mobile sensors and other fixed sensor networks
can be employed, with online fusion of the measurements and
solution to the inverse problem for estimating the parameters
of interest and identifying the measuring points for the next
measuring phase by online solving an optimal design problem.
Hence, the optimal design problem in each step represents the
upper-level problem compared to the inverse problem, which
is the lower-level problem.

IV. EDGE/CLOUD SYSTEMS INTELLIGENCE

A. Services organization, orchestration and provisioning

Production systems of IoT nodes will be often reconfigured
in the future as part of the engineering processes. This aspect
needs to achieve adequate orchestration and security levels
in an automated way, reducing the current static procedures
and manual efforts [33]. Indeed, even though several auto-
mated deployment of applications have been developed, the

management of deployed applications in a multi-cloud and/or
IoT-Edge environment is only partially covered by existing
approaches [34]. For example, MEDAL [35] is an intelligent
solution that facilitates building and managing data workflows
on top of existing flexible and composable data services,
seamlessly exploiting and federating IaaS/PaaS/SaaS resources
across different Cloud and Edge environments. Another so-
lution in literature is [36] establishing a dynamic network
virtualization technique enabled Service Function Chain (SFC)
orchestration framework. It operates maximizing the total
utility and decomposing it into two sub-problems, i.e., SFC
selection and dynamic SFC orchestration.

In OTE, we aim to harmonize the resource provisioning
and services deployment over both Cloud and Edge, proposing
a methodology based on cost functions driven by AI-models
[37]–[39]. Microservice abstractions enable the support of a
virtual environment that can be adapted on the basis of the
available hardware equipment, where each microservice is
autonomous from a development and deployment standpoint.
Scaling and managing these types of systems, given the re-
source heterogeneity and the privacy and security constraints,
is complex, so a novel orchestrator is necessary to leverage
such dynamic and heterogeneous computing infrastructures.
Therefore, one should extend the traditional “cloud-only”
notion of run-time control and reconfiguration to resources that
are deployed and available at the Cloud-Edge-IoT continuum.
This requires the utilization of Machine Learning techniques
for developing predictive models to forecast workload inputs
and performance metrics across multiple, co-located micro-
service on Cloud-Edge-IoT resources, in order to understand
the nature of their composition and decide which micro-service
can coexist and can be deployed together.

B. Distributed data analysis in the Cloud-Edge-IoT continuum

In a data siloed world, most of the infrastructures, services
and applications adopted a self-centered design criterion ad-
dressing only their specific challenges and needs deferring any
issues related to the interaction with other services. Conse-
quently, the data silos can operate only within a predefined
set of protocols, technologies, and data models. This lack of
interoperability gets the solutions in a closed (or semi closed)
ecosystem and hampers the effective interaction with new
services and solutions that could tackle innovative operational
purposes. In the continuum, the above-mentioned issues are
furtherly stressed and made more complex to address by the
dynamic and hybrid contexts that the continuum represents,
where the focus is to make inter-operable entities (i.e., data
producer nodes) forming Distributed Data Ecosystems (DDE).
In this sense, we can identify local data interoperability issues
at data producer node level and global data interoperability
issues that require the gathering and the processing of data
from different heterogeneous data producer nodes (i.e., dif-
ferent cloud nodes of a federation, edge nodes). Therefore,
nowadays there is more and more the need to build solutions
that “enable” the data interoperability among distributed het-
erogeneous data provider nodes (both edge and cloud nodes) in



the continuum exchanging harmonized and normalized data in
a secure and fair manner for the common good, using standard
data models, tools for data quality and data integration incor-
porating augmented data catalogues in multidomain trusted
data spaces. In this regards, Reinforcement Learning (RL) is
often used as main methodology. Indeed, it was used to build
a distributed-learning-based vehicle routing decision algorithm
to adaptively adjust vehicle routing online [40], as well as to
make a distributed Multi-Armed Bandits (MAB) model for
developing a dynamic network topology change [41].

