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ABSTRACT

Adversarial attacks in image classification are optimization
problems that estimate the minimum perturbation required
for a single input image, so the neural network misclassifies
it. Universal adversarial perturbations are adversarial attacks
that target a whole dataset, estimated by e.g., accumulating
the perturbations for each image using standard adversarial
attacks. This work treats the universal adversarial perturba-
tion as a problem of transformation estimation. As such, we
propose to learn an iterative transformation that maps ”clean”
images to a “perturbed” domain, by exploiting adversarial at-
tacks. Our experiments show that the proposed formulation
leads to easy generation of the adversarial perturbation, while
it introduces less noise in the perturbed images, when com-
pared to the state-of-the-art. Finally, this formulation allows
us to explore additional properties, notably reversibility of the
transformation and attainability of the transformation by us-
ing dataset samples.

Index Terms— Multiplicative, Universal, Adversarial at-
tack

1. INTRODUCTION

Adversarial attacks in deep neural network-based image clas-
sification involve estimating carefully crafted perturbations
to an input image, in order to change the model output.
These perturbations can be estimated using the additive noise
paradigm [1], while typically remain almost imperceptible
to the human eye. The perturbation is generated by exploit-
ing gradient flow towards the input image, using standard
neural network optimization functions. Since their original
introduction, several works have been proposed in literature
that construct adversarial attacks in different settings, de-
pending on the adversary knowledge about the dataset (e.g.,
labels) and/or access to the neural network parameters (e.g.,
targeted, un-targeted, white-box, black-box). The reader is
referred for more details in the review papers [2] [3] [4].
Another common grouping of adversarial attacks is based
on their attack scope. That is, they can be distinguished in
image-specific adversarial attacks, where methods compute a
unique perturbation for each single input image, and in uni-

versal adversarial attacks, where the perturbation is universal
i.e., is the same for any give image in a dataset.

Universal adversarial attacks typically employ image-
specific adversarial attack constraints in order to cumulatively
calculate a perturbation that generalizes for different (almost
all) instances of the dataset. On one hand, the advantage
of universal adversarial attacks is that the same calculated
perturbation can be employed for attacking a classification
system, thus decreasing the attack complexity, as only access
to a single vector is required during inference. It has been
shown that this perturbation is transferable, as it generalizes
well to different classification systems [5]. This property is
valuable in adversarial-based privacy protection systems [6],
[7]. On the other hand, universal adversarial attacks produce
more noisy images when compared to image-specific ones.
Furthermore, due to the additive noise paradigm of the adver-
sarial attack formulation, that they can be easily perceived by
reverse engineering, thus, by employing a pair of input and
perturbed images, the perturbation can be attained by a third
party.

This work addresses the problem of universal adversarial
attack generation in deep neural network classification as a
transformation estimation one. We examine the simplest case
where the transformation is linear. As such, we can unify two
forms of introduced perturbation (multiplicative and additive)
in the same optimization procedure. In the proposed prob-
lem formulation, existing universal adversarial attacks can be
viewed as special cases where only the bias term of the trans-
formation is estimated. It is shown that exploiting the mul-
tiplicative part of the transformation leads to adversarial at-
tacks that are as effective as the additive ones, while introduc-
ing less perturbation to the final result. Moreover, our exper-
imental results have shown that the proposed multiplicative
transformation is reversible, thus can be applied as easy as
additive noise in privacy protection settings. Finally, the mul-
tiplicative transformation is not easily attainable, by a single
clean-adversarial image pair. The proposed method can be
incorporated either as means for testing the robustness of ma-
chine learning models, or by being a part of privacy protection
methods against automated classification systems.



2. ADDITIVE NOISE MODEL FOR ADVERSARIAL
ATTACK GENERATION

Let x ∈ RD be a vectorized image sample of dimensions
D (D is equal to the image’s height × width) having a true
label index y from a set Y = {y| y ∈ N, 1 ≤ y ≤ C}.
A deep neural network classifier f(x;θ), where θ are the
model trainable parameters, has learned to classify images by
training the operation X 7→ Y in the representative dataset
S = {X ,Y}, |S| = N , X = {x|x ∈ RD}. The goal of ad-
versarial attacks for the classification task can be represented
as the problem of determining a perturbation vector n ∈ RD

within a noise margin ϵ, so that to change the trained classifier
decision for sample x i.e.:

min:
|n|

f(x+ n;θ) ̸= y, (1)

s. t. : ∥n∥p < ϵ, p ∈ [1,∞)

where ||.||p denotes the ℓp-norm and the adversarial sample
x̃ = x + n must remain in the same domain as x, i.e., be an
image. This problem is NP-hard and it cannot be optimized
in this setting by existing methods. To this end, equivalent
alternative optimization problems have been proposed in the
literature.

