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Multiview Object Detection

and Tracking

• Multiview Human Detection

• Multiview Object tracking



Multiview Human Detection

• Problem statement: Use information from multiple cameras to detect

bodies or body parts, e.g. head.

• Applications:

• Human detection/localization in postproduction.

• Matting/segmentation initialization.

Camera 4 Camera 6



Multiview Human Detection

• Region-Of-Interests (ROIs) are typically bounding boxes. They are 

determined at a specific time 𝑡 by the upper left and lower right 

rectangle coordinates 𝑥𝑙 , 𝑦𝑙 , 𝑥𝑟 , 𝑦𝑟 .

• Object ROI center: 𝐜 = [𝑥𝑐 , 𝑦𝑐]
𝑇



Multiview Human Detection

• Head or body detection in two stages:

• Use a head/face/body detector to derive ROIs in each view separately.

• Insert these ROIs to an algorithm utilizing 3D information.

• Use of camera calibration parameters.

• Output: a rectified set of ROIs for each view that contains:

• fewer false negatives

• especially those due to occlusion are eliminated;

• associations across views

• all ROIs corresponding to the same human head/body are associated.



Multiview Human Detection

• Detected ROIs are projected back in 

the 3D space.

• A “probability volume” is created

collecting “votes” from individual

ROIs.

• High probability voxels correspond 

to the most probable head/body 

ROIs. 



Multiview Human Detection

• The retained voxels are projected to all views.

• For every view we reject ROIs that have small overlap with

the regions resulting from the projection.

Camera 2 Camera 4



Multiview Human Detection

• ROI association across different views:

• A voting scheme is used to find ROIs across views containing projections of the

same voxels.

• These ROIs are associated across views.

• ROIs that are not associated are rejected.

• Further elimination of false positives may be achieved.

• ROI rectification:

• Using 3D information we create ROIs for a certain head/body in views lacking in

them.

• False negatives elimination.



Multiview Human Detection
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Multiview Human Detection

• Multi-view human tracking can be formulated in a probabilistic

framework.

• Let 𝐾 determine the number of trajectories, 𝑉𝑖 the detected human

boxes, 𝑐𝑖 ∈ 0,𝐾 the trajectory index (𝑐𝑖 = 0 is equivalent to a false

alarm of box 𝑖).

• Let 𝑉 = { 𝑉𝑖 , 𝑐𝑖 } denote the set of boxes and 𝜏 = { 𝜏𝑘, 𝑡𝑘
𝑠 , 𝑡𝑘

𝑒 }
trajectories where 𝑡𝑘

𝑠 is the starting frame and 𝑡𝑘
𝑒 is the ending frame.

• Formula for 3D localization and cross-view human tracking:

• 𝑊 = ( 𝐾, 𝑉, 𝜏 )



Multiview Human Detection

• Information extracted for scene modeling:

• Ground-plane region in images

• Cross-view homograph matrix between views, in the form of 𝐇𝑢,𝑣 ∈
𝑅3×3, where u, v are the camera indexes

• Projection matrix that transforms a 3D coordinate into a view, in the

form of 𝐌𝑢

• View-to-map homograph matrix between each view and the scene

map, in the form of 𝐇𝑢



Multiview Human Detection

• Appearance energy term ( 𝐸𝑎𝑝𝑝 ) : utilized to maximize 

similarities of detected human boxes of the same trajectory.

• For a view 𝑢, let 𝑖 index the detected boxes and 𝑐𝑖 index the 

trajectories. Then the appearance energy term takes the form:

• 𝐸𝑢
𝑎𝑝𝑝

= −σ𝑖,𝑗 𝑙𝑜𝑔
𝑃 𝑐𝑖=𝑐𝑗 , 𝑓𝑖−𝑓𝑗 ‖ )

𝑃(𝑐𝑖≠𝑐𝑗, 𝑓𝑖−𝑓𝑗 )

• 𝑓𝑖 − 𝑓𝑗 determines the norm of feature distance between 𝑓𝑖 and 𝑓𝑗

• 𝑃(𝑐𝑖 = 𝑐𝑗 , 𝑓𝑖 − 𝑓𝑗 ) determines the probability of 𝑐𝑖 = 𝑐𝑗 for 𝑓𝑖 appearance feature

(e.g. color).



Multiview Object Detection

and Tracking

• Multiview Human Detection

• Multiview Object tracking



Multiview Object tracking

• Motion blurs, partial occlusions, background clutter and image motion

are the main issues that an object tracker has to overcome, in order to

precisely track a moving object.

