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Abstract—Powerline inspection operations involve 

capturing and inspecting visual footage of powerline elements in 

electric transmission infrastructures. Current technological 

advantages in the areas of robotics and machine learning are 

towards enabling the utilization of completely autonomous 

Unmanned Aerial Vehicles (UAVs) to carry out such tasks. One 

of the tasks to be addressed is the robust, precise, and fast 

powerline object detection problem. To this end, UAVs are 

required to perform visual object detection autonomously, with 

high accuracy and fast algorithm execution speed, for providing 

image regions of interest to be inspected by humans or even be 

used as input for autonomously controlling the UAV/camera. 

However, the limited computational resources of the on-board 

devices of such systems heavily affect the type of neural network 

architectures that can potentially be deployed. In this work, we 

study state-of-the-art object detectors in an attempt to find an 

acceptable trade-off between detection accuracy and inference 

speed that will allow the exploitation of UAVs for autonomous 

powerline inspection purposes. To this end, we publicly release 

a powerline inspection dataset and state a benchmark 

evaluation with recently proposed object detectors based on 

deep learning. 
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I. INTRODUCTION 

Powerline inspection operations involve gathering 
detailed video footage from elevated positions close and 
around powerline elements, such as towers, insulators and 
dumpers. This operation is usually carried out by helicopters 
thus, is accompanied by high logistic costs and complicated 
planning requirements (mostly linked with the determination 
of safe take-off/landing spots) and personnel involved (pilots, 
cameramen). Captured video footage is thereby inspected by 
appropriately trained human workers. Over recent years, 
camera-equipped Unmanned Aerial Vehicles (UAVs) have 
been successfully utilized in many visual tasks such as sports 
cinematography [1], media production [2], road traffic 
surveillance [3], and search and rescue missions [4]. One such 
related and emerging task is the linear infrastructure 
inspection [5], where UAVs may potentially provide added 
operation value when compared to traditional inspection 
methods by minimizing the personnel involved and increasing 
the operational efficiency.  

In this paper we focus on the object detection task, where 
the goal is to visually localize, identify and monitor specific 
elements and components in high-voltage transmission lines. 
We argue that this task poses challenges that may not be 

present in standard benchmark datasets such as MS-COCO 
[6]. More specifically, the successful detection of powerline 
elements requires high precision in both small and big 
powerline elements appearing on the same image frame (e.g., 
towers and insulators), robustness in difficult illumination 
conditions (sometimes even against the sun), and the ability to 
discriminate visually similar and small elements on the 
powerline (e.g., insulators and dumpers) while these elements 
may have minimal contrast and chromatic differences. In 
order to address the aforementioned task and the associated 
challenges our attention is focused on state-of-the art methods 
for object detection commonly employed in UAVs, including 
the Single-Shot Detector (SSD) [7] and the You Only Look 
Once (YOLO) [8] detector. To the best of our knowledge, 
none of the above mentioned Deep Learning-based (DL) 
detection methods have been deployed in online UAV 
powerline inspection tasks. 

As already mentioned, the goal of this paper is to utilize 
UAVs and DL in order to detect, in an intelligent manner, 
elements and components most commonly found in powerline 
grids. Recent technological progress has led to the production 
of such affordable UAVs but the limited computational 
resources of such on-board devices are significantly 
narrowing the performance of any DL-based detection model 
hence, rendering their straightforward deployment rather 
challenging [9]. An additional bottleneck in deploying DL-
based models for powerline inspection is the lack of publicly 
available datasets for the desired use case. To this end, we 
propose the AERIAL-CORE powerline inspection dataset for 
training and evaluating our studied detection models, while 
attempting to find an acceptable trade-off that will facilitate 
their immediate deployment on UAVs. 

The remaining of this paper is organized as follows. 

Section II overviews the state-of-the-art in object detection 

and focuses on methods benchmarked in the proposed 

dataset. In Section III, we analytically describe the motivation 

and details of our proposed powerline inspection dataset, 

along with the arising difficulties in the powerline element 

detection application scenario. In Section IV, we present the 

experiments conducted and discuss the obtained results. 

Finally, Section V draws our conclusions. 
 