For instance, the so-called L-BFGS attack [1], is a white-
box adversarial attack that assumes access to a continuous
loss function denoted by Lf , e.g., the cross-entropy loss func-
tion, associated with the outputs of classifier model f to be
deceived. By selecting a target label ŷ ∈ Y for the adversarial
example x̃, it employs the following optimization procedure
in an iterative manner:

min:
n

ϵ∥n∥2 + Lf (f(x̃;θ), ŷ), (2)

until the condition f(x̃;θ) = ŷ is satisfied, i.e., the label
of the classifier changed successfully when the perturbation
vector n is applied to the input image x. Fast Gradient Sign
(FGS) method [8] is a significantly faster alternative method
that estimates n in a single optimization step along the direc-
tion of the gradient sign at each image pixel, at the expense of
producing more noisy examples than L-BFGS. DeepFool [9]
is an un-targeted adversarial attack method that produces ad-
versarial examples containing even less noise than L-BFGS.
It works by approximating the decision boundaries of deep
neural networks with linear/affine classifiers. The perturba-
tion is estimated by the orthogonal projection of the sam-
ple x to the closest decision boundary, in an iterative opti-
mization process. Other influential works in this area include
the Carlini-Wagner (C & W) attack [10], the Jacobian-based
Saliency Map Attack [11], the one pixel attack [12]. A de-
tailed list of image-specific adversarial attacks can be found
in the review papers [2] [3] [4].

The universal adversarial perturbation (UAP) [5] is an ad-
versarial attack with the additional constraint that equation (1)

must be satisfied by all x ∈ X . The optimization problem can
be formulated as follows:

min:
|n|

f(x+ n;θ) ̸= y, ∀x ∈ X , (3)

s. t. : ∥n∥p < ϵ, p ∈ [1,∞),

where ϵ a parameter for controlling the magnitude of the per-
turbation. In practice, the perturbation is calculated by accu-
mulating the outputs of DeepFool for all samples x ∈ X . As a
stopping condition, the function P (f(x+n;θ) ̸= f(x;θ)) ≤
1 − δ is introduced, where P (·) is a probability function and
0 < δ < 1 is a parameter that denotes the target fooling rate
to be achieved (δ = 0 denotes a fooling rate of 100%).

Another method that was proposed in [13] is the SGD-
UAP method. In this work the authors achieved to create uni-
versal adversarial attacks using a variation of the Projected
Gradient Descent (PDG) attack [14]. They used the Stochas-
tic Gradient Descent (SGD) algorithm since it has been ob-
served that is can lead to better evasion rates [15]. The SGD
method optimizes the objective

∑
i Lf (xi + n) over batches

rather than single inputs where Lf is the model’s training
loss, and xi can be batches of input images, and n ∈ RD

are the set of the determined perturbations. The gradients up-
dates towards n are calculated in batches in the direction of
−
∑

i ∇Lf (xi + n). More detailed description of other uni-
versal adversarial attacks can be found in the recent review
papers [16].

3. TRANSFORMATION-BASED UNIVERSAL
ADVERSARIAL ATTACKS

As stated in the introduction Section, the adversarial attack
optimization problem can also be viewed as a transformation
estimation one, that is expressed as follows:

min:
|ϕ|

f (g(x;ϕ);θ) ̸= y, (4)

s. t. : ∥x− g(x;ϕ)∥p < ϵ, p ∈ [1,∞)

where g(·) : RD 7→ RD is an iterative transformation that
maps the data samples of the clean domain X to an adver-
sarial domain X̃ , while ϕ are the parameters of the transfor-
mation. Here, it should be noted that any type of function
can be employed in order to solve the proposed optimization
problem, i.e., g(·) could be represent any linear/non-linear
transformation, or even a whole neural network. This formu-
lation allows more flexibility in the definition of additional
optimization constraints. For instance, the constraint of re-
versibility, which is very useful in privacy protection settings,
could be expressed as an additional optimization constraint,
i.e., g−1(x̃) = x.

