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Abstract—This paper presents a 3D human pose estimation
framework based on Deep Neural Networks (DNNs). It builds
upon existing weakly-supervised methods that predict 2D-3D cor-
respondences and improves them by introducing a geometrical-
alignment pre-processing step and a 3D skeleton-refinement post-
processing step. The geometrical-alignment pre-processing step
is applied on the ground-truth 3D human poses and transforms
them, in order to enable the utilized 2D-to-3D skeleton mapping
DNN to be efficiently trained in a weakly-supervised manner.
The 3D skeleton-refinement post-processing step acts on the DNN
outputs and enables the proposed 3D human pose estimation
framework to predict the camera-relative 3D human poses.
Experiments on the widely used public showed that the proposed
framework managed to predict camera-relative 3D human poses
with increased accuracy.

I. INTRODUCTION

3D Human Pose Estimation (HPE) is a very important
Computer Vision topic, especially for human-robot interaction,
as it allows a robot to infer the exact location of all human
limps relative to its position, which enables the successful
interaction between them. Recent advances on autonomous
systems, e.g., autonomous Unmanned Aerial Vehicles (UAVs),
also require accurate 3D human pose estimation from monoc-
ular input, which consists in estimating the 3D coordinates of
a predefined set of human body joints relative to the camera
coordinate system, using a single RGB image as input. For
example, in a real-world scenario where a human worker
cooperates with a camera-equipped UAV, [1], [2], [3], the
autonomous UAV is required to know the exact position of
the human head, body and hands in the 3D world, in order
to deliver a tool to the worker’s hands while simultaneously
keeping a safe distance from the worker’s body and head.

Recent deep learning based 3D human pose estimation
methods [4], [5], [6] utilized the power of Convolutional
Neural Networks (CNNs) to directly predict 3D human poses
from RGB images. However, their success usually depends
on the availability of large-scale annotated datasets and often
fail to successfully generalize to unseen test images, where the
human is depicted under different background conditions (e.g.,
indoor/outdoor) or different camera viewpoints.

In order to overcome the first limitation, many approaches
[7], [8], [9] utilized 2D skeletons to predict 3D human poses.
That is, instead of directly predicting the 3D location of
the human body joints from the RGB image, a two-step
approach was adopted, where 2D skeletons are extracted from
the input image using pretrained 2D body joints estimation
methods [10] in the first step and in the second step, a Deep
Neural Network (DNN) is trained to “lift” the extracted 2D

skeletons to the corresponding camera-relative 3D skeletons.
While this two-step approach managed to increase 3D human
pose estimation accuracy, training the “lifting” DNN with 2D
to 3D correspondences often leads to overfitting, since there
is a limited availability of data annotated with their camera-
relative 3D body joint locations.

In this direction, [11] trained a 2D-to-3D skeleton map-
ping DNN in a weakly supervised manner using Generative
Adversarial Networks (GANs) [12], that was able to predict
accurate 3D skeletons even from unseen camera viewpoints
and motions.

While the weakly supervised training framework of [11]
manages to overcome the overfitting problem, it requires
all camera-relative 3D skeletons to be rotated, scaled and
transformed in order to be aligned with a template, root-
joint-relative 3D skeleton and thus, be suitable for the GAN
training. As a result, the 2D-3D skeleton mapping DNN that
is trained under the weakly supervised framework of [11] is
only able to predicted such “aligned” 3D skeletons, rendering it
incapable to estimate the actual camera-relative 3D body joints
locations. In this direction, the proposed 3D human pose es-
timation framework incorporates a geometrical-alignment pre-
processing step and a 3D skeleton-refinement post-processing
step, which allow the trained DNN to accurately predict the
camera-relative 3D body joints coordinates.

In short, the contributions of this paper are:

• a weakly-supervised framework to predict camera-
relative 3D human poses from single RGB images,

• a geometrical-alignment pre-processing step that al-
lows more efficient training of the 2D-3D skeleton
mapping DNN,

• and a 3D skeleton-refinement post-processing step
that enables estimating the camera-relative 3D human
poses from the DNN outputs.