II. OBJECT DETECTION 

The task of object detection consists of classifying and 
localizing semantic objects of interest depicted in an image 
frame, in the form of rectangular Regions of Interest (ROIs), 



 

 

commonly referred to as bounding boxes. In the linear 
infrastructure inspection application scenario, detection 
involves the precise localization of powerline elements and 
components on the power transmission lines (i.e., insulators, 
dumpers and towers). The most typical way of addressing 
these objects is through predicting a set of bounding boxes 
associated with class labels. Given a set of classes 𝒞 = {𝒞𝑖 =
1,… ,𝑚} and an image 𝐱 ∈ ℝ𝑛 the detection model �̂� =
𝑓(𝐱; 𝜃) predicts (assuming only one object instance) an output 
�̂� = [�̂�1

𝑇 , �̂�2
𝑇] consisting of: (i) a class vector �̂�1

𝑇 ∈ [0,1]𝑚, and 
(ii) a bounding box parameter vector �̂�2

𝑇 = [𝑥, 𝑦, 𝑤, ℎ]𝑇 
corresponding to object ROI. 

State-of-the-art performing object detection methods rely 
on the power of deep Convolutional Neural Networks 
(CNNs), which are very effective in visual data classification 
tasks. CNN object detection essentially relies on the two-class 
classification of local image regions in the UAV camera video 
frames, of whether some specific target object is depicted or 
not. This problem is virtually impossible to be solved 
exhaustively, since almost infinite combinations of localized 
image areas can be derived. Therefore, only a subset of such 
regions is examined during a detection step. Depending on 
whether or not they rely on region proposals [10], CNN object 
detection methods fall into one of two categories, namely two-
stage and single-stage detectors, respectively. Finally, a Non-
Maximum Suppression (NMS) step is ultimately performed to 
eliminate multiple detections of the same object in 
overlapping regions. 

Preliminary methods such as Fast R-CNN [11], relied on 
image processing algorithms such as Selective Search [11] for 
producing region proposals, which was performed prior to the 
extraction of CNN features on each image proposal, or after 
extracting features once for each image, respectively. Later 
on, Faster R-CNN [10] replaced the Selective Search process 
with Region Proposal Network (RPN), that learns to predict 
object proposals using an optimization procedure, based on 
the outcome of regions proposals that were finally selected or 
discarded by its predecessors. Despite the performance 
improvements, detectors based on region proposals are still 
not fast enough to be implemented on drones. 

 Perhaps the most prominent state-of-the-art object 
detection approaches that could achieve an adequate 
performance in the aforementioned application scenario, best 
reconciling between detection accuracy and inference speed, 
belong to the family of single-stage object detectors. Such 
single-stage object detectors, e.g., SSD [7], CornerNet [12] 
and YOLO [8] treat the detection task as a simple regression 
and classification problem by receiving an input image and 
simultaneously predicting class probabilities and bounding 
box coordinates. We focus our study on two state-of-the-art 
single-stage detectors, namely the SSD [7] and YOLOv4 [13] 
detectors, and the recently introduced Detection with 
Transformers (DETR) [14] method that simplifies the 
detection pipeline. SSD utilizes a set of predefined boxes, 
called anchors, of different aspect ratios and scales in order to 
predict the presence of an object in an image. SSD captures all 
the necessary computations in a single network, meaning that 
a single feed-forward pass of an image suffices for the 
extraction of multiple ROIs with coordinate and class 
information. In [15], SSD was pitted against a number of two-
stage detection methods and amongst the findings was that 
when combined with Mobilenets [16] and Inception v2 [17] 
feature extractors, it prevailed in terms of speed at the cost, 

however, of lower detection precision. YOLO [8] is another 
family of fast single-stage object detectors. Similar to SSD, 
YOLO utilizes anchors as a set of fixed candidate regions in 
order to directly predict detections. YOLO works by dividing 
an input image into a standard 𝑆 × 𝑆 grid and for each grid cell 
predicts a number of bounding boxes accompanied with 
confidence scores and class probabilities. YOLO relies on 
custom backbone architectures for feature extraction. Since its 
initial proposal, YOLO has undergone a number of 
improvements with its latest version, YOLOv4 [13], 
achieving superior performance in both time and accuracy. 