This work examines the simplest possible case, i.e., g(·)
denotes a linear transformation that perturbs clean samples
from their domain to an adversarial one, such that they are



misclassified by the model f . This definition makes more
sense in the universal adversarial attack optimization prob-
lem. The transformation parameters in this case include a
matrix T ∈ RD×D and a bias term b ∈ RD. Therefore,
adversarial samples can be represented as follows:

x̃ = Tx+ b. (5)

By using this definition, existing adversarial attack methods,
including universal adversarial attacks, have only considered
the special case where T = I, where I is the identity matrix
and the bias term b is the analogous of the noise vector n.
Therefore, it could be argued that existing adversarial attacks
have so far explored many different additive perturbations,
using a wide range of optimization problems. Hereafter, we
define the proposed method as a multiplicative perturbation
generator.

3.1. Multiplicative Universal Adversarial Transforma-
tion (MUAT)

We examine the special case where b = 0, where 0 is a vec-
tor of zeros. The proposed Multiplicative Universal Adversar-
ial Transformation (MUAT) method, is a multiplicative noise
generator formulated as follows:

min:
∥T∥

f (Tx;θ) ̸= y, (6)

s. t. : ∥x−Tx∥p < ϵ, p ∈ [1,∞),

x = T−1x̃,

where an additional constraint requiring that the matrix T is
invertible is also imposed. In the standard additive noise-
based universal adversarial attacks, the perturbation is attain-
able by a single adversarial-clean image pair, by a simple sub-
traction. However, in the multiplicative noise case, the analo-
gous is to reverse engineer the matrix T from the data, which
cannot be obtained, using just a pair of clean-adversarial sam-
ples, since the rank of T is supposed to be larger than 1.

The proposed method can be optimized in the same man-
ner as the UAP method, by using any standard adversarial
attack (the L-BFGS attack was employed in all our experi-
ments). As initialization values, we have employed T = I. In
order to limit the amount of perturbation introduced in the op-
timization process, we also introduce a similarity-based loss
function as in [17] s(x, x̃), according to the CW-SSIM metric
[18]. Thus, we introduce an additional constraint 1−s(x,Tx)
to the proposed objective function to be minimized, and λ, a
hyper-parameters for controlling the significance of each term
of the loss function. Overall, the proposed optimization prob-
lem is the following:

min:
T

λLf (f(Tx;θ), ŷ) + 1− s(x,Tx). (7)

In our experiments, we refer to the above mentioned
methodology as the MUAT method. Since the matrix T is

defined along the image dimensionality, the computational
complexity required for its derivation scales with the dimen-
sionality of the employed images. A faster alternative can
also be devised, by requiring that the matrix T is diagonal,
thus limiting the number of learnable parameters from D2

to D. This variant of the proposed method is refered as the
MUAT(diag) method.

4. EXPERIMENTS

This section describes the experiments conducted in order to
evaluate the efficiency of the proposed method against the
competition. The results of the proposed method were com-
pared with the ones obtained by two recently proposed univer-
sal adversarial attack methods, namely the UAP [5] method
and the SGD-UAP [13] method.

Three evaluation metrics were used, one for the evaluating
how the accuracy of the classifiers is affected by the attack,
and two metrics for evaluating the quality of the resulted im-
ages. Namely, the metrics that were used are a) the classifica-
tion accuracy, b) the average Mean Square Error (MSE) and c)
the average Structural Similarity Index Measure (SSIM) [18].
The reported MSE and SSIM values are within the scale of
[0, 1], while the Accuracy values are scaled from [0, 1] to [0,
100], for readability purposes.

In order to be able to compare the attacks and due to the
fact that our scope was both to evaluate the methods in means
of accuracy and the quality of the perturbed images, we tried
to reach a similar level of accuracy for the perturbed images
on all methods and compare them based on the quality of the
perturbed images.

Three publicly available datasets, MNIST [19], CIFAR-
100 [20], and STL-10 [21], that are commonly used in the
literature were employed to this end. Even if these datasets
may be considered ”easy” for the classification task (due to
the high accuracy, usually, achieved by classification models),
when it comes to the adversarial attacks, they are more chal-
lenging than the ”difficult” datasets in which the classification
models already fail. Also, it is more challenging to create ad-
versarial perturbations that will lead to less noisy adversarial
images for datasets that contain images of small dimensions
than those of higher dimensions.

