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2D Object Tracking
• Video tracking is the process of locating a moving object (or

multiple objects) over time using a camera

• Variety of uses:

• Human-computer interaction;

• Security and surveillance;

• Video communication and compression;

• Traffic control;

• Medical imaging.
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Target/object examples
• Athletes, boats, bicycles.
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2D Visual Object Tracking
• Problem statement:

• To track a target/object (e.g. human face) image in each 

video frame and localize its Region-Of-