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Fast 3D Convolution algorithms @ML

« 3D linear and cyclic convolutions

« Fast 3D convolutions by using FFTs
» Block-based methods

« Optimal Winograd 3D convolutions
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Introduction @M"

- Convolution plays a very important role in image/video
processing and analysis, machine learning etc.

« Convolutional neural networks (CNNs) are based on the
convolution (they form the first layers).

« Computationally expensive, O0(N°®) in 3D.

« There is a need for efficient convolution algorithms.
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3D Signals and Systems @M"

« A 3D signal is a mapping of the form:
f: R3 > R
« The discrete version is:
f: 7% > R
* For example:
« Digital video signal: f(n,,n,,n3) = f,(n;Ax, n,Ay, n3At).
3D volumetric image: f(ny,n,,n3) = f,(n;Ax, n,Ay, n;Az).
« Ax,Ay, Az are spatial sampling intervals and At is the
temporal sampling interval.
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3D Signals and Systems @M"

Y A 7‘%

X

Spatiotemporal video signal 2D slice of a 3D MRI image [WIK-MRI]
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3D Signals and Systems @M"

A 3D discrete-time system is defined as a transformation T
that maps an input signal x(n;,n,,n3;) into an output signal

y(ny,ny,n3):

y(ny,ny,n3) = Tlx(ng, ny, ns)].

X(nhnz:”a)h T[x] V(n1:”2rn3)p
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3D Signals and Systems @M"

A 3D system is called Linear Shift Invariant (LSI) if it is:
 Linear:
Tla x1(ny,n2,n3) + b x5(ng, Ny, N3)]
= a T[x;(ny,n2,n3)] + b T[x;(ny,ny,n3)].

« Shift-invariant.
y(ng = ky,ny — ky,ng — k3) = T[x(ng — kq,np — ky,n3 — k3)l-
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3D Signals and Systems @M"

Any 3D discrete signal x(n,,n,,n3) can be decomposed into:

X(Tll, nj, nS)

z z 2 x(kq, kz»k3)5(n1 —ky,ny, —kyy,ng — k3),

k1=—oo k2=—oo k3=—oo

1, fny=n,=n3 =0
0, otherwise '
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3D Signals and Systems @M"

The system output y can be decomposed as:

y(ny,ny,ng) = T[x(nq,ny,n3)]

Z 2 2 x(kq, ko, ks)h(n1 —ky,ny; —ky,ng — k3) y

klz—oo kZ:—oo k3=—oo

where h(ny,n,,n3) =T[6(ny, ny,n3)] is the system impulse
response which completely characterizes the system.
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3D Linear Convolution @M"

For a 3D LSI system with impulse response h, the input x and
output y are related by the 3D linear convolution:

y(ny,np,n3) = x(nyg, Ny, N3) *x*x h(ng, ny, n3)

> > ) xlkakakeh(ng — ki ng — koyms — ka).

k1=—oo kZ:—oo k3=—oo

3D linear convolution is commutative: x *xx h = h **x Xx.
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3D Linear Convolution @M"

If the system’s impulse response h is of finite size Ny, X Ny, X
Ny,, the system is called Finite Impulse Response (FIR)

system and is described by:

y(ny,ny,n3) = x(ng, Ny, ng) *xx h(ny,n,, ns)

Np,=1Np,—1Npy;—1

\ z Z z h(ky, ko, k)x(ny — ky,ny — kyyns = ks).

k1=0 k2=0 k3=0
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3D Linear Convolution @M"

If the input signal x(nq,n,,n3) is also finite (N, X Ny, X Ny,),
the resulting output signal y = x *x* h has size:

(Ny, +Np, — 1) X (Ny,+Np, — 1) X (Ny, + Np, — 1).
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3D Linear Convolution @M"

The 3D convolution has the following computational
interpretation:

« The signal x(kq, k,, k3) is reflected about the axes k4, k, and
k: and then translated by n,;, n, and n; in each axis
respectively, to form the x(n; — ky,n, — ky,n3 — k3).

