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Abstract—2D tracking is an important computer vision task
with important applications in autonomous embedded systems
such as Unmanned Aerial Vehicles and autonomous cars that
particularly attracted scientists in the past few years. Many
new methods have aroused that significantly pushed the state-
of-the-art performance in terms of tracking precision, success
rate and execution speed, in well-designed and established ex-
isting publicly available benchmarks. Despite the fact that these
benchmark datasets include as many application scenarios as
possible, another commonly neglected yet important aspect is
the robustness of tracking methods, notably to noise related with
image acquisition, capturing storing and transmission. This paper
presents a robustness evaluation toolkit for 2D Visual Object
Tracking, that can exploit existing datasets in order to evaluate
the robustness of 2D visual tracking methods to realistic image
distortion scenarios, mostly encountered in embedded systems.
The source code of this toolkit will be made publicly available
upon paper acceptance.
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I. INTRODUCTION

There are numerous applications in products that we use
every day based on computer vision methods, from applica-
tions regarding road safety (e.g., pedestrian detection), au-
tonomous systems, robotics, media production, visual surveil-
lance, human-computer interfaces and augmented reality. Per-
haps one of the most important computer vision tasks found
in numerous devices is the 2D Visual Object Tracking, which
can be found in Unmanned Aerial Vehicles (UAVs) assisting
the pilot to follow a selected target or even further, the
UAV to follow the target autonomously exploiting the visual
information. The tracking methods expect the single target to
be tracked to be selected by hand (e.g. from the user using a
GUI) or from the output of an object detector [1], [2] and then
the aim is to determine the position of target’s bounding box
in the following frames of a video stream.

Each tracking methodology exploits a different approach in
order to solve the target tracking problem. One big family of
such methods are the Correlation Filter (CF) based trackers
[3], [4], [5], which learns to regress the target appearance
to a distribution, using a correlation filter. This category
became popular with [6] that allowed efficient adaptive online
training of such filters. These methods manage to achieve
high framerate/speed performance by performing most of the
computations in the frequency domain. The main philosophy
of such methods is that given an input target, image features

are calculated and deployed in order to train a correlation
filter that tries to distinguish the features of the target from
the features of the background. This filter is exploited during
prediction on the next frame. With the emerge of deep AI,
a tracking method category that became popular is methods
using Siamese Networks [7], [8], [9]. In these methods, the
tracking network has two inputs, the search area and the
template of the target and a single output, the desired bounding
box. The networks, trained utilizing pair of images with the
same target, measure the similarity in these two image patches
and aim to detect similar regions between them and may
still employ a CF [10]. Other popular methods also exists
in the literature, that cannot be strictly put into one of the
aforementioned categories [11] and a more recent approach
to the tracking problem is to implement attention mechanisms
[12], [13].

Many dataset benchmarks have been developed in the past
years in order to measure the performance of tracking methods,
containing general videos with challenging attributes such as
object occlusions, illumination variations, motion blur etc.
[14], [15], datasets containing huge amount of data suitable for
training deep neural network based trackers [16], [17], [18],
or more application specific datasets such as high framerate
video stream [19] or UAV usage [20]. Despite the fact that 2D
object tracking is widely used in real-life scenarios where it is
common to experience hardware issues with image capturing
sensors or the video stream transmission, minimal effort has
been put towards investigating the robustness of tracking meth-
ods against noise from such sources. In [21], multiple methods
are evaluated against various levels of additive white Gaussian
noise, but the survey does not include other type of noises
that can occur in real-life scenarios. An image can be noisy
due to various reasons such as poor focus, distortions caused
by the presence of magnetic field generated by electronic
circuits etc. Even weather conditions can cause trouble to
image acquisition and even more to wireless data transfer, for
example in a scenario where a UAV flies autonomously or
semi-autonomously and streams the video to a powerful land-
based processing unit in order to perform a vision based task
[22].

Ideally, a 2D tracking application must be able to handle
various types of noise. Motivated by the current trend towards
trustworthy and robust AI, we developed a tool for studying
the robustness of tracking methods to noise. This paper partic-
ularly focuses on studying and analysing the effects of image



(a) Original frame (b) Distorted frame

Fig. 1: Gaussian Noise (GN). In a) the original frame is shown
and in b) the distorted version of the same frame.

acquisition and transmission noise in state-of-the-art tracking
methods. Nevertheless, the developed framework can easily be
expanded to include more types of noise, adversarial attacks
evaluation or even evaluation on other type of vision based
methods such as Object Detection, Region Segmentation etc.