II. 2D SKELETON-BASED 3D HUMAN POSE ESTIMATION

Many recent 3D human pose estimation methods focus
on directly estimating the 3D body joints coordinates from
2D skeletons in an end-to-end manner using DNNs [7], [13].
However, their impressive accuracy probably stems from mem-
orization of the training dataset, which is typically very similar
to the test set (e.g., regarding camera distance and viewpoints).
To combat this, recent approaches [8], [9], [14] proposed on-
line data augmentation methods to produce new 2D skeleton
data during training and thus, strengthen the trained 2D-to-
3D skeleton mapping DNN. For example, the augmentation



method of [8] is based on a genetic model that applies
mutations to specific joints of the input 2D skeletons during
training. Similarly, [9] utilized GAN based configuration with
a Generator and a Discriminator network, where the first one
generates 2D skeletons to augment the training set while the
latter investigates the validity of the generated 2D skeletons. In
order to generate realistic 2D skeletons, the Generator modifies
three different aspects of input 2D skeletons: a) bone angle,
which changes the angles between the bones themselves (e.g.
upper with lower arm), b) bone length, which changes the
size of the skeleton in a way that does not affect its validity
or symmetry, and c) its global location by applying rigid
transformations (rotation and translation).

In a different approach, the overfitting problem can be
tackled by training the 2D-to-3D skeleton mapping DNN in
a weakly-supervised manner, where using the ground-truth
3D human pose labels for directly training the 2D-to-3D
skeleton mapping DNN is avoided. For example, a 3D body
joints estimator from 2D skeleton data was trained in [11]
with a weakly supervised adversarial learning approach, where
the Discriminator network of a GAN was used to learn a
distribution of 3D skeletons. Instead of forcing the 2D-to-3D
skeleton mapping DNN to predict a specific 3D skeleton for
each training input data point, it is tasked to map a distribution
of 2D skeletons to a distribution of 3D skeletons, which are
valid according to the Discriminator network. Besides the 2D-
3D skeleton mapping DNN and the Discriminator, a third
neural network is also used to infer the parameters of a weak
perspective camera that are used to reproject the estimated
3D skeletons back to 2D, in order to obtain matching 2D
and 3D skeletons. In a simlar manner, [15] also utilized
a 2D-to-3D skeleton mapping DNN and GANs to generate
multiple 3D human pose candidates that correspond to an input
2D skeleton. Then, the best candidate is selected in a post-
processing step and is returned as the final estimation.

While these weakly-supervised 3D human pose estimation
approaches managed to increase the 3D human pose estimation
accuracy on unseen test data, they only predict plausible 3D
human poses (3D human poses with accurate bone lengths
and angles) that correspond to the input 2D skeletons. That is,
they are not able to predict the real, camera-relative 3D human
poses. In contrast, the proposed 3D human pose estimation
framework is specifically designed to predict not only plausible
3D human poses but also the real camera-relative 3D human
poses.

III. PROPOSED 3D HUMAN POSE ESTIMATION
FRAMEWORK

In this work, a weakly-supervised 3D human pose es-
timation framework is proposed, which is able to estimate
camera-relative 3D skeletons from single RGB images. In
the first stage, it utilizes a 2D human pose estimation CNN
to extract 2D skeletons from the input images. The second,
2D-to-3D human pose lifting stage consists of the introduced
geometrical-alignment pre-processing step, which is used only
during the training phase to pre-process the ground-truth 3D
human pose data that correspond to the extracted 2D skeletons,
the 2D-to-3D skeleton mapping DNN that is tasked to predict
a plausible 3D human pose for each extracted 2D skeleton and
a 3D skeleton-refinement post-processing step, which utilizes

the 3D human pose obtained by the DNN to compute the final
camera-relative 3D skeleton.

Let S3D ∈ R3×K and S2D ∈ R2×K denote a 3D
human pose and a 2D human pose, respectively, where K
is the number of the selected body joints that comprise
the human skeleton. Also, suppose that a 2D-to-3D human
pose dataset can be constructed, where each dataset sample
si = {S3Di

,S2Di
,Ri, ti} consists of its annotated camera-

relative 3D skeleton S3Di
, the corresponding 2D skeleton S2Di

in pixel coordinates and the rotation matrix Ri ∈ R3×3 and
translation vector ti ∈ R3 that map S3Di to S3Dwi

using:

S3Dwi
= RT

i (S3Di − ti1
T
K), (1)

where S3Dwi
∈ R3×K is the 3D human pose in a human body-

centered coordinates system. Note that the 2D skeletons S2Di

can be either provided from the dataset or be calculated offline
using the employed 2D human pose estimation CNN. The
proposed method utilizes the 2D-to-3D skeleton mapping DNN
introduced in [11], which is trained in a weakly-supervised
manner to predict S3Dwi

using S2Di
as input.

