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Abstract—Gesture recognition, i.e., classification of videos
depicting humans who perform hand gestures, is essential for
Human-Computer Interaction. To this end, coupled Convolu-
tional Neural Networks-Long Short-Term Memory architectures
(CNN-LSTMs) are employed for fast semantic video analysis,
but the typical transfer learning approach of initializing the
CNN backbone using pretraining for whole-image classification
is not necessarily ideal for spatiotemporal video understanding
tasks. This paper investigates self-supervised CNN pretraining
for a novel pretext task, relying on spatiotemporal video frame
corruption via a set of low-level image/video processing build-
ing blocks that jointly force the CNN to learn to complete
missing content. This is likely to coincide with visible moving
object boundaries, including human body silhouettes. Such a
CNN parameter set initialization is then able to augment ges-
ture recognition performance, after retraining for this video
classification downstream task, without inducing any runtime
overhead during the inference stage. Evaluation on a gesture
recognition dataset for autonomous Unmanned Aerial Vehicle
(UAV) handling demonstrates the effectiveness of the proposed
method, against both traditional ImageNet initialization and a
competing self-supervised pretext task-based initialization.

Index Terms—Self-Supervised Learning, Gesture Recognition,
Convolutional Neural Networks, Long Short-Term Memory

I. INTRODUCTION
Deep learning is a prominent area of AI research that

is applicable to a wide variety of domains (e.g., medicine,
financing, media and robotics [16]–[19], [23], [24], [29]).
However, Deep Neural Networks (DNNs) require massive
amounts of labeled training datasets, to avoid overfitting and to
retain accuracy at the inference stage. Transfer learning offers
a partial solution. A DNN is initially trained on a well-known,
public, large-scale benchmark dataset for solving a basic task
(e.g., object recognition from an entire image). The very large
size of this dataset minimizes the chance of overfitting, even
for very complex neural models. Subsequently, the pretrained
DNN is retrained on the actual task we need, using a small,
domain-specific labeled dataset. Initializing DNN parameters
not randomly, but to the parameter set obtained by pretraining
on the first, generic task, allows immediate transfer of learnt
feature extraction patterns to the actually desired task and,
thus, minimizes the risk of overfitting even with a small
domain-specific dataset.
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When using Convolutional Neural Networks (CNNs), it is
common to initialize the feature extraction backbone CNN
by training it on the ImageNet large-scale dataset for whole-
image classification [3]. Then, small domain-specific labeled
datasets can be used for training on the desired task. ImageNet
pretraining allows the CNN to extract semantically rich and
meaningful features from an image, that are subsequently
further tuned to the desired task. However, generic ImageNet
pretraining may not lead to optimal CNN initialization. This
is particularly evident in video analysis tasks relying on
spatiotemporal data relations. Gesture recognition constitutes
exactly such a problem that is highly significant for several ap-
plication domains, most notably Human-Computer Interaction.
Given a sequence of RGB video frames, gesture recognition
methods predict a gesture class belonging to a predefined set of
supported gestures, thus classifying an entire video sequence.
Various neural architectures have been proposed for handling
this, such as combining CNNs with Long Short-Term Memory
networks (CNN-LSTM), 3D CNNs, CNN-LSTMs that process
precomputed 2D human body skeletons [25] instead of the raw
RGB video frames [26], etc. 3D CNNs are the most accurate,
but they are highly complex models and rather slow during the
inference stage. Therefore, CNN-LSTM architectures are still
commonly employed; typically by initializing the backbone
CNN using ImageNet pretraining, despite the dataset’s static
image nature.

Self-supervised learning (SSL) can be utilized as a possible
improvement over naive ImageNet pretraining. SSL focuses on
extracting high-level, semantic visual representations from the
input data by leveraging automatically created pseudo-labels.
This is performed in a DNN pretraining stage using a so-called
pretext task, i.e., learning to map variants of the training input
data to pseudo-labels that are being automatically generated
from the data themselves. Pretraining the DNN in a regular
supervised manner on a suitable pretext task enforces the
network to learn improved context-invariant features, eas-
ily transferable to another desired downstream task, such
as gesture recognition, thus augmenting its performance on
the latter one by reducing overfitting. In essence, SSL by
pretext pretraining provides us with a better DNN parameter
initialization to be used when training for the downstream task,
therefore giving rise to increased accuracy at the inference
stage, without any architectural modification and/or runtime



overhead.
The most prominent types of pretext tasks involve content

generation (e.g., GANs [11], colorization [41]), context struc-
ture (e.g., jigsaw puzzles [1] and geometric transformations
[6]) or context similarity [38]. Pretext pretraining on images
is usually exploited for downstream tasks like object detection
[22], image classification or segmentation [6], while pretext
pretraining on videos is mostly used for activity/gesture recog-
nition from videos [35].

