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ABSTRACT

Most unsupervised Deep Neural Networks (DNNs) for video
summarization rely on adversarial learning, autoencoding and
training without utilizing any ground-truth summary. In sev-
eral cases, the Convolutional Neural Network (CNN)-derived
video frame representations are sequentially fed to a Long
Short-Term Memory (LSTM) network, which selects key-
frames and, during training, attempts to reconstruct the orig-
inal/full video from the summary, while confusing an adver-
sarially optimized Discriminator. Additionally, regularizers
aiming at maximizing the summary’s visual semantic diver-
sity can be employed, such as the Determinantal Point Pro-
cess (DPP) loss term. In this paper, a novel DPP-based regu-
larizer is proposed that exploits a pretrained DNN-based im-
age captioner in order to additionally enforce maximal key-
frame diversity from the perspective of textual semantic con-
tent. Thus, the selected key-frames are encouraged to differ
not only with regard to what objects they depict, but also with
regard to their textual descriptions, which may additionally
capture activities, scene context, etc. Empirical evaluation in-
dicates that the proposed regularizer leads to state-of-the-art
performance.

Index Terms— key-frame extraction, Deep Neural Net-
work, Long Short-Term Memory, Generative Adversarial
Network, image captioning

1. INTRODUCTION
Automated video summarization consists in deriving succinct
summaries of original, full-length videos, which capture the
most important segments of the full input and jointly convey
its essence in a compact manner. In static and dynamic sum-
marization, the output is a set of still key-frames [1, 2] and a
short trailer/skim [3, 4], respectively. In both cases, the goal
is to select an informative, representative and temporally or-
dered subset of the original/full video, so that the remaining
content can be discarded.

Initial unsupervised approaches to key-frame extraction in-
volved clustering [5] or dictionary learning-based methods
[6, 7]. A good summary is characterized by two main prop-
erties; its saliency and its representativeness. The former
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property suggests that the selected key-frames should be vi-
sually and/or semantically distinct from their temporal neigh-
bours (local saliency) and/or from the rest of the video (global
saliency, or diversity). The latter property implies that the se-
lected key-frame set is capable of visually reconstructing the
original/full video content.

Modern Deep Neural Network (DNN)-based supervised
video summarization methods [8] typically rely on pretrained
Convolutional Neural Networks (CNNs) to extract from each
raw RGB video frame semantic representations, that describe
visible scene objects. Each such representation is then fed
to the summarization DNN, which selects the key-frames.
Supervised training comes with high labor costs associated
with required label annotation, places emphasis on subjective
“ground-truth” and may lead to low generalization ability.

Unsupervised DNN-based video summarization promises
a better solution. E.g., the adversarial reconstruction frame-
work [9] is composed of two Long Short-Term Memory
(LSTM) subnetworks: the Summarizer and the Discrimina-
tor. The first one consists of a Selector and an Autoencoder
LSTM subnetwork, with the Autoencoder comprising an En-
coder and a Decoder), sequentially arranged. From a func-
tional standpoint, the Selector estimates a scalar importance
score that expresses the suitability of each video frame to be
included in the summary/key-frame set. Thus, the Autoen-
coder attempts to recreate the full input video sequence, given
the selected key-frames, while the adversarially trained Dis-
criminator classification module [10] tries to discern between
summary-based reconstructions and original videos. After the
overall architecture has been trained in a unified manner, all
modules can be discarded except the Selector LSTM which is
required for inference.

This basic framework focuses on the reconstructive ability
of the summary, but [9] also included a Determinantal Point
Process (DPP) regularizer [11] in the training process, push-
ing towards increased key-frame set global saliency/diversity.
This diversity pertains mainly to the semantic content visible
in the selected key-frames, since the Summarizer acts on con-
volutional representations of the original video frames and not
on their raw RGB form. Thus, the visual DPP loss pushes to-
wards summaries composed of key-frames that depict differ-
ent objects. In essence, it operates by quantifying the repre-
sentational variance of the video frames and penalizing candi-
date key-frame sets that do not capture significant percentage



of the original video variance.
The adversarial reconstruction framework was subse-

quently improved upon in [12], [13], etc. However, despite
significant progress, all unsupervised DNN-based methods
that emphasize summary diversity focus only on the visible
semantic content of the selected RGB key-frames, i.e., the
scene objects, through a regularizer acting on the per-frame
CNN-derived representations. To the best of our knowledge,
no effort has been expended towards enforcing key-frame set
diversity with respect to different modalities under the adver-
sarial reconstruction paradigm.