In OTE, the DDE approach allows manipulating and pro-
cessing the data (also applying AI) in several “mid-points”
located between the data producer and the cloud. Some
of these mid-points can be the edge, the fog or, still, the
cloud. The DDE architecture allows exchanging harmonized
and normalized data in the continuum in a secure and fair
manner according to interoperable data structures compliant
with common and standardised data models.

C. Security and privacy concerns over services and data

Nowadays, with the exponential growth of connected de-
vices over the Internet, security is one of the major concerns
for network communications between heterogeneous parties
(i.e., people, devices, etc.). Security is not just about protecting
the confidentiality of messages exchanged between parties,
but it also involves integrity, and availability. Most secure
communications rely, among others, on a centralized trusted
server (or a group of servers) architecture. This carries an
important security bottleneck: the server delegated to provide
services represents a single point of failure (SPoF), being
exposed to well-known Distributed Denial of Service (DDOS)
attacks. To mitigate such a risk, multiple strategies have been
proposed, but these cause an increase in costs for maintaining
a security infrastructure. Central server architecture is limited
in terms of security because it is susceptible to Man-in-the-
middle (MITM) attacks. This type of attack can take place in
different forms:

• as a malevolent user who takes the control over the com-
munication channel between legitimate parties sending
altered messages to them;

• as a service malfunction refusing to deliver data to
one of the parties, causing the incomplete exchange of
messages which can drastically alter the meaning of the
communication.

Moreover, this configuration is a SPoF because it is sufficient
to attack the centralized server (or the cluster of servers)
through a DDOS attack, making the entire service unusable.
Although this is a well-known attack and it has origin at the
beginning of the IT era, it is still one of the most used and cru-
cial types of attack. DDOS consists in obtaining the disruption
of services by attempting to limit access to a machine, making
a network incapable of providing normal service by targeting
either the network bandwidth or its connectivity. These attacks
achieve their goal by sending to the victim host a stream
of packets that saturate his network or processing capacity,
denying access to his consumers. Nowadays, using simple and

lightweight tools, malevolent users can use malicious code
into unaware victims to leverage a huge number of machines
ready to run a distributed version of such an attack. These
attacks consume some critical resource at the target and deny
the service to legitimate clients as the attack volume can be
larger than what the system can handle. There are multiple
strategies to prevent such attacks, but these have an immediate
correlation with the increase of cost to maintain the secure
infrastructure. During a DDOS attack, the malevolent user can
gain root permission to the system or database and add or
remove data from the system making it difficult to identify
what is legitimate and what is altered. DDOS is just an
example of possible distributed attacks, but the same principle
applies for almost all of them.

D. Streaming data analysis on Edge/IoT computing resources

Although data stream processing is a paradigm with a
long tradition [42], traditional systems like Apache Storm and
Flink, which have a wide popularity and support continuous
streaming, target homogeneous clusters and clouds and are
not designed for the Edge [43]. As a matter of fact, the
shift to the Edge/IoT advocates new software engineering
techniques to develop efficient streaming runtime systems,
which should exhibit a high-degree of reconfigurability of
the underlying implementation to leverage different kinds of
resource-constrained hardware components in an efficient way
and in face of dynamic workload, networking, and energy
conditions. Recent attempts [44] enhance traditional systems
to fit the constraints of edge resources, by re-implementing
parts of their runtime system introducing explicit scheduling of
streamed data analysis tasks using custom scheduling policies.
However, they represent custom prototypes which require to
be maintained together with the standard code base of the
traditional systems. OTE aims to identify parallel/concurrent
building blocks that can be composed to build complex
streaming applications, and whose internal implementation can
leverage different kinds of resources transparently to the end
user. This idea percolates the consolidated approach of Parallel
Patterns and Algorithmic Skeletons [45] at the implementation
level of the runtime system design of a framework, where each
block describes a recurrent computation or communication
pattern, which can be implemented with efficient mechanisms
and with special focus on the constraints of embedded devices.