II. ROBUSTNESS EVALUATION TOOLKIT

This section presents Visual Object Tracking - Robustness
Toolkit (VOT-RT), that examines the robustness of 2D visual
object trackers in various conditions. The toolkit consists of
three modules: a) the input module, b) the distortion module
and , c) the 2D Visual Object Tracker Evaluation module. The
video stream can be a single image, a video file, a folder
containing image sequences or whole datasets. The distortion
module creates the noisy examples and currently supports
a) Image Acquisition noise types and b) Transmission noise
types, that may occur in real life applications. Finally, the
distorted stream is given for evaluation to the desired 2D object
tracking method. The distortion module can easily be expanded
and the evaluation step provides an easy way to implement
more tracking methods for evaluation or attach a different
evaluation module for other computer vision based tasks. The
parameters of each type of noise described below are user
adjustable. The user can also select to employ more than one
type of noise for robustness evaluation of a method or training
purposes.

A. Image Acquisition Noise
1) Gaussian noise (AG): The toolkit will add Gaussian

noise to each frame of a video sequence or whole datasets.
The term Gaussian noise refers to additive statistical noise
having a probability density function equal to that of a normal
distribution. In digital images this type of noise can occur
during image acquisition due to poor illumination, high image
sensor temperature or electronic circuit noise [23]. There are
techniques for reducing the effects of this type of noise [24],
[25], however, the resulting image may still be noisy or
the system may not have enough computational resources to
perform such corrections. An example is illustrated in Figure
1. The user can select during the evaluation with this type of
noise the level of distortion.

2) Salt and pepper (SP): This type of noise can occur
during analog to digital conversion or data transfer [26].
Frames affected by this type of noise appear to have sparsely
distributed black and white pixels. This type of noise can be
handled with median filtering or more complex methods [27],
although in autonomous systems this type of noise may not be
detected affecting the overall performance of the system. The

(a) Original frame (b) Distorted frame

Fig. 2: Low Quality (LQ) distortion. In a) the original frame
is depicted and in b) its highly compressed distorted version.

(a) Original frame (b) Distorted frame

Fig. 3: Key-Frame Loss distortion can have a huge impact on
a visual based method.

toolkit has the option to add only salt or pepper noise to the
image, and the level of distortion is adjustable as well.

B. Transmission Noise
1) Low Quality: In this scenario, each image/frame is

highly compressed and decompressed before given as input
to the tracking method. In such manner, cases where the
processed video needs to be streamed to the processing unit
but the channel bandwidth may not be enough are simulated.
Technologies like 4G/5G can help towards the capabilities of
the wireless connectivity, although, special permission may
be needed to deploy such networks or the system should
use commercially available networks, which can be costly.
There are still a lot of applications where the video stream is
transmitted from a big distance and WiFi straggles to perform.
Lack of bandwidth can force the system to compress the video
in such extent that the received video may have compression
artifacts, e.g. loss of edge clarity and edge fuzziness. Figure
2 depicts an example of o Low Quality distorted frame (Fig.
2b).

2) Key-Frame Loss: During video compression, a compres-
sion algorithm, e.g. MPEG [28], apart from the implementa-
tion of other compression techniques, manages to reduce the
total size of a video by creating frames that do not contain
information for each pixel of the frame. Instead for these
frames, only some differences/changes from a previous or
later frame are stored. Thus, when a video is compressed, the
algorithm selects frames that are fully stored (key frames/i-
frames) and achieves further compression by converting the
rest of the frames to structures with the differences from
previous key frames (p-frames) or both previous and later key
frames (b-frames). In order to decompress the video, its trivial
to understand the importance of the key frames. Albeit, during



video transmission, network congestion can result to packet
loss which can cause key frame loss, creating distorted frames
during decompression as depicted in Figure 3. Such a distorted
frame result can be very challenging for a visual target tracking
method. In the presented framework the frame loss is simulated
with the assistance of FFmpeg [29].

III. EXPERIMENTAL RESULTS

To demonstrate the use case of the proposed framework,
we have examined the performance of state-of-the art trackers
that can perform real time either on high power PCs equipped
with an Nvidia GPU, or even in embedded systems such as the
Nvidia Jetson family. More specifically, the evaluation includes
TransT [12], PrDiMP [11], DaSiamRPN [30] and SiamFC [8],
a method that does not require GPU hardware and employs
tracking failure mechanisms, LDES-ODDA [31], and finally
KCF [3] which is a baseline tracking method that can be used
on less powerful embedded systems. The same distorted data
based on the OTB dataset [14] were given as input to all of the
evaluated methods. In all of the experiments the parameters of
each noise are the same, i.e., for every type of noise the same
video stream was given as input during evaluation.

For the quantitative evaluation, the one-pass evaluation
(OPE) protocol was employed. With OPE, the tracking method
is initialized in the first frame with the ground truth bounding
box of the object and the goal is to produce the following
bounding boxes that include the target as best as possible. As
evaluation metric, the widely used Overlap Score (OS) was
employed, defined as S = |rt∩r0|

|rt∪r0| , where rt and r0 is the
tracked and ground truth bounding boxes respectively, ∩ and
∪ denote the intersection and union operators and | · | denotes
the number of pixels inside the specified area. OS is calculated
in a per frame basis. When the value of S is larger than a
certain threshold, it is assumed that the tracker, successfully
tracks the desired object.