The geometrical-alignment pre-processing step is used only
during the training phase of the proposed framework and
first defines a template 3D skeleton S3Dt by selecting a
random camera-relative 3D skeleton S3Dj

from the dataset
and centering it by using Rj and tj :

S3Dt
= RT

j (S3Dj
− tj1

T
K). (2)

Then, assuming that the camera intrinsic parameters K are
known, the 3D skeleton of each training sample si is aligned
to the template 3D skeleton with the following two steps: a) a
Perspective-n-Point (PnP) algorithm is applied between S3Dt

and S2Di to obtain R′
i and t′i:

[R′
i, t

′
i] = PnP (S3Dt

,S2Di
,K), (3)

and b) R′
i and t′i are used to align S3Di

to S3Dt
:

S′
3Di

= R′T
i (S3Di − t′i1

T
K). (4)

Note that only specific body joints (hips, shoulders, spine,
neck) are used in the PnP algorithm. Algorithm 1 shows the
geometrical-alignment pre-processing procedure. The aligned
3D skeletons S′

3Di
are the ones used to train the 2D-

3D skeleton mapping DNN in the GAN-assisted weakly-
supervised framework adopted from [11]. The key feature of
the geometrical-alignment pre-processing step is that it applies
rigid transformations that are fully reversible, allowing the
calculation of the camera-relative 3D body joints coordinates
from the “aligned” network outputs in a post-processing step.

The 3D skeleton-refinement post-processing step receives
the aligned 3D skeleton Ŝ′

3Di
that is predicted by the 2D-3D

skeleton mapping DNN for input S2Di
and calculates the final

camera-relative 3D skeleton Ŝ3Di
. This is accomplished by

utilizing Ŝ′
3Di

and S2Di
in a PnP algorithm to obtain R̂i and

t̂i:
[R̂i, t̂i] = PnP (Ŝ′

3Di
,S2Di

,K), (5)

and using them to calculate the camera-relative 3D body joints
coordinates according to:

Ŝ3Di
= R̂iŜ

′
3Di

+ t̂i1
T
K . (6)



Algorithm 1 Geometrical-alignment pre-processing step
1: procedure GEOMETRICAL-ALIGNMENT(si, sj)
2: S2Di

← get 2d pose(si)
3: S3Di

← get 3d pose(si)
4: S3Dj

← get 3d pose(sj)
5: Rj , tj ← get extrinsics(sj)
6: Kj ← get intrinsics(sj)
7: S3Dt

← RT
j (S3Dj

− tj1
T
K)

8: PS3Dt
← S3Dt [selected joints]

9: PS2Di
← S2Di [selected joints]

10: R′
i, t

′
i ← PnP (PS3Dt

,PS2Di
,K)

11: S′
3Di
← R′T

i (S3Di
− t′i1

T
K)

12: return S′
3Di

13: end procedure

Algorithm 2 3D skeleton-refinement post-processing step

1: procedure 3D SKELETON-REFINEMENT(Ŝ′
3Di

,S2Di
)

2: Ki ← get intrinsics(Ŝ′
3Di

)

3: PŜ′
3Di

← Ŝ′
3Di

[selected joints]

4: PS2Di
← S2Di

[selected joints]

5: R̂i, t̂i ← PnP (PŜ′
3Di

,PS2Di
,Ki)

6: Ŝ3Di ← R̂iŜ
′
3Di

+ t̂i1
T
K .

7: return Ŝ3Di

8: end procedure

The 3D skeleton-refinement post-processing procedure is also
described in Algorithm 2.