This paper presents and evaluates a novel form of the DPP
regularizer, readily applicable to the adversarial reconstruc-
tion framework for unsupervised key-frame extraction, which
acts on video frame representations derived from a DNN-
based image captioner. Thus, the computed video summary is
forced to be diverse not only with respect to the objects visible
in its key-frames, but also with respect to the textual descrip-
tions of these selected key-frames. This regularizer can simply
be added to the pool of employed loss functions for training
the summarization DNN, assuming a pretrained DNN-based
image captioner is available. Quantitative evaluation accord-
ing to common protocols on two public, typically used bench-
mark datasets (TVSum, SumMe) indicates favourable results
and non-negligible gains compared to baseline.

2. AUGMENTING SUMMARY DIVERSITY
Image captioning consists in generating a textual, natural-
language description for a given RGB image. The primary
challenge lies in two aspects: extracting adequate information
from the visual content and generating grammatically correct,
human-readable sentences. Several supervised DNN-based
image captioning approaches exist, mostly involving archi-
tectures relying on CNNs and LSTMs.

The proposed method, called DPP-caption loss (Ldpp−c),
is a novel reformulation of the original visual DPP loss term
(Ldpp−v), which has been successfully applied as a regular-
izer for enforcing summary diversity in [9]. It relies on a
pretrained DNN-based image captioner. At each iteration of
the summarization DNN training, Ldpp−c pushes towards se-
lecting key-frames that differ in their textual description ac-
cording to the respective captioner output. This enforces ad-
ditional diversity in the derived summary, based on a non-
object-centric semantic modality. For instance, an image cap-
tion may focus on depicted activities or scene context, instead
of the visible objects.

Below, the baseline adversarial reconstruction framework
for unsupervised key-frame extraction is first detailed, before
expanding upon the proposed novel regularizer.

2.1. Baseline Adversarial Reconstruction Framework
The basic adversarial reconstruction framework [9, 13] is de-
tailed below.

Let X ∈ RM×N be a video data matrix, where column
xi ∈ RM is the feature vector describing the i-th video frame,

1 ≤ i ≤ N . Such a feature vector is typically a latent convo-
lutional representation derived from a CNN R that has been
pretrained for whole-image classification. Then, the baseline
summarization architecture includes:

• An LSTM-based Frame Selector S parameterized by
weights ws.

• An LSTM-based Encoder E parameterized by weights
we.

• An LSTM-based Decoder D parameterized by weights
wd.

• An LSTM-based Classifier C parameterized by weights
wc.

S, E and D jointly constitute the so-called Summarizer,
withE andD being the two consecutive parts of an LSTM au-
toencoder. C acts as the Discriminator under a GAN frame-
work. The entire architecture is trained end-to-end in an un-
supervised manner. E,D andC are discarded after training is
complete and only the optimized Frame Selector S is retained
for inference/testing on unknown videos.

The forward pass of S is unfolded acrossN time instances.
At the i-th time instance, S is fed xi as input and outputs a
corresponding scalar importance factor si ∈ [0, 1]. All si can
be grouped in s ∈ RN . The product sixi is fed to E and
this is performed consecutively for all i, resulting in a final
LSTM hidden state vector e ∈ RH encoding the entire sum-
mary. Subsequently, e is fed to D which attempts to recon-
struct the original X, by outputting a reconstructed x̂i ∈ RM ,
1 ≤ i ≤ N . Finally, the video reconstruction X̂ is forwarded
to the DiscriminatorC as a “fake” training example, while the
original video X is used as a “real” training example.

The following loss functions are employed during training:

• Reconstruction loss Lrecon = ‖φ(X) − φ(X̂)‖22, where
φ(X) is the last hidden LSTM state of C when it is fed
X as input and φ(X̂) the corresponding hidden LSTM
state when C is fed X̂. Lrecon is used to update ws, we

and wd.

• Original video loss Lorig = (1− C(X))
2, which is the

MSE between the original video label (i.e., 1) and the
computed probability when C is fed X as input. Lorig is
used to update wc.