e For each n;, n, and n; the products h(k;, ks, k3)x(n, —
ki, n, — k,,n3 — k3) are summed over all k,, k, and k3.

|| Attificial Intelligen
Informatio AIyLb 13



3D Linear Convolution VML

k=0 vvs 0| 0 |h@)N(L)| O | O |x

X(0-k) (xxh)(0)
0 | 0 [X0)|X()|X(2)] O |=es ——— ««« [X(2)|X(1)|X(0)| O 0 0 | +es ———3 Y(0) = h(0)x(0)

X(1-k) (X*kh)(1)
— e O [X(@)XW[X0) O | 0 | ess ———=Y¥(1) = h(0)X(1) + h(1)x(0)

X(2-k) (Xxh)(2)
con | 00 [X(2)[X()X0)| 0 svs ———— Y(2) = h(0)X(2) + h(1)X(1)

X(3-k) (x*h)(3)

¥(3) = h(1)x(2)

O | 0 1 0 [X(2)]X(1)|X(0)| """

Example of 1D linear convolution: The signals x(n) and h(n) of finite size N, = 3 and N;, = 2
respectively, and the output signal y(n) is of size N, + N;, — 1 = 4.
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3D Linear Convolution @M"

W

An illustration of 3D convolution with a kernel of size 3 x 3 X 3 (from [DON2020]).
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3D Linear Convolution

VML

k 7
Hl —% —> k ] —>
P a—— H L
k
output -« / output
W
w
{aJ 2D convolution {b] 2D convolution on multiple frames
k : —_
H " d<lL
L output
w

{C} 3D convelution

2D convolution vs 3D convolution (from [TRA2015]).
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3D Cyclic Convolution @M"

The 3D cyclic convolution is defined as:

y(ny,ny,n3) = x(ny,ny,n3) ®®® h(ng,ny, ng)

Ni—1N,—1N3-1

— z Z 2 x(kqi,ky, k3)h ((n1 — ki)n,, (N — k), (N3 — kB)Ns) ‘

kl_—'O kz =0 k3=0

where (n)y denotes nmod N and is the cyclic shift. We use
the symbol ® to distinguish it from the linear convolution.
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3D Cyclic Convolution

9@

3D linear convolution can be embedded in 3D cyclic
convolution by zero-padding the x(nq,n, ns) and
h(n{,n,,n3) in each dimension.

Performing cyclic convolution on these padded signals is
equivalent to performing linear convolution on the original
signals.

Cyclic convolutions are useful because they can be
computed using DFT (via FFT algorithms) and other fast
algorithms such as Winograd convolution algorithms.
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3D Cyclic Convolution
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VML

y(0) = h(0)x(0)

M,. y(1) = h(0)x(1) + h(1)x(0)

M}- y(2) = h(0)X(2) + h(1)X(1)
. w Y(3) = h(1)x(2)

Example of 1D cyclic convolution which is equivalent to linear convolution. The original signals
x(n) and h(n) are of size N,, = 3 and N;, = 2 respectively. By zero-padding them to the same
size N, + N;, — 1 = 4, the resulting output signal y(n) (of size 4) is the same as y(n) obtained

from linear convolution of the original signals.
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3D Z-transform @M"

« The 3D Z-transform of a N; X N, X N5 signal x is defined

as.
Ni—1N,—1N3-1

) ’ Ny _—Ny _—MN
X(Zl,Zz,Z3)= Z Z Z x(nlinZJnB)Zl 122 223 3’

n1=0 n2=0 n3=0
where z,, z,, z3 are complex variables.

- |t can be considered as a polynomial of three variables
: . : . N{—=1 N,—1 N3-—1
Z1, 25, Z3, by multiplying it by the monomial z;* "z,? "z;° .

| | Artificial Intelligence & 20
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3D Z-transform @M"

« An important property is that the 3D linear convolution is
equivalent to the polynomial products in the z-domain:
y(nq,nz,n3) = x(ny, Nz, n3) *xx h(ng, Ny, n3)
© Y(21,2y,23) = X(21, 23, 23)H (24, 23, Z3).