V. CONCLUSION

This work described the main research and development
challenges that will arise in the next few years, towards
incorporating trustworthiness in smart city applications. The
research pipeline prescribed technical solutions and all the
components that need to be integrated along the whole span
of Cloud-Edge-IoT computing continuum. Such include the
most recent hardware and software breakthrough technologies
in edge sensing, combined with novel smart city robotics. We
have defined the components of IoT intelligence and how they
can be accompanied with trustworthy AI in order to provide
rich multimodal and collective intelligence, at a fleet level.



In addition, recent advances in cloud computing will allow
the streamlining of the semantic metadata extraction, sensor
processing, services organisation, system orchestration, and
provisioning, considering security and privacy concerns.

The findings of this work can be exploited for designing
entirely novel smart city solutions that tackle a wide range
of important applications, notably in traffic monitoring and
management, human flow monitoring, traffic flow optimiza-
tion, and even for addressing environmental challenges such
as air quality assessment, pollution monitoring, urban-flora
health estimation, and many others. This paper may serve as
a guideline for researchers for assessing their current research
interests within a general purpose smart-city pipeline, that can
also stimulate new ideas for innovators.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement number 871479 (AERIAL-CORE) and 101004605
(DECIDO). This work was also supported by the “GNCS-
INdAM”, the Italian Project FISR ”La rifunzionalizzazione del
Contemporaneo” (CUP J42F16000600001) and the Spanish
Project ROBMIND (Ref. PDC2021-121524-I00) from the Pro-
grama Estatal de I+D+i. This publication reflects the authors’
views only. The European Commission is not responsible for
any use that may be made of the information it contains.

REFERENCES

[1] V. Mygdalis, A. Tefas, and I. Pitas, “K-anonymity inspired adversarial
attack and multiple one-class classification defense,” Neural Networks,
vol. 124, pp. 296–307, 2020.

[2] J. Lin, Y. Li, and G. Yang, “Fpgan: Face de-identification method with
generative adversarial networks for social robots,” Neural Networks,
vol. 133, pp. 132–147, 2021.

[3] K. Brkic, T. Sikiric, Ivan rkac, and Z. Kalafatic, “I know that person:
Generative full body and face de-identification of people in images,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 1319–1328, IEEE, 2017.

[4] P. Nousi, S. Papadopoulos, A. Tefas, and I. Pitas, “Deep autoencoders
for attribute preserving face de-identification,” Signal Processing: Image
Communication, vol. 81, p. 115699, 2020.

[5] C. Papaioannidis, I. Mademlis, and I. Pitas, “Autonomous uav safety by
visual human crowd detection using multi-task deep neural networks,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11074–11080, IEEE, 2021.

[6] C. Symeonidis, I. Mademlis, N. Nikolaidis, and I. Pitas, “Improving
neural non-maximum suppression for object detection by exploiting
interest-point detectors,” in 2019 IEEE 29th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6, IEEE, 2019.

[7] C. Symeonidis, E. Kakaletsis, I. Mademlis, N. Nikolaidis, A. Tefas,
and I. Pitas, “Vision-based uav safe landing exploiting lightweight deep
neural networks,” in 2021 The 4th International Conference on Image
and Graphics Processing, pp. 13–19, 2021.

[8] N. Passalis and A. Tefas, “Learning deep representations with probabilis-
tic knowledge transfer,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 268–284, 2018.

[9] O. Vermesan, R. John, P. Pype, G. Daalderop, M. Ashwathnarayan,
R. Bahr, T. Karlsen, and H.-E. Sand, “Internet of vehicles – system
of systems distributed intelligence for mobility applications,” in Internet
of Things, pp. 93–147, Springer International Publishing, 2021.

[10] A. Mourad, H. Tout, O. A. Wahab, H. Otrok, and T. Dbouk, “Ad
hoc vehicular fog enabling cooperative low-latency intrusion detection,”
IEEE Internet of Things Journal, vol. 8, no. 2, pp. 829–843, 2021.

[11] L. Carnevale, A. Galletta, M. Fazio, A. Celesti, and M. Villari, “De-
signing a fiware cloud solution for making your travel smoother: The
fliware experience,” in 2018 IEEE 4th Int. Conf. on Collaboration and
Internet Computing (CIC), pp. 392–398, October 2018.
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