Figure 4 depicts the success plots for the OPE evaluation
and the OS score when the threshold is set at 0.5. KCF and
LDES-ODDA despite suffering from performance drop, handle
well the LQ and SP case. KCF, mainly due to the feature
extraction mechanism that it exploits (Histogram of Oriented
Gradient [32]) and the fact that it reduces the resolution of the
template image which can reduce the compression artifacts and
get rid to some extend of SP noise. LDES-ODDA employs also
a distraction detection mechanism and has target re-detection
capabilities that can assist the tracking procedure under noisy
environments. GN has a greater impact for these two methods
mainly to due the greater interference of this type of noise in
the feature extraction process.

Noisy inputs appear to have a great impact on the Siamese
based methods; both SiamFC and DaSiamRPN experience sig-
nificant performance drops under noisy conditions. SiamFC’s
performance drops by more the 7% for the LQ case and for
DaSiamRPN more than 10%. These two methods, are also
affected more than other methods for the GN and SP case. This
can be explained by the fact that in these methods the original
template of the target is not altered, and the extracted features
are affected by the specific location of the noise in the template
that is not present in the later frames in the same way. Also, the
relatively high resolution template and search area input does
not help in removing the effect of SP or GN to some extend.

The issues that rise with the evaluation on noisy datasets may
be confronted by containing noisy examples in the training
dataset of the Siamese networks, so that the methods can be
more tolerant to such distortions.

PrDiMP, manages to perform satisfactorily against the KfL
scenario, taking into account the difficulty of this task. For the
rest of the scenarios, the generation of predictive probability
distribution mechanism of PrDiMP, appears to be increase its
robustness to some extend over these type of noises. TransT
appears to handle well the three of the implemented noise
types: GN, SP and LQ. In fact, the performance for GN and
SP is almost identical. This achievement can be attributed to
the usage of attention mechanism that shifts the focus away
from noisy artifacts. For the LQ case, the bigger performance
drop is somehow expected since edges and key characteristics
of the target are distorted in a different way in successive
frames, causing the target tracker to drift and fail. TransT
has significant performance loss for the most challenging KfL
scenario, although it manages to outperform the rest of the
trackers.

Figure 5 illustrates a qualitative evaluation for all of the
types of noises studied in this paper for the PrDiMP tracker. In
the original sequence the method manages to track the desired
target with no issues, although in this sequence, it is noticeable
that for every type of noise the method fails to perform. In the
LQ scenario, due to the fact that this method does not search
the target only in a portion of the frame, manages to detect the
target again, but for the most part, the output of the target is
incorrect. For GN and SP the tracker has a similar performance
and is lost quite fast although this behaviour is not common
for this type of noise for this dataset. In the KfL scenario, the
tracker is not completely lost but it is noticeable that struggles
to determine the correct aspect ratio or scale of the target.

IV. CONCLUSION

An evaluation toolkit for 2D Visual Object Tracking meth-
ods in terms of robustness has been presented. The evaluation
toolkit has the ability to measure the effect of various real-
world type of noises, that can appear due to image capturing
issues in an autonomous system, or video transmission. In this
framework, there are already implemented some of the most
recent and state-of-the-art in terms of performance tracking
methods and it is easy to extend the list of the supported
trackers in the future. As a future work other type of noises
(e.g. adversarial attacks) can be implemented to this toolkit
in order to evaluate the robustness of tracking methods more
thoroughly. From the evaluation results, the conclusion that
is drawn, is that noise always affects the performance of the
tracking methods, even if for the human eye the result of
image quality may be acceptable. Severe issues arise in the
case where during a video streams packets are lost causing
key-frame loss. In such cases, most of the tracking methods
in fact, fail to track the desired target at all.
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(a) TransT results on OTB.
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(b) PrDiMP results on OTB.
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(c) DaSiamRPN results on OTB.
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(d) LDES-ODDA results on OTB.
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(e) SiamFC results on OTB.
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(f) KCF results on OTB.

Fig. 4: Success plots for the OTB dataset and the noisy variations for each evaluated type of noise.

Fig. 5: Qualitative evaluation for the Gaussian Noise (GN), Salt and Pepper (SP), Low Quality (LQ) and Keyframe Loss (KfL)
distortions on PrDiMP tracker. In the original sequence the tracker is able to successfully track the desired target while in GN
and SP the tracker drifts from the first frames. In LQ scenario the tracker manages to track again the target but not for long. In
KfL the target is not completely lost, although the scale of the produced bounding box is far from the ground truth one.
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