« Similarly for the 3D cyclic convolution:
y(ny,ny,n3) = x(ny,n,13) GO h(ng, ny,n3)
« Y(Zl, Zz,Zg) — X(Zl, ZZIZB)H(ZII Zz, 23) mOd (Z:II_Vl_].), (Zévz _1), (Z:ISVB—].)
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3D Discrete Fourier Transform @M"

The 3D Discrete Fourier Transform (DFT) of a 3D N; X N, X
N; signal x is defined as:

N;i—1N,—1 N3—1

X(kl, kz,kg) _ Z Z Z X(Tll,nz,Tlg)WnlklwnZsznBRBJ

n1—0 nz—O n3—0

where Wy, = e J2m/Ni j =123, are N;-th primitive roots of

unity.

” Attificial Intelligen
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3D Discrete Fourier Transform @M"

The inverse 3D DFT (IDFT) is given by:

X(Tll, nj, n3)

Ni—1N,—1 N3—1

X (ky, ky, k)W, "1"1W "2"2W nzks,
NlNzNgz Z Z ey, fez, k)

kl—O kz_O k3—0

Artificial Intelligen
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3D Discrete Fourier Transform @M"

« The convolution theorem states that the cyclic convolution
in Z3 is equivalent to the multiplication in the DFT domain:

y(n1; le, Tl3) — X(Tll, nz, n3) ®®® h(nli nZi n3)
& Y(ky, ky, k3) = X(kq, ka, k3) H(kq, ko, k3).
« Thus, the 3D cyclic convolution can be computed by DFT:

x(n1,n2,n3) X(k1,k2,k3) Y(k1,k2,k3) y(ni,n2,n3)
> DFT > IDFT >

h(ni,n2,n3) H(k1, ko, k
= DFT (k1,k2,k3)
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3D Fast Fourier Transform @ML

The 3D DFT can be rewritten as ([DUD1984)):

Xy ey k) = ) Fl, b e W,

n,;=0
where:

N,—1

Fln, epks) = D Gl m, k) W',

Tl2=0
Ny—1

G(ny,ny k) = ) x(ng, g, ms) W™

Tl3=0

Artificial Intelligen
O”DIfmi AIy Lb 20



3D Fast Fourier Transform @M"

In this way, the 3D DFT becomes decomposed into:

« N;N, 1D DFTs G of length N3, along the axis ns,
« N;N; 1D DFTs F of length N,, along the axis n,,
« N,N; 1D DFTs x of length N;, along the axis n,,

where each 1D DFT can be computed using 1D FFT algorithm.
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3D Fast Fourier Transform

ALL

Proc4  BEwmass —EE =
Procs  Ssssssaal to _scaay] to
P ravar i} - -
Procé  SSSSSSSw
Proc7 MEEEEEESY" ALL A
N— WITHIN BETWEEN
Proc 8 EACH sub-groups
Proc9 = sub-group
Proc10_ to get data over
Proc 11 i’i’i’i’i’i’i’.’;;f—" to get data over x-dimension
EEEEAUEES z-dimension locally
Proc 12, il i locally
Proc 1322 ;-‘-'-.",:-_:;'5-‘:"!
Proc 14 :..::..g; f /
Proc 15 EE ] ’ L
X g X y z y
T i perform 1D-FFT perform 1D-FFT perform 1D-FFT
y along y-dimension z along z-dimension X along x-dimension

(a) (b) (c)

Decomposition of 3D FFT into 1D FFTs (from [HEI2005]).
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3D Fast Fourier Transform @M"

 There are many variants of 1D FFT algorithms. The best

known is the Cooley-Tuckey radix-2 decimation in time
(DIT) FFT algorithm.

« |t uses the “divide and conquer’ approach by recursively
breaking down the 1D DFT of any composite size N = NN,
into N; smaller DFTs of sizes N,.