All methods were implemented in Python by using the Py-
Torch library. The conducted experiments in each respective
dataset are detailed in Subsection 4.1. Finally, Subsection 4.2
describes the experiment conducted in order to evaluate how
many clean-adversarial image pairs are necessary for deter-
mining the matrix T from the data.

4.1. Experimental results

In our first set of experiments, we employed The MNIST
dataset [19], which contains 60,000 training samples and
10,000 test samples from 10 classes, depicting digits from 0



to 9. The size of the images is fixed on 28 × 28 pixel and
the images are provided in gray scale. As baseline classifi-
cation network, we trained a feed-Forward Neural Network
[22], with the following architecture: one input layer (784
neurons), one hidden layer (500 neurons) with a ReLU [23]
activation function and an output layer (10 neurons), that
achieved an accuracy of 97.73%.

Table 1. Comparison results on MNIST dataset
Accuracy

(initial dataset)
Accuracy

(attacked dataset) MSE SSIM

MUAT 97.73% 5.91% 0.0315 0.8306
MUAT (diag) 97.73% 9.12% 0.0997 0.806
UAP 97.73% 12.5% 0.1011 0.2499
SGD-UAP 97.73% 11.35% 0.0206 0.4030

Experimental results are presented in Table 1. As can
be observed, the proposed MUAT method reduced the clas-
sifier’s performance (Accuracy = 5.91%), while maintain-
ing the quality of the perturbed images in a higher level
(MSE=0.0315, SSIM=0.8306) when compared with the re-
sults of the UAP and SGD-UAP methods. For achieving the
mentioned results, in all experiments, the Stochastic Gradi-
ent Descent (SGD) was utilized as optimizer. The hyper-
parameters used for achieving the above results on MNIST
were for MUAT: λ = 0.005, a learning rate (lr) of 0.0001, 1
epoch of training and 60.000 training samples, while for the
MUAT(diag): λ = 0.05, lr = 0.1, training with 300 training
samples, momentum= 0.9, and weight decay= 0.0005.

CIFAR-100 dataset includes 100 classes containing 600
images each. There are 500 training images and 100 testing
images per class. As baseline classifier, a ResNet-20 1 was
implemented whose accuracy on the test set of CIFAR-100
was 62.87%.

Table 2. Comparison results on CIFAR-100 dataset
Accuracy

(initial dataset)
Accuracy

(attacked dataset) MSE SSIM

MUAT 62.87% 15.78% 0.0935 0.8129
MUAT (diag) 62.87% 14.98% 0.0642 0.8584
UAP 62.87% 17.58% 0.7958 0.3106
SGD-UAP 62.87% 14.85% 1.0340 0.2132

The results presented in Table 2 demonstrate that in this
dataset the MUAT (diag) methods achieves the best results in
MSE and SSIM metrics. Compared to the results achieved
by the UAP and SGD-UAP methods, the MUAT and MUAT
(diag) methods present better results in MSE and SSIM met-
rics. The hyper-parameters used, were, for MUAT: λ = 0.05,
lr = 0.01, training with 100 training samples, momentum=
0.9 , while for the MUAT(diag): λ = 0.1, lr = 0.1, training
with 1050 training samples, momentum= 0.9.

The final dataset used for evaluating the performance of

1https://github.com/chenyaofo/
pytorch-cifar-models

the proposed methods was the STL-10 [21]. The dataset is in-
spired by the CIFAR-10 dataset but it is modified so as the im-
ages to be of a higher resolution (96x96). There are samples
of 10 different classes 500 training and 800 test images per
class, meaning a dataset of 5,000 training images and 8,000
test images in total. The classifier used in the STL-10 experi-
ments 2 achieved an accuracy of 77.58% on the test set.