• Tracking a detected object in frame 𝑡 + 1.

• Predicted object position 𝑥, 𝑦 𝑇(𝑡 + 1)

• Compute ROI parameter vector ෞ𝐲𝟏 𝑡 + 1 = [𝑥, 𝑦, 𝑤, ℎ]𝑇 within a search

region on frame 𝑡 + 1

• Retain object ID Ј 𝑡 + 1 = Ј 𝑡

• Tracking failures can occur due to occlusions to the background and

in those cases object-redetection techniques are implemented.



Multiview Object tracking

• Different and multiple viewpoints pose a challenge to traditional object

tracking methods.

• Variations on topological appearance are dealt with by viewpoint

transformations; representing objects with 3D aspect parts and

modeling the connection in part-based particle filtering frameworks.

• The tracking framework can handle the appearance alternation and

accurately predict the visibility and shape of a part.



Multiview Object tracking

(a): Example output for the tracking framework; (b): 3D aspect part

representation of the car, and its projections from different viewpoints



Multiview Object tracking
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• A multicamera based tracking method can be employed to shooting

missions that use multiple camera-equipped UAVs.

• The proposed approach relies on fusing the results of separate 2D

visual trackers running on-board each drone.

• This can handle target occlusions due to obstacles, since there is

almost always at least one drone with an unoccluded view of the

target.



Multiview Object tracking
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• The method is based on locating the 3D target position in the world

by back-projecting detected/tracked ROIs from the K UAV-mounted

cameras. Camera parameters are considered known.

• The reliability of each tracked ROI (determined by the tracker

response map) is exploited for weighting the per-drone results

during centralized fusion.

• The 3D target position is then separately projected back to the 2D

image plane of each UAV/camera.



Multiview Object tracking

• Likelihood 𝑃(𝑍𝑡|𝑋𝑡 , 𝑉𝑡) estimates the compatibility between the state

of the target 𝑋𝑡 , 𝑉𝑡 with the observation 𝑍𝑡 at time 𝑡.

• The overall likelihood of the object is decomposed as the product of

the likelihoods of the 3D aspect parts:

• 𝑃 𝑍𝑡 𝑋𝑡 , 𝑉𝑡 = ς𝑖=1
𝑛 𝑃(𝑍𝑡|𝑋𝑖𝑡 , 𝑉𝑡),  where

• 𝑃 𝑍𝑡 𝑋𝑖𝑡 , 𝑉𝑡 determines the appearance likelihood of part 𝑖.



Multiview Object tracking

• Motion prior 𝑃(𝑋𝑡 , 𝑉𝑡|𝑋𝑡−1, 𝑉𝑡−1) predicts the state of the target based 

on its previous state.

• Motion prior decomposition according to part location and viewpoint:

• 𝑃 𝑋𝑡 , 𝑉𝑡 𝑋𝑡−1, 𝑉𝑡−1 = 𝑃 𝑋𝑡 𝑋𝑡−1, 𝑉𝑡−1, 𝑉𝑡 𝑃 𝑉𝑡 𝑋𝑡−1, 𝑉𝑡−1 =

𝑃 𝑋𝑡 𝑋𝑡−1, 𝑉𝑡 𝑃 𝑉𝑡 𝑉𝑡−1 , where

• 𝑃 𝑋𝑡 𝑋𝑡−1, 𝑉𝑡 models the change in location

• 𝑃 𝑉𝑡 𝑉𝑡−1 is the viewpoint motion



Multiview Object tracking

• Change in location can be modeled by implementing a Markov

Random Filed to capture the relationship between parts:

• 𝑃 𝑋𝑡 𝑋𝑡−1, 𝑉𝑡 ∝ ς𝑖=1
𝑛 𝑃 𝑋𝑖𝑡 𝑋𝑖 𝑡−1 ς 𝑖,𝑗 𝛬 𝑋𝑖𝑡 , 𝑋𝑗𝑡 , 𝑉𝑡 , where

• 𝑃(𝑋𝑖𝑡|𝑋𝑖 𝑡−1 ) is the motion model for part 𝑖

• 𝛬(𝑋𝑖𝑡 , 𝑋𝑗𝑡 , 𝑉𝑡) is the pairwise potential that constrains the relative

location of two parts according to the 3D aspect part representation



Multiview Object tracking

• Location and viewpoint motions are modeled with Gaussian distributions 

centered on the previous location and viewpoint respectively as :