” Artificial Intelligen
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3D Fast Fourier Transform @M"

stage 1 stage 2 stage 3
x(0)

X(0)
x(4) >< X(1)
x(2) \\// X(2)
x(6) X(3)

x(1)

>< /XX\ N
5

= /A .
—= Iin -~ =
x(7) L NVIE e X(7)

W20 = 1 W41

Data flow diagram of 1D radix-2 FFT algorithm for N=8.
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3D Fast Fourier Transform @M"

The radix-2 FFT algorithm rearranges the 1D DFT into a sum
over even and odd indices:

N/2-1 N/2-1
X (k) = z x2R)Wk, + W z x(2n + W
n=0 n=0

— Xeven(k) + WI\IICXodd (k).
By using the properties WY = W, and W,

be shown that:
X(k+N/2) = Xepen(k) — WI\II(Xodd(k)-

” Attificial Intelligen
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3D Fast Fourier Transform @M"

Therefore, we can express a N-point DFT in terms of two N /2-
point DFTS Xepen(k) and Xogqq(k), 0 <k <7 —1, which are

then combined by butterfly operation (only one multiplication
and two additions):

Xeven(k) e B >)< > * X(k) = Xeven(k) odd(k)
X_ (k) —> > — X(k+N/2) = X_,_(k) - W,k X_ (k)

even

” Arfificial Intelligen
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3D Fast Fourier Transform @M"

The number of additions and multiplications required for
computing the 3D FFT by using 1D radix-2 FFTs is [PIT2000]:

A = N;N,;N3log,(N;1N;N3),

N1N3 N3
M —_ 2 logz(N1N2N3).

This is much better as compared to (N, N,N5)? multiplications
required for the direct computation of 3D DFT.
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Block convolutions

« Computation of convolution by DFT methods (using FFT
algorithms) for signals of large sizes can be very memory
consuming.

« To overcome this problem, block methods can be used.

 Limiting the size of blocks limits the amount of storage
required while maintaining the efficiency of the procedure
[DUD1984].

 There are two block-based methods: overlap-add and
overlap-save.

|| Artificial Intelligen
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Overlap-add method @M"

« The overlap-add method is based on the distributive
property of the convolution.

+ A 3D signal x of size N, X N,, X N,., can be partitioned into
blocks of size B; X B, X Bj:

rx(nl,nz,ng), iB; <ny <(i+1)By,
jB, <n, < (j+ 1)B,,
kB; < n; < (k + 1)Bs,
: 0, otherwise.

Xijk (N1, Mg, M3) = <

” Artificial Intelligen
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Overlap-add method @M"

« The signal x(n,,n,,n3) can be re-constructed from these
blocks:

X(Tll, np, Tl3) — }_‘ Z Z Xijk (nl; na, 713).
I j k

« The output y(n,, n,, n3) is the sum of convolutions of these
blocks with the impulse response h(nq, n,,n3):

y(nl' ny, Tl3) = Z Z Z Yijk (nll n,, n3);
i J k

where y; j, = x;j *** h is the block output.
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Overlap-add method @M"

+ The size of each output block y;y is (B; + Np, —1) X
(B; + Ny, — 1) X (B3 + Ny, —1) which is greater than the
size of the corresponding input block x; .

« Therefore, each output block overlaps with its adjacent
output blocks by some amount determined by the size of h.
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Overlap-add method

VML

x;(n)

X(n)

x3(n)

I B

t~Np-1-1

yi(n)

t=Np-1-1

y2(n)

f B

N1

y3(n)

Overlap-add method for convolution in 1D. The input signal x(n) is partitioned into three blocks
x1(n), x,(m) and x3(n), each of length B. The impulse response h(n) is of length N; and the output
blocks y;(n) = (x; * h)(n), i = 1,2,3, are of length B + N, — 1 each. There are N, — 1 overlapping
points between output blocks y;(n) and y;,;(n). The output signal y(n) is formed by adding all the

overlapping output blocks y;(n).

| | Artificial Intelligence &
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Overlap-add method @M"

« The convolutions of each x;;, with h can be efficiently
computed by FFT of size at least (B, + Ny, — 1) x (B, +
Np, — 1) X (B3 + Ny, — 1) [PIT2000].