• Summary loss Lsum =
(
C(X̂)

)2
, which is the MSE

between the summary label (i.e., 0) and the computed
probability when C is fed X̂ as input. Lsum is used to
update wc.

• Generator loss Lgen =
(
1− C(X̂)

)2
, which is the

MSE between the original video label (i.e., 1) and the
computed probability when C is fed X̂ as input. Lgen is
used to update wd.



• Sparsity Loss Lsparsity = || 1N
∑N

t=1 st − σ||2, which
pushes the Selector towards assigning high importance
(i.e., key-frame status probability) to a specific percent-
age of the total number of original video frames, defined
by a scalar hyperparameter σ ∈ [0, 1]. This penalty term
updates ws.

• Determinantal Point Process (DPP) loss Ldpp−v =

−log
(

detL(s)
det(L+I)

)
, where L ∈ RN×N is a similarity ma-

trix between every two hidden states of E and L(s) is a
smaller square matrix cut down from L given s (which
directly selects the summary/key-frame set). Ldpp−v is
a diversity-inducing regularizer used to update ws.

2.2. DPP-caption Loss
The proposed novel regularizer Ldpp−c requires an LSTM-
based image captioner, pretrained on a generic mass-scale an-
notated dataset, which we denote by P .

While training an unsupervised summarization DNN
falling under the adversarial reconstruction framework, each
video frame is forwarded to P (in inference mode), in par-
allel to feeding it to the Encoder E. Thus, the final hidden
state of P encodes features representing a semantic textual
description of said image, including visible objects, activities
and scene context.

Then, Ldpp−c can be computed as a loss term in the follow-
ing manner:

Ldpp−c = −log
(

detP(s)

det(P+ I)

)
, (1)

where P ∈ RN×N is a similarity matrix between every two
final hidden states of the LSTM in P and P(s) is a smaller
square matrix cut down from P given s. Ldpp−c is also used
to update ws.

Evidently, Ldpp−c induces a different kind of semantically
informed diversity into the computed summary, in compari-
son to the original Ldpp−v . This is because P encodes textual
features capturing semantic properties (e.g., visible activities
or scene context) that are potentially complementary to the
visual features computed by R, which only represent scene
objects. From a practical standpoint, the proposed method
simply consists in adding Ldpp−c to the pool of the employed
loss terms while training the complete summarization DNN
model. After training is finished, P may be completely re-
moved from the architecture; thus there is zero runtime over-
head in inference mode.

3. EVALUATION
In order to evaluate the proposed method, the implementa-
tion [13] of the adversarial reconstruction framework (SUM-
GAN-AAE) was adopted as a baseline. The reason behind
this choice was solely practical; in principle, the proposed
method can be used to augment any other variant of the gen-
eral framework, as well. However, [13] does not include

Method TVSum SumMe
SUM-FCNunsupervised[14] 52.7% 41.5%
DR-DSN [15] 57.6% 41.4%
EDSN [16] 57.6% 42.6%
Unpaired VSN [17] 55.6% 47.5%
PCDL [18] 58.4% 42.7%
SUM-GAN-sl [12] 58.4% 47.8%
Cycle-SUM [19] 57.6% 41.9%
ACGAN [20] 58.5% 46.0%
[13] 58.3% 48.9%
[13] + Ldpp−v 61.0% 56.5%
Proposed-A ([13] + Ldpp−c) 62.6% 56.9%
Proposed-B ([13] + Ldpp−v + Ldpp−c) 63.5% 58.8%

Table 1: Comparative evaluation of deep unsupervised key-
frame extraction methods, using the F-score metric. Best re-
sults are in bold.

Ldpp−v , thus the visual DPP loss term was implemented from
scratch.

The employed image captioner P employed a typical
Encoder-Decoder architecture. The Encoder was a ResNet-
152 CNN, pretrained for whole-image classification on the
generic ImageNet dataset. The CNN produces a 2048-
dimensional vector representation capturing the semantic,
object-centric content of the input image. Subsequently, this
is fed to the LSTM Decoder, in order to predict a textual,
natural-language caption for the given image. The LSTM has
a 512-dimensional hidden state and is temporally unfolded for
K time instances, whereK is the maximum caption length (in
words).