• 𝑃 𝑋𝑖𝑡 𝑋𝑖 𝑡−1 ~Ɲ 𝑋𝑖 𝑡−1 , 𝜎𝑥
2𝜎𝑦

2

• 𝑃 𝑉𝑡 𝑉𝑡−1 ~Ɲ 𝑉𝑡−1, 𝜎𝛼
2𝜎𝑒

2𝜎𝑑
2 , where

• 𝜎𝑥
2, 𝜎𝑦

2 are the variances of the Gaussian distributions for 2D part center

coordinates

• 𝜎𝛼
2, 𝜎𝑒

2 , 𝜎𝑑
2 are the variances of the Gaussian distributions for azimuth,

elevation and distance respectively



Multiview Object tracking
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• We define an orthonormal, right-handed World Coordinate System

(WCS) and a time-varying, orthonormal, right-handed UAV/camera-

centered Coordinate System (UCS) for each UAV.

• At each time instance, a homogeneous transformation matrix 𝐓 j,

encoding rotation and translation, transforms between them for the j-th

UAV.



Multiview Object tracking
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• At current time instance 𝑖:

• For the 2D ROI coming from the j-th UAV, its center (provided in 2D pixel coordinates by

the j-th tracker) is transformed first into continuous 3D UCS coordinates and then into

WCS, using 𝐓𝑗.

• The 3D coordinates of the K centers of projection (COPs) are known in WCS.

• Thus, two K x 3 matrices are constructed:

• M, containing the 3D WCS coordinates of the K ROI centers.

• N, containing the 3D WCS coordinates of the K COPs.

• M and N are exploited for finding the 3D target location in WCS, by searching for the

intersection point of the 3D lines defined by the ROI center and the COP of each UAV.

• 𝐁 =
𝐍−𝐌

𝐚 𝟏
, where . denotes element-wise division, 1 is a 1 x 3 row matrix and

𝒂 is: 𝑎𝑖 = σ𝑗=1
3 𝑁𝑖𝑗 −𝑀𝑖𝑗

2
.



Multiview Object tracking
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• At current time instance 𝑖 (continued):

• 𝐒 = 𝐁𝑇𝐁 − 𝐾𝐈3x3

• 𝐜 = σ𝑗=1
𝐾 𝐂1 + 𝐂2 + 𝐂3

•

𝐂1 = 𝐌 ⊙ 𝐁⊙𝐁− 1 ,

𝐂2 = 𝐌 ⊙ 𝐁⊙𝐁𝐀1 − 1 𝐀2,

𝐂3 = 𝐌 ⊙ 𝐁⊙𝐁𝐀2 − 1 𝐀1.

• In the above, the symbol ⊙ denotes the Hadamard product, while the row permutation

matrices A1 and A2 switch the rows of matrix B being multiplied with them as [b3, b1, b2]
T and

[b2, b3, b1]
T

, respectively.

• The intersection point is given in 3D WCS by pm = [c/S]T.

• pm is then projected to each of the K cameras using the known camera parameters.



Multiview Object tracking
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• In order to evaluate the presented multicamera tracking method, a

realistic simulated video dataset was generated.

• The AUTH-developed, AirSim-based simulator was employed.

• A bicycle race scenario with multiple cyclists was implemented in

this simulation environment. Each sequence may include up to 10

cyclists, differing only in the color of their jerseys.



Multiview Object tracking
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• The sequences where generated by simulating 3 camera equipped UAVs flying

simultaneously under specific UAV/camera motion types (CMTs) and framing shot

types (FSTs).

• 3-UAV Orbit

• 2-UAV Chase plus 1-UAV VTS

• 3-UAV Track setups

• The evaluation dataset contains more than 90000 video frames, at a resolution of

640 x 360 pixels and a framerate of 25 FPS, while each video is more than 6.5

minutes long.

• KCF was used as the baseline 2D visual tracker.

• Fast correlation filter able to run in real time on embedded AI computing platforms.