« Limiting the block size reduces the required memory but
increases the number of computations.
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Overlap-save method @M"

« The overlap-save method is an alternative block method.
« The 3D output is partitioned into B; X B, X B3 non-
overlapping blocks:

}I(Tll, np, Tl3) — Z Z Z yijk (nl» np, 713).
i j k

« The corresponding 3D input section x;j,(ny,n,,n3) of size
B; X B, x B is extended to x;;, (nq,n,, n3) of size (By+Ny, —
1))( (Bz'l'th —1)X(B3 +Nh3 _1)

|| Attificial Intelligen
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Overlap-save method @ML

+ The 3D cyclic convolution y;; = x;; ®®® h can be
efficiently computed by FFT of size (B;+Np, —1) X (B, +
Np, — 1) X (B3 + Ny, — 1).

» Each of the resulting blocks y;;; will contain a sub-block of

size B; X B, X B; which is identical to the desired linear
convolution y;, = x;j, *** h (which are added to form y).

» In both block methods the choice of block size affects the
amount of storage needed and the number of computations.

|| Attificial Intelligen
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Winograd convolution algorithm @ML

« We saw that the 3D cyclic convolution can be efficiently
computed by 1D FFTs.

* When the length of the convolution kernel is small, the best
convolution algorithms, as measured by the number of
required multiplications, are the Winograd convolution
algorithms [BLA2010].

« The Winograd convolution algorithms are based on the
Chinese Remainder Theorem (CRT) for polynomials.

|| Attificial Intelligen
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Chinese Remainder Theorem @M"

Let M(2) =[5, m;(z) be a product of k pair-wise coprime

M(z) for each i.
m;(z)

polynomials and let M;(z) =

Since M;(z) and m;(z) are coprime for all i, the Bezout's identity
holds:

M;(z)N;(z) + m;(z)n;(z) = 1, Vi,

for some polynomials N;(z) and n;(z), which are not unique.
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Chinese Remainder Theorem @M"

Then, the system of congruences c;(z) = c(z) modm;(z), i =
1, ..., k, has a unique solution modulo M:

k
c(z) = z c:(2)M;(2)N;(z) mod M(2).

=1

|| Artificial Intelligen
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1D Winograd convolution @M"

For simplicity, we first present the 1D Winograd convolution
algorithm and later extend it to 3D.

The 1D cyclic convolution of length N can be expressed in
terms of polynomials in z-domain as:

Y(z) = X(z2)H(z) mod z" —

” Attificial Intelligen
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1D Winograd convolution @M"

The polynomial P(z) =z¥ -1 can be factorized into v
irreducible cyclotomic polynomials p;(z) = ®,.(z) over the
field of rational numbers Q:

P(z) = HPi(Z),
i=1

where v is the number of all the divisors d; of N.

” Attificial Intelligen
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1D Winograd convolution @M"

« The cyclotomic polynomials are given by the relation:

o= || @-wh.
gcd(k,n)=1
where w,, = e/2™/" js the primitive n-th root of unity.
|t follows that deg(®,) = ¢(n), where ¢(n) is the Euler’s

totient function.
« .The cyclotomic polynomials have integer coefficients. For

example: ®,(z2) =z—1,0,(z2) =z+ 1,P3(z) = z* + z + 1.

” Artificial Intelligen
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1D Winograd convolution @M"

The Winograd convolution algorithm is based on the reduction
of the polynomial product Y(z) = X(z)H(z) mod P(z) into the
products of smaller-degree polynomials modulo p;(z):

Y;(z) = X;(z)H;(z) mod p;(2),
where

X;(z) = X(z) mod p;(2),
H;(z) = H(z) mod p;(2).

” Attificial Intelligen
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1D Winograd convolution @M"

« The polynomial Y(z) can be reconstructed by using the CRT
for polynomials:

Y(2) = z Y,(2)R;(2) mod p;(2),

where R;(z) = §;; mod p;i(2).
* |n practice the polynomials R;(z) can be computed using the
following relation [GAR1987].