IV. EXPERIMENTAL EVALUATION

In the proposed framework, the weakly supervised 3D
human pose estimation method of [11] was adopted and
incorporated into a single pipeline along with the geometrical-
alignment pre-processing step and the 3D skeleton-refinement
post-processing step. In addition, the 2D human pose esti-
mation method of [16] was utilized to extract 2D skeletons
from the input RGB images. The 2D-to-3D skeleton mapping
DNN was trained for 20 epochs using the Adam [17] optimizer
with initial learning rate of 0.0001 and batch size 160. Finally,
the PnP algorithm proposed in [18] was used in all cases.
All experiments were conducted using an Ubuntu machine,
equipped with a NVidia GTX 1080 Ti graphics card.

The proposed method was trained and evaluated using
the Human3.6M [19] dataset, where subjects are captured
to perform everyday actions in an indoor environment. The
typical train/test split was followed, where S1, S5, S6, S7,
and S8 are used for training and subjects S9, S11 for testing.
The camera intrinsic parameters K for all subjects are also
provided with the dataset.

The evaluation metric used is the typically used Mean Per
Joint Position Error (MPJPE) [11], which is the mean value
of the euclidean distance in mm between the predicted and
actual 3D poses. Following previous work [11], the MPJPE
error is calculated for two evaluation protocols. Protocol-I
calculates the MPJPE metric between the outputs of the 2D-
to-3D mapping DNN and the ground-truth 3D human poses,
while Protocol-II, first applies a rigid transformation on the

TABLE I. EXPERIMENTAL RESULTS (MPJPE IN MM) OF ALL
VARIATIONS OF THE BASELINE REPNET AND THE PROPOSED FRAMEWORK

MODELS USING THE GROUND-TRUTH 2D SKELETONS PROVIDED WITH
HUMAN3.6M [19] BOTH FOR HUMAN BODY-RELATIVE AND

CAMERA-RELATIVE 3D HUMAN POSE ESTIMATION AND UNDER BOTH
PROTOCOLS.

Trained on Human body-relative Camera-relative

GT 2D data P-I P-II P-I P-II

RepNet-GT [11] 211.35 40.40 172.58 40.40

RepNet-Det [11] 223.97 48.66 206.12 48.66

ours-GT 206.80 40.04 166.40 40.04

ours-Det 227.38 53.78 400.05 53.78

ours-Full 202.13 42.02 215.43 42.02

TABLE II. EXPERIMENTAL RESULTS (MPJPE IN MM) OF ALL
VARIATIONS OF THE BASELINE REPNET AND THE PROPOSED FRAMEWORK

MODELS USING 2D SKELETONS EXTRACTED BY [16] BOTH FOR HUMAN
BODY-RELATIVE AND CAMERA-RELATIVE 3D HUMAN POSE ESTIMATION

AND UNDER BOTH PROTOCOLS.

Trained on Human body-relative Camera-relative

2D data [16] P-I P-II P-I P-II

RepNet-GT [11] 228.91 65.20 292.44 65.20

RepNet-Det [11] 230.17 54.43 275.90 54.43

ours-GT 227.60 66.76 318.15 66.76

ours-Det 234.32 59.11 336.30 59.11

ours-Full 229.19 53.32 319.86 53.32

network outputs to align them with the ground-truth 3D human
poses using the Procrustes alignment method and calculates the
MPJPE metric between the aligned predicted and the ground-
truth 3D human poses.

The MPJPE metric for Protocol-I and Protocol-II is calcu-
lated both for the human body-centered coordinates system 3D
human poses Ŝ′

3Di
obtained directly by the 2D-to-3D mapping

DNN and the camera-relative 3D poses Ŝ3Di
obtained by

the 3D skeleton-refinement post-processing step to evaluate
the proposed method in both cases. Moreover, three different
sources for the 2D skeletons are examined to evaluate the
proposed method resistance on noisy inputs, the ground-truth
2D skeletons provided by the Human3.6M dataset, the 2D
skeletons provided by [20] and the 2D skeletons extracted
offline using [16].

Different variations of the baseline RepNet [11] and the
proposed 3D human pose estimation framework were eval-
uated. RepNet-GT denotes the baseline method trained on
ground-truth data provided by Human3.6M dataset, while
RepNet-Det denotes the baseline model trained on the 2D
detections obtained by [16]. In a similar manner, ours-GT
and ours-Det denote the proposed framework trained on the
ground-truth and the extracted 2D skeletons, respectively.
Finally, ours-Full denotes the proposed method trained using
both ground-truth and extracted 2D skeletons as input. Note
that in all cases, the 3D skeletons provided by the Human3.6M
are used for GAN training, as described in [11] and the camera-
relative 3D poses are obtained using the proposed 3D skeleton-
refinement post-processing step.