In this paper, a novel pretext task for SSL CNN pretraining
is proposed. It leverages temporal video information by em-
bedding it in each spatial 2D video frame representation, so
as to increase accuracy in a gesture recognition downstream
task. This is accomplished by suitably processing the input
training video frames of a large-scale benchmark human
activity recognition dataset, so that camera motion is first
eliminated and, then, pixels surrounding spatial interest points
located at the edges of visible moving objects are randomly
corrupted. Subsequently, the proposed pretext task consists in
learning to map each distorted training input video frame to
its original version, thus forcing the feature extraction CNN to
complete missing content by paying attention to video frame
regions likely to depict moving human body silhouettes. A
lightweight CNN can be pretrained in this manner, resulting
in a better-than-ImageNet parameter initialization, and then
employed (as the feature extraction component of a CNN-
LSTM architecture) for regular downstream gesture recogni-
tion training.

II. RELATED WORK

SSL methods can be divided into three categories, based
on the data type used for pretext and downstream training:
image-based, video-based pretext and video-based. The first
two types focus on learning image representations in pretext
pretraining and exploiting them on image-related downstream
tasks. Their difference is that purely image-based/video-based
pretext methods use image/video data in pretext pretraining,
respectively. On the other hand, in video-based SSL ap-
proaches both the pretext and the downstream task concern
videos.

Regarding image-based SSL, [2] adopts one of the most
widely studied pretext tasks, jigsaw puzzle solving. The orig-
inal image is spatially decomposed along a 3 × 3 grid and
transformed into a jigsaw puzzle by shuffling the patches.
During pretext pretraining, the DNN concurrently learns to
identify the permutation indices and classify the original
images. This method is enhanced in [22].Furthermore, image
colorization is performed in [41], prediction of image rotation
and exemplar are exploited in [40], while rotation prediction
is handled as a classification problem in [6]. One-shot view
grid prediction from a single 2D view is the pretext task
posed in [11], while in [38] representations are learnt that are
capable of discriminating among individual object instances.
In [31] synthetic RGB images are leveraged for estimating
instance contour, depth and surface normal. A different mul-
titask approach is [4], advocating the combination of multiple

pretext tasks (relative position, colorization, exemplar, motion
segmentation).

Numerous pretext tasks for obtaining good image repre-
sentations that leverage spatiotemporal information present in
videos have been proposed over time, since videos can capture
scene dynamics unavailable in static images. In [34] image-,
shot- and video-level context is exploited to instill information
from the different video granularities to their representations,
while in [21] motion cues are combined with images in order
to predict possible changes over time. Sequence sorting and
foreground-background segmentation are adopted in [13] and
[27], respectively. Finally, in [37], a siamese-triplet learns to
predict similar representations for two tracked image patches
of the same video and different representations for randomly
sampled patches.

In video-based SSL, where the downstream task also con-
cerns videos, an important milestone was [7], i.e., a pretext
task for learning spatiotemporal video embeddings by predict-
ing the future content. In contrast, video pace prediction is em-
ployed in [36], based on the assumption that video content un-
derstanding is a prerequisite for distinguishing between edited
video variants with different pace. In [39], video clip order
prediction is employed by pairwise concatenating video clip
features extracted using 3D CNNs, while in [12] a Space-Time
Cubic Puzzles pretext task is presented, i.e., the equivalent of
image jigsaw puzzle for videos, only fusing clip features at
the final fully-connected network layers and considering it as
a permutation problem. This is also adopted by [1], which
proposes a novel permutation strategy that preserves spatial
coherence. In an entirely different approach, [35] aspires to
learn spatiotemporal representations by employing prediction
of video sequence motion and appearance statistics.

III. MOVING INTEREST POINT COMPLETION

The method proposed in this paper is essentially a video-
based SSL approach, since both the pretext and the down-
stream task act on video data, but the goal is to obtain good
per video frame representations, as is typically the case with
image-based pretext SSL approaches. Thus, during pretext
pretraining, the CNN learns to embed temporal information
from video content into the individual video frame descriptions
it outputs. Subsequently, this pretrained CNN can be used as
a feature extraction backbone in a typical CNN-LSTM setting
and trained regularly in an end-to-end manner for a video
classification downstream task, such as gesture recognition
from RGB camera feed. The proposed Moving Interest Point
completion pretext task, or MIP completion, is described
below.

Basic image processing/computer vision methods are first
utilized in concert, so as to automatically identify visible video
frame areas most likely depicting moving object edges. The
employed algorithms include optical flow estimation [5], Fast
Fourier Transform [9] and SIFT keypoint detection [14]. These
are exploited as building blocks in the context of the proposed
algorithm, which purposefully corrupts in a very focused and



Fig. 1. Simplified training dataset preparation pipeline for the MIP completion pretext task. Given a video frame F and its three temporally preceding video
frames, a carefully corrupted version F′ is computed. O is the combined optical flow magnitude map, P is the interest point map and M is the moving
interest point map.

specific manner all training video frames of a large-scale
pretext dataset for human activity recognition.