= P(z) | z dp;
Ri(z) = > (2) [(N dz) mod PL(Z)]
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1D Winograd convolution @M"

« The Winograd convolution algorithm can be expressed
compactly in the following matrix notation (bilinear form):
y = C(Ax®Bh),

where ® denotes element-wise product.

» Matrices A and B typically have elements —1,0,1. Therefore

products Ax and Bh represent additions instead of
multiplications.

|| Attificial Intelligen
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1D Winograd convolution @M"

« \We can use the equivalent form:
y = RBT(AXx®CTRh),
where R is a N x N permutation matrix. The RBT and C'Rh
can be both precomputed.

« Winograd convolution algorithms are optimal, having the
minimal number of multiplications 2N — v [WIN1980].

« GEneral Matrix Multiplication (GEMM) BLAS or CUBLAS
routines can be used for fast matrix-vector multiplications.

|| Attificial Intelligen
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3D Winograd convolution @M"

« The Winograd convolution can be extended to three
dimensions [PIT1987].

« The 3D cyclic convolution can be expressed as:

Y (24,25, 23) = X(24, 23, 23) H(24, 23, 23) mod Py (z4), P;(22), P3(23),

where P;(z;) = (zl{v" — 1), i=1,2,3.
« Each P;(z;) can be factorized into v; cyclotomic polynomials:
-

Pi(z;) = l_lpij,;(zi)» degip;j;} = Nij,, 1 = 1,2,3.
Ji=1
@ @F =N .



3D Winograd convolution @M"

Therefore, the Y(z4,2,,23) can be reduced to the products of
smaller-degree polynomials:

Y jais (21,22, 23)

= XJ1JzJ3 (Zl’ 22 Z3) J1J2J3 (Zl' Z2) ZS) mod P1j, (Zl)» P2j, (ZZ): P3j, (ZS);

where:
X; i,is (21,22, z3) = X(24, 23, 23) mod pqj, (21), D2j, (22), P3j,(23)

Hj, jyis (21,22,23) = H(24,23,23) mod py,(21), p2j, (z2), p3j,(23)
forl<j;<v;,i=1,2,3.

|| Atificial Intelligenc
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3D Winograd convolution @M"

Using the CRT, Y(z,2,,23) can be reconstructed as follows:
Y(2y,2,,23) = Yi inis (21,22, 23) Rqj, (Z1)RZj2 (Zz)R3j3 (z3)
mod P1j, (z1), P2j, (22), P3j, (z3),

where
Rij (z;) = 6j.k, mod py,(2;), 1<k <.

Artificial Intelligen
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3D Winograd convolution @M"

« The number of multiplications of this 3D algorithm is:
(2N; —v1) (2N, — v5)(2N3 — v3),

i.e., the computational complexity is of order O(N3).

« However, this is not the minimal computational complexity,
because there can exist further factorizations such as each

p1j, (z1) over Q[z,]/p,j,(22) or Qlz3]/p3j,(23) etc.
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3D Winograd convolution @M"

It can be shown that the optimal algorithm for 3D cyclic
convolution exists and requires the following minimum number

of multiplications [PIT1987]

M- Z > > M

=1 j,=1 j3=

where
Mj1j2j3 = min {(ZNljl — 1)(2N2j2 = szz)(2N3j3 = k3j3)’
(2Nyj, = 1)(2Nyj, = ke, )(2Nsj, — ks, ),

(2N3f3 — 1)(2Nlj1 o klh)(Zszz = kzjz)}'
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3D Winograd convolution @M"

« Such optimal algorithms can be expressed in the matrix
form that we saw for 1D Winograd convolution:

y = RBT(Ax®CTRh),
which then can be computed by using linear algebra
libraries such as BLAS and cuBLAS.

» However, finding the matrices A, B, C can be a tedious task
and has to be done by hand for a desired convolution size.
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Thank you very much for your attention!

More material Iin
http://icarus.csd.auth.gr/cvml-web-lecture-series/ /
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