As mentioned, the above methods treat the detection task 
as a combination of classification and bounding box 
regression heavily relying on some trivial hand-crafted 
components such as anchor generation, and NMS for 
collapsing overlapping bounding boxes. However, the 
recently introduced DETR, views object detection as a direct 
set prediction problem that completely eliminates the need of 
any geometric priors. DETR incorporates an attention 
mechanism in the form of a Transformer [17] architecture in 
the overall pipeline. DETR initially passes an image through 
a backbone in order to extract feature representations which 
are subsequently fed into an encoder that outputs higher-level 
features with attention information. The decoder then takes a 
fixed number of learnable positional embedding as object 
queries and additionally attends to the output of the encoder. 
Finally, DETR passes the normalized output of the detector to 
a simple multi-layer perceptron network that predicts either a 
detection, meaning class plus bounding box, or a "no object" 
class. 

 

III. POWERLINE ELEMENT INSPECTION 

Camera-equipped UAVs deployed with efficient DL-
vision based models are able to collect data and perform visual 
analysis for both offline and online inspection, in conjunction 
with a human aerial work crew, to quickly identify and repair 
any damaged or faulty components in the powerline. 
Traditionally, these inspection tasks have been carried out by 
human operators and helicopter-assisted surveys, sometimes 
days or weeks after the initial flight. Hence, UAV-enabled 
powerline inspection has the potential of reducing operational 
risks, time and costs associated with the aforementioned 
conventional methods. In order to provide this added value, 
the detection task performed on-drone needs to be carried out 
as efficiently and accurately as possible. 

As already mentioned in the introduction section, DL-
vision based powerline inspection comes with quite a few 
challenges. Maybe the most prominent challenge is the 
requirement to simultaneously detect small and big electrical 
components that appear from short and long shooting 
distances, diverse viewing angles, and with various 
illumination conditions. Further challenges are imposed when 
these objects are clutched against an indistinguishable 
background or when distortions are produced due to difficult 
lighting conditions. It should also be noted that some electrical 
components (e.g., dampers and insulators) visually appear in 
similar chromatic color ranges and have similar shapes, 
sometimes rendering them indistinguishable even to humans, 
especially in low-resolution images. Note that low-resolution 
images are typically fed to DL models in embedded devices, 
due to computational and memory limitations. Moreover, in 
order to accurately detect the desired powerline elements, DL-



 

 

 

Figure 1. Image samples of the AERIA-CORE powerline inspection dataset and elements detected by DETR detector. The dataset contains a 

high  variety of image shots. 

vision based models usually require a large amount of 
training data. To the best of our knowledge, there are no 
publicly available datasets that are big enough in order to 
provide satisfactory training results. Individual researcher 
efforts so far, such as the CPLID dataset [19] only include few 
hundred images without capturing realistic scenarios (they are 
captured from fixed distance above the powerline). 

To this end, we collected the AERIAL-CORE powerline 
inspection dataset, consisting of 11587 RBG images, acquired 
from video footage of a realistic aerial inspection performed 
by a helicopter, operating above and around the area 
surrounding the power lines. The captured data are very 
diverse, in the sense that they include image frames from 
several high-transmission lines, shot from different viewing 
angles, and from variable distance from the powerline 
elements of interest. The dataset was annotated with objects 
most commonly found in high-voltage transmission lines, i.e. 
insulators, dumpers and electric towers. The photographic 
data have been annotated in a per-frame basis with ROIs of 
the aforementioned object classes using specialized software. 
This dataset, which will be made publicly available, was 
constructed in order to train and evaluate our choice of 
detection methods mentioned in the previous section. Table 1 
shows the performed dataset split as well as some additional 
properties of our dataset.  Examples of the dataset along with 
visual results of the experimented detection models are 
presented in Figure 1. 

TABLE I.  TRAINING/EVALUATION SPLIT AND ADDITIONAL 

PROPERTIES OF THE AERIAL-CORE DATASET. THE ANNOTATION TYPE REFERS 

TO ANNOTATING THE IMAGES WITH BOUNDING AS WELL AS CLASSIFICATION 

LABELS. 