Assuming that the currently processed video is composed
of T consecutive RGB video frames Ft ∈ RW×H×3,
1 ≤≤ T , a set of three dense optical flow magnitude maps
Ot,t−1,Ot,t−2,Ot,t−3 are computed for each video frame Ft,
relative to its 3 preceding video frames Ft−1,Ft−2,Ft−3

1.
Subsequently, considering possible camera motion as unde-
sired dominant noise, we zero-out the DC term of each optical
flow map’s 2D FFT [30] in order to eliminate the influence
of camera motion. Afterwards, each optical flow map is
transformed back to image space and, thus, the filtered optical
flow maps Õt,t−1, Õt,t−2, Õt,t−3 are obtained. Finally, a
single, combined optical flow map Ot is acquired by weighted
summation: Ot = (Õt,t−1 + 0.5 ∗ Õt,t−2 + 0.5 ∗ Õt,t−3)/2.
This initial process provides us with a scalar visible object
motion estimate for each pixel of each video frame.

Simultaneously, an interest point map Pt ∈ RW×H of the
original video frame Ft is computed using the SIFT keypoint
detector [14], although alternative interest point detectors
would most likely be equally acceptable. SIFT keypoints can
nowadays be computed extremely fast on images, with each
one denoting a small, internally consistent image area whose
local texture-wise or illumination-wise variability on multiple
resolution scales makes it a distinctive spatial locus. SIFT
keypoints are typically located at the peaks of blobs and
along the ridges of lines [15], [20], [33], therefore along
visible human silhouettes as well. Each such interest point
is characterized by a center (in 2D pixel coordinates), a
range/area (in pixels), and a strength (a numerical “degree
of interest”). Thus, Pt is a grayscale image of resolution
equal to that of Ft, where all detected SIFT keypoints have
been appropriately marked according to their center, range and
strength.

At the next algorithm step, Pt and Ot are merged into
a single moving interest point map Mt ∈ RW×H , that only
contains SIFT keypoints spatially coinciding with video frame
areas where local combined optical flow magnitude is larger

13 was determined empirically.

that a dataset-specific intensity threshold oc. Finally, Mt is
applied as a mask over the original corresponding video frame
Ft, so that the RGB values of all pixels of Ft which fall
within non-zero regions of Mt are substituted by the values
of randomly selected neighboring pixels, while the rest of
the video frame content remains unaltered. The end result is
F ′

t , i.e., a carefully corrupted version of original video frame
Ft, where image regions most likely depicting parts of edges
of moving objects (thus, including human body silhouettes)
have been randomly distorted in an automated manner, without
relying on any human body location ground-truth information.

Figure 1 depicts a simplified schematic of the overall,
above-described process. This is applied across the entire
pretext training set, with the resulting corrupted video frames
being subsequently employed as input video frames to the su-
pervised pretext task. The corresponding original/undistorted
video frames function as the respective pseudo-labels. A CNN
trained on this task attempts to reconstruct each original video
frame, given as input a corrupted version of itself. Thus,
it learns to focus on missing video content which must be
completed in the output and, due to the targeted nature of
the input corruption, on visible regions that depict moving
objects. Note that the approach may not work correctly if the
pretraining video dataset, or the actual downstream (gesture
recognition) video dataset, contains many rapid scale changes
across consecutive video frames; however this is almost never
the case with regular footage.

IV. QUANTITATIVE EVALUATION
As in the vast majority of SSL approaches for videos,

we chose “split1” of the UCF101 human activity recog-
nition video dataset [32] for pretext pretraining. UCF101
is a benchmark dataset comprised of 13320 videos of 101
different activity categories with spatial resolution 320× 240
pixels. Transferability of the features produced through pretext
pretraining is evaluated by regular supervised training on a
gesture recognition task using a randomly selected subset of
the recently introduced AUTH UAV Gesture Dataset [28],
designed for autonomous drone/Unmanned Aerial Vehicles
(UAV) handling. The employed subset used consists of 275
videos in total, captured both indoors and outdoors, with



static and moving cameras, divided into 6 classes. Its data
were amassed from several preexisting datasets, thus spatial
resolutions vary.

(a) ImageNet (b) MIP completion

Fig. 2. Conv1 filter visualization.

TABLE I
EVALUATION RESULTS ON THE EMPLOYED SUBSET OF THE AUTH UAV

GESTURE DATASET, USING THE CORRECT CLASSIFICATION RATE (CCR)
METRIC.