Table I shows the comparison results when the ground-
truth 2D skeletons are used as input to both the baseline and



Fig. 1. Qualitative evaluation of the proposed 3D human pose estimation framework using random images from the Human3.6M [19] test set. First and second
rows show the extracted 2D skeletons obtained by [16], as well as the corresponding camera-relative 3D human poses estimated from the proposed framework
for test subjects S9 and S11, respectively.

TABLE III. EXPERIMENTAL RESULTS (MPJPE IN MM) OF ALL
VARIATIONS OF THE BASELINE REPNET AND THE PROPOSED FRAMEWORK

MODELS USING 2D SKELETONS EXTRACTED BY [20] BOTH FOR HUMAN
BODY-RELATIVE AND CAMERA-RELATIVE 3D HUMAN POSE ESTIMATION

AND UNDER BOTH PROTOCOLS.

Trained on Human body-relative Camera-relative

2D data [20] P-I P-II P-I P-II

RepNet-GT [11] 260.04 118.41 1002.07 118.41

RepNet-Det [11] 238.74 85.82 528.85 85.82

ours-GT 255.63 119.86 1072.86 119.86

ours-Det 233.66 83.54 604.97 83.54

ours-Full 245.13 109.24 927.12 109.24

the proposed framework. “P-I” and “P-II” are used to denote
that the MPJPE metric was calculated under Protocol-I and
Protocol-II, respectively. The results show that the proposed
method (ours-GT) outperforms the baseline RepNet-GT in
both protocols and both for human body-relative and camera-
relative 3D human pose estimation.

The comparison results between the baseline and the pro-
posed framework when the 2D skeletons extracted by [16] are
used as input can be seen in Table II. While the proposed
method is able to outperform the baseline method when the
evaluation Protocol-II is used, its performance is slightly de-
creased for Protocol-I. Nevertheless, the proposed 3D skeleton-
refinement post-processing step allows both the baseline and
the proposed method to accurately predict camera-relative 3D
human poses.

For completeness, all variants of the proposed method and
the baseline RepNet were evaluated using the 2D skeletons
provided by [20] as input. This is to show that the proposed
3D human pose estimation framework can be used to pre-
dict camera-relative 3D human poses even from unseen 2D
skeletons. The results reported in Table III show that the
proposed framework managed to predict accurate 3D human
poses, outperforming the RepNet baseline in most cases.

Finally, apart from the quantitative evaluation presented in
Tables I-III, a qualitative evaluation of the proposed method
was also conducted using random images from the Hu-
man3.6M test subjects S9 and S11. Test images along with the
2D skeletons extracted by [16], as well as the corresponding
camera-relative 3D human poses obtained by the proposed

framework are depicted in Fig. 1. It can be seen that in all cases
the proposed framework is able to estimate accurate camera-
relative 3D human poses, despite the fact that in some cases
the extracted 2D skeletons contain noisy body joint detections
(mostly due to body joint occlusions). This is achieved through
the utilized GAN-assisted weakly-supervised training setting
and the indirect supervision provided by the Discrimina-
tor network, which is trained efficiently using the aligned
3D skeletons S′

3Di
calculated by the proposed geometrical-

alignment pre-processing step.

V. CONCLUSIONS

This paper presented a 3D human pose estimation frame-
work that is able to predict camera-relative 3D human poses
from 2D skeleton data. It incorporates a geometrical-alignment
pre-processing step to prepare the training data, which are
subsequently used to train a 2D-to-3D skeleton mapping
DNN that is able to predict plausible 3D human poses that
correspond to the input 2D skeletons. Finally, a 3D skeleton-
refinement post-processing step is applied on the outputs of
the 2D-to-3D skeleton mapping DNN to predict the final,
camera-relative 3D human poses. Quantitative and qualitative
evaluation showed that the proposed framework managed to
predict accurate camera-relative 3D human poses, while it
outperformed the baseline RepNet in terms of 3D human pose
estimation accuracy. Finally, the proposed framework was able
to predict accurate camera-relative 3D human poses even when
noisy 2D skeletons were used as input.
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