This image captioner was pretrained for 120 epochs in the
generic COCO dataset, using the cross-entropy loss. Two
Adam optimisers were employed and the respective learning
rate values for the Encoder and the Decoder were 10−4 and
4 ·10−4. During inference, the final hidden state of the LSTM
Decoder encodes features of a textual image representation
that comprises the corresponding caption. Thus it may incor-
porate complementary semantic information concerning not
only the visible objects, but also the scene context, the visible
activities, etc.

Typical quantitative evaluation protocols were followed
[23]: sequences were subsampled at 2 FPS, video frame rep-
resentations were extracted from the pool5 layer of a pre-
trained GoogLeNet CNN, serving as R, while all LSTM hid-
den state vectors were 500-dimensional. Training proceeded
for 50 epochs, using Adam optimization and a learning rate
of 10−4. To infer the summary subset indices from the im-
portance scores outputted by the Selector LSTM, a Knapsack
algorithm was used [24] to temporally segment the video into
subshots. Based on their importance, the subshots are sorted
and, finally, the key-frame indices are selected.

Evaluation was conducted on two common public datasets:



(a)
(b)

(c) [13] + Ldpp−v (d) [13] + Ldpp−c (e) [13] + Ldpp−v + Ldpp−c

(f) [13] + Ldpp−v (g) [13] + Ldpp−c (h) [13] + Ldpp−v + Ldpp−c

Fig. 1: 1a, 1b: Sampled video frames from test sequences 16 and 14 of SumMe [21] and TVSum [22], respectively. 1c, 1d,
1e: comparative evaluation of the summaries extracted from test video 16 (SumMe). 1f, 1g, 1h: comparative evaluation of the
summaries extracted from test video 14 (TVSum). The height of each bar represents the video frame’s respective ground-truth
score, while the horizontal axis is the timeline. The orange bars represent the selected key-frames.

TVSum [22] and SumMe [21]. Each one was partitioned
into 5 random splits, using a 80%-to-20% ratio for training
and testing, respectively. The typically used F-Score metric
was employed for evaluation. Table 1 depicts F-Score re-
sults for several recent DNN-based unsupervised key-frame
extraction methods, given the common sparsity percentage of
σ = 15%. In all cases, the reported final figure is the mean
F-Score performance across the 5 validation set splits. Since
our implementation baseline [13] did not originally include
the visual DPP loss term Ldpp−v , the proposed method was
evaluated both with (“Proposed-B”) and without (“Proposed-
A”) Ldpp−v during training.

Evidently, augmenting the baseline codebase of [13] with
the proposed Ldpp−c during training gives rise to non-
negligible F-score gains and state-of-the-art performance at
the inference stage. Ldpp−c alone (Proposed-A) leads to
slightly better results than Ldpp−v alone, while using both
regularizers (Proposed-B) yields the overall best performance
compared to the best baseline [13] + Ldpp−v: F-score gains of
+2.5%/+2.3% in TVSum/SumMe, respectively. Moreover,
Figure 1 shows indicative qualitative results, comparing the
behaviour of the best baseline ([13] + Ldpp−v), Proposed-A
([13] + Ldpp−c) and Proposed-B ([13] + Ldpp−v + Ldpp−c)
in two test sequences. It depicts a plot of the ground-truth
video frame importance scores over time, while the orange
bars represent the selected key-frames. Evidently, the pro-
posed method leads to key-frames that are more concentrated
around high-importance video segments.

4. CONCLUSIONS
This paper presented a novel, image captioning-based re-
formulation of the DPP regularizer, for unsupervised video
summarization/key-frame extraction relying on the state-of-

the-art adversarial reconstruction framework. Training with
this regularizer augments summary diversity by pushing to-
wards selecting key-frames that differ not only with regard to
what objects they depict, but also with regard to their textual
descriptions. This is because an image caption may also focus
on depicted activities or scene context, along with the visible
objects. The proposedLdpp−c regularizer may be added to the
pool of loss terms of any variant of the adversarial reconstruc-
tion framework, while only requiring a pretrained LSTM-
based image captioner as a prerequisite. This can be discarded
during inference, therefore the method induces zero runtime
overhead after training has finished. Quantitative evaluation
according to common protocols on two public, typically used
benchmark datasets (TVSum, SumMe) showed favourable re-
sults and significant gains compared to baseline.
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