Initialization CCR
Random 56.90 %

ImageNet 60.19 %
RotNet [6] 60.00 %

MIP (proposed) 64.08 %

Implementation Details. We employed a ResNet-18-based
[8] CNN autoencoder for pretext pretraining. Starting with a
regular ResNet-18 architecture in the role of a CNN encoder,
which is the desired feature extraction backbone network, a
mirror CNN decoder (composed of consecutive deconvolu-
tional layers) was inserted just before the final average pooling
layer. Thus, a CNN autoencoder was obtained and trained
using binary cross-entropy (BCE) loss function for minimizing
the original video frame reconstruction loss. Encoder param-
eters were initialized with ResNet-18 weights pretrained for
whole-image classification on the ImageNet dataset.

Training input RGB video frames from “split1” of the
UCF101 dataset were normalized using ImageNet dataset
mean and std values, resized to 256 × 256 and afterwards
randomly cropped to 224 × 224. Then, the proposed process
for pretext task data preparation (described in Section III) was
followed. The batch size used for pretext pretraining was 64
and a SGD optimizer with momentum 0.98 and weight decay
of 0.001 was employed. The initial learning rate was 0.1,
decaying every 30 epochs, and training was stopped after 200
epochs.

After pretext pretraining, the ResNet-18 encoder was at-
tached as backbone feature extraction network to an LSTM
[10] network with input dimension equal to 4096, i.e., the
length of the feature vector produced by the backbone, 2 layers
of 128 neurons each, and unrolling for 15 time steps. The
entire CNN-LSTM architecture was trained end-to-end for the
desired gesture recognition task on the AUTH UAV Gesture
Dataset, using truncated backpropagation through time (BPTT)

for 100 epochs. Learning rate was set to 0.001, decaying
every 30 epochs. The batch size used was 20 and an SGD
optimizer with momentum 0.98 and weight decay of 0.001
was employed.

Before downstream training, all gesture input videos were
first set to a temporal length equal to 15 video frames, so that
all samples are equally handled by the LSTM network. This
was done by random video frame subsampling, for videos of
length larger than 15 video frames, and random video frame
duplication for videos of less than 15 frames.

Evaluation Results. The proposed MIP completion pretext
task was examined with regard both to the nature of the
representations it produces and their transferability to a ges-
ture recognition downstream task. A widespread approach to
qualitatively demonstrate the image representations produced
by CNNs pretrained on pretext tasks is by visualizing the
filters of their first convolutional layer (“Conv1”). Thus, Figure
2 compares the Conv1 filters obtained by: a) pretraining
the ResNet-18 encoder alone on ImageNet for whole-image
classification, and b) attaching to the ResNet-18 encoder a
corresponding decoder and pretraining the overall model for
the MIP completion pretext task. As expected, ImageNet clas-
sification pretraining provides good gradient/edge detection
convolutional filters, while UCF101 MIP completion pretrain-
ing provides filters sensitive to spatial texture frequency and
appearance. Thus, initializing the CNN for the downstream
task using the proposed method renders the model able to
better distinguish between visible human body regions (which
are characterized by specific texture/appearance patterns) from
the background, or from very differently looking objects.

Quantitative evaluation results on the selected subset of
AUTH UAV Gesture Dataset are shown in Table I. Evidently,
initializing the ResNet-18 part of the CNN-LSTM architecture
for the desired gesture recognition downstream task using
the parameter set obtained by MIP completion pretraining,
gives rise to higher Correct Classification Rate (CCR) than
both ImageNet initialization and than using competing pretext
pretraining [6]. The reported MIP completion pretraining
results were obtained by using a combined optical flow per-
pixel intensity threshold of oc = 100 (falling within the pixel
intensity integer interval [0, 255]) when computing each Mt,
as described in Section III.

V. CONCLUSIONS

This paper presented a novel pretext task for pretraining
a CNN under a video-based self-supervised learning (SSL)
setting, where the intention is to later employ this model as
a per video frame feature extraction backbone for a gesture
recognition downstream task, in the context of a CNN-LSTM
architecture. The proposed Moving Interest Point (MIP) com-
pletion pretext pretraining algorithm, relying on basic image
processing building blocks such as optical flow estimation,
image frequency transform and interest point detection, was
shown to provide better CNN parameter set initialization
than typical pretraining for whole-image classification on
ImageNet, as well as than a competing SSL approach. Ges-



ture classification accuracy was significantly augmented in
a relevant gesture recognition dataset for Unmanned Aerial
Vehicle (UAV) handling, without any modifications to the
lightweight neural architecture or the input data. Thus, overall,
the proposed method showcases the importance of proper,
video-oriented parameter set initialization for CNN-LSTM
architectures trained for analyzing spatiotemporal video con-
tent, when relying on transfer learning for combating CNN
overfitting.
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