Table 3. Comparison results on STL-10 dataset
Accuracy

(initial dataset)
Accuracy

(attacked dataset) MSE SSIM

MUAT 77.58% 19.87% 0.0383 0.6219
MUAT (diag) 77.58% 21.17% 0.0244 0.773
UAP 77.58% 21.98% 0.2208 0.0934
SGD-UAP 77.58% 21.8% 0.2079 0.1956

Experimental resutls are drawn in Table 3. As can be
observed, the MUAT methods compare favourably against
the competition, both in terms of MSE and SSIM values,
while providing decreased classification accuracy in the per-
turbed datasets as well. The hyper-parameters used, were,
for MUAT: λ = 0.05, lr = 0.01, training with 1050 train-
ing samples, momentum= 0.9 , while for the MUAT(diag):
λ = 0.1, lr = 0.1, training with 5000 training samples,
momentum= 0.9.

The obtained experimental results can be explained as fol-
lows. Improved SSIM metrics are mainly attributed to the
application of the SSIM loss in the optimization procedure,
thus guided the gradient in matrix T towards directions that
maintain the structural similarity of the image. Moreover,
the proposed MUAT method has more learnable parameters
than the competition, which provides a significant advantage
especially in STL-10 dataset, which contains larger images
in size than MNIST and CIFAR-100 datasets. Finally, the
MUAT(diag) method produced very good results in CIFAR-
100 and STL-10 datasets, perhaps due to the fact that the di-
agonal matrix components are the most important for scaling
the image visual features (pixel luminosities).

A qualitative example is shown in Figure 1. As can be
observed, the images obtained by the proposed method ap-
pear less perturbed that the competition, especially in STL-10
dataset.

4.2. Recovering the transformation matrix T from the
data

Finally, we conducted an additional experiment in order to de-
termine the number of clean-adversarial image pairs requiring
for obtaining a good approximation of the inverse transfor-
mation T−1. To this end, we have employed the the MNIST
dataset. Different number of images (i.e., 1, 32, 64, 128, 256,
512, 784) were used in order to estimate the inverse transfor-

2https://github.com/aaron-xichen/
pytorch-playground



Fig. 1. Examples of perturbed images and their corresponding
labels. On the first column, the dataset to which the sample
belongs is mentioned, while on the first row it is depicted the
method used for the generation of the perturbed images.

mation, from the following formula:

T = (X†X̃)T , (8)

where X† = (XTX)−1XT is the left pseudoinverse of matrix
X, which is a concatenation of a set of original images and
X̃ is the corresponding set of the perturbed images, occurred
after applying the MUAT method on the original images.

The results of the above experiment are presented in Fig-
ure 2. As could be expected, the more image pairs used in-
creased the approximation quality of the matrix T. From the
above experiment it is concluded that in order to achieve an
accuracy similar to that before the attack, we should recon-
struct T with almost the same number of image pairs of the
rank of T (which is 784) in this case.

5. CONCLUSIONS

This work presented the problem of generating multiplicative
universal adversarial attacks that are reversible but not easily
attainable. Many works have been proposed during the past
years in literature regarding both image-specific and universal
adversarial attacks. In this work we proposed the Multiplica-
tive Universal Adversarial Transformation (MUAT) in two
variations, namely the MUAT method and the MUAT diag
method. In the first variation, a matrix T ∈ RD×D is learned
during the training phase. In the second variation only the di-
agonal element of the matrix T are learnable, targeting thus
to decrease the complexity of the attack. Both methods were

Fig. 2. Experimentas in MNIST dataset in order to determine
the number of images needed for the estimation of (T) and
consequently of its inverse transformation (T−1) for recover-
ing the original test set images.

evaluated and compared in three datasets with two existing
state-of-the-art methods of the literature. The results demon-
strate that the proposed attack can lead to a significant de-
crease of the accuracy of the machine learning models while
producing images of better quality than the competition in the
terms of MSE and SSIM metrics. Moreover, the proposed at-
tack can be reverted, while due to its multiplicative nature can
not be easily obtained by third parties. The proposed method
can find application in privacy protection against automated
recognition systems (e.g., face recognition in social media).
After estimating an appropriate perturbation that generalizes
well, it can be used to preserve human privacy on real-time
recognition systems, without the need of calculating new per-
turbations for each image as in image-specific attacks. More-
over, those that have access to the attack’s reverse transforma-
tion, can use it in order to recover the original images.

Future work could be focused towards expanding the pro-
posed method in many directions. At first, instead of learning
g(·) as a linear transformation, non-linear transformations can
be considered to be used, such as neural networks. Second,
this method could be expanded to classification/regression
problems, e.g., object/face detection problems and pixel-level
image segmentation.
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