Multiview Object tracking
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Multiview 3-UAV ORBIT



Multiview Object tracking
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Multiview 3-UAV TRACK



Multiview Object tracking



Multiview Object tracking
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Baseline 3-UAV TRACK (without multiview fusion)
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Multiview Object tracking

• Comparison in terms of tracking precision between:

• Single-view KCF tracker

• Proposed multiview KCF tracker with known ground-truth camera parameters

• Proposed multiview KCF tracker with noisy camera parameters simulating RTK GPS

accuracy

Tracking Method

Baseline Proposed Proposed (RTK)

UAV 0 Precision 0.102 0.711 0.695

UAV 1 precision 0.070 0.752 0.698

UAV 2 precision 0.130 0.714 0.676



Multiview Object tracking
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• The proposed multiview method depends on the following information 

being available:

• Camera parameters

• 2D target ROIs from single-view tracker running independently on each UAV

• Additional sources of information that could be exploited for increased 

accuracy include:

• Target 3D position (e.g., with noisy GPS measurements)

• LIDAR  measurements from optical sensors mounted on each UAV

• All the above information must be temporally synchronized and updated 

with the same frequency (e.g., per video frame, for real-time operation)



Multiview Object tracking
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• The double need for temporal synchronization and common update

frequencies arise both in on-line and off-line/a-posteriori multi-view

tracking.

• Any problems of update frequency discrepancy between different

information sources can be easily solved via interpolation.

• However, temporal synchronization can be a much more challenging

issue.



Multiview Object tracking
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• The overall problem can be formulated in a general manner, based on the

reprojection error minimization problem of the Structure-from-Motion and

Visual SLAM:

argmin
𝐏𝑖,𝐗𝑗

෍

𝑖,𝑗

𝐱𝑖𝑗 − 𝐏𝑖𝐗𝑗
2

• Pi is the perspective projection matrix of the 𝑖 − 𝑡ℎ time instance/video frame

(encoding both extrinsic and intrinsic camera parameters)

• 𝐗𝑗 is the 𝑗 − 𝑡ℎ 3D scene point world coordinates

• 𝐱𝑖𝑗 is the detected/tracked 2D on-frame position of 𝐗𝑗 at the 𝑖 − 𝑡ℎ time

instance/video frame, in pixel coordinates



Multiview Object tracking
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• Α single, unknown target 3D point 𝐗𝑡 exists at time instance t.

• 𝑥𝑖
𝑡 , 1 ≤ 𝑖 ≤ 𝐾 : 2D on-frame projection of 𝐗𝑡 on the 𝑖 − th UAV

camera sensor at time t, estimated by each UAV independently.

• 𝐏
𝑖

𝑡+Δ𝑡𝑖 is the known camera projection matrix for the 𝑖 − th UAV at

time instance t. Δti is unknown, hence the synchronization issue.

• In a similar manner, 𝐗𝐺𝑃𝑆
𝑡+Δ𝒕′ and 𝐗

𝐿𝐼𝐷𝐴𝑅𝑖

𝑡+Δ𝒕𝒊′′ are the known, noisy and

unsynchronized measurements of 𝐗𝑡 derived by on-target GPS and

on-drone LIDAR sensor, respectively. Δti′ and Δti′′ are unknown.



Multiview Object tracking
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• Under this setup, the general problem can be formulated as follows:

arg min
𝐗𝑡,Δ𝑡i ,Δ𝑡i′,Δ𝑡i′′

෍

𝑖

𝐱𝑖
𝑡 − 𝐏

𝑖

𝑡+Δ𝑡i𝐗𝑡
2

+ 𝐗𝑡 − 𝐗𝐺𝑃𝑆
𝑡+Δ𝑡′

2
+ 𝐗𝑡 − 𝐗𝐿𝐼𝐷𝐴𝑅

𝑡+Δ𝑡′′
2

• The problem definition can be easily extended with additional terms,

representing additional information sources.

• This formulation can serve as the basis for a unified definition of the

multi-view tracking and synchronization problem.



Multiview Object tracking
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• In the off-line/a-posteriori analysis scenario, there are independently

available:

• K timeseries, each one containing UAV camera projection matrices for a UAV

• K timeseries, each one containing 2D tracker ROI centers from a UAV

• K timeseries, each one containing 3D target world position measurement from a

UAV (using LIDAR)

• One timeseries containing 3D target world position measurements (using GPS)

• Synchronization of these timeseries would first require defining a

temporal window of T video frames.

• Only the subset of each timeseries falling within this window would be

employed.
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• Using this off-line setup, simple exhaustive search can be trivially

employed for synchronizing on-drone camera parameters, on-target

GPS and on-done LIDAR measurements with the on-drone tracker

timeseries, for all K drones, across the entire temporal window of T

instances. This would have a computational complexity of O(TK3).

• By employing the proposed problem definition as an optimization

problem, and employing a suitable optimization algorithm for solving

it, may potentially reduce this complexity to a significant degree.



Multiview Object tracking
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• After acquiring the MULTIDRONE experimental media production

data, multiview UAV-captured footage depicting a rowing boat race

were successfully synchronized by AUTH using the exhaustive

search approach.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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