#Training images #Test images Size Annotation  

8422 3165 1280 x 720 BB+label 

IV. EXPERIMENTAL STUDY 

In this Section, we discuss the experimental setup and 
report results offering a speed/accuracy trade-off analysis for 
the benchmarked object detectors. Inspired by [15], we tested 

our models on different configurations by alternating 
components such as the feature extractor and input image 
resolution. For evaluation metrics, average precision (AP) and 
frames per second (FPS) were used to record detection 
accuracy and inference speed, respectively. For all models, a 
COCO pre-trained model was used for capturing general 
features, which was then fine-tuned on the AERIAL-CORE 
powerline inspection dataset in order to capture task specific 
patterns. The comprehensive results of our experimental study 
are reported in Table 2. For FPS measurement, we obtained 
results using an on-board UAV device with limited 
computational resources, namely an Nvidia Jetson Xavier 
AGX, and also a powerful desktop Nvidia 2080 Super GPU. 

For our choice of feature extractors, we experimented with 
both heavy architectures such as the Resnet50 [20] and more 
lightweight ones such as the Mobilenet v2 [16] and Inception 
v2 [17]. All remaining standard parameters settings regarding 
each individual neural network  (e.g., learning rate, weight 
decay) were set equal to the values proposed by the respective 
authors. In the case of SSD, when fixed input size is used, i.e., 
256 × 448, we obtain the best recorded FPS when using 
Mobilenets v2 as feature extractor, i.e., 17 FPS, while also 
achieving the best average precision, i.e., 50.1 average 
precision. Regarding YOLOv4, we experimented with a 
single input size and one backbone, i.e., the CSPDarknet53 
[21]. Although YOLOv4 achieves only 41.6 average 
precision, it manages to outperform every other detection 
method in terms of speed achieving a real-time performance 
of 26 FPS. Finally for DETR, we conducted experiments with 
Resnet50 as a feature extractor and for different input sizes. 
We notice that when compared to SSD with the same 
backbone and for the same input size, DETR outperforms SSD 
in speed readings achieving 12 and 8 FPS, for 256 × 448 and 
448 × 796 input sizes, receptively, while vastly 
outperforming it in terms of detection accuracy achieving 52.4 
and 56.3 average precision. 

Out of these experiments, we can conclude that up to date, 
only YOLOv4 method has the potential of being applied in a 
realistic UAV scenario, due to its ability to run in real time in 



 

 

the embedded platform. Another critical factor for obtaining 
sufficient detection accuracy, especially on small and medium 
objects (e.g., 322< area <962 pixels), is to leverage higher 
input image resolutions, as shown by the performance of SSD 
and DETR methods. This is due to the fact that some 
powerline elements may be visually indistinguishable from 
long distances, hence rendering low input resolutions as the 
most probable cause of most detection failures. 

TABLE II.  COMPARISON OF STATE-OF-THE-ART OBJECT DETECTORS 

USING DIFFERENT BACKBONES AND IMAGE RESOLUTIONS IN THE AERIAL-
CORE POWERLINE INSPECTION DATASET. AVERAGE PRECISION (AP) AND 

FRAMES PER SECOND (FPS) WERE USED AS EVALUATION METRICS. 

Model 

FPS 

2080/Xavier Input Size AP AP50 

SSD Mobilenet v2 136/22 128 x 256 42.2 75.0 

SSD Mobilenet v2 126/17 256 x 448 50.1 82.1 

SSD Inception v2 84/13 256 x 448 48.7 80.0 

SSD Resnet 50 40/9 256 x 448 48.3 73.6 

SSD Resnet 50 31/6 448 x 796 52.3 79.8 

YOLOv4 Dark53 91/26 256 x 448 41.6 83.5 

DETR Resnet50 45/12 256 x 448 52.4 83.1 

DETR Resnet50 35/8 448 x 796 56.3 86.0 

 

V. CONCLUSION 

 In this work we tackled the task of powerline inspection 
by utilizing UAVs and DL object detection approaches. We 
discussed why powerline inspection is a rather challenging 
task, even for conventional inspection methods, and 
demonstrated how UAVs can help alleviate certain 
limitations. To further address this task, we created a 
powerline inspection dataset for training and evaluating the 
state-of-the-art object detection methods. Finally, we 
investigated the behaviour of those methods by offering a 
speed/accuracy trade-off analysis, while focusing on their 
performance on devices with limited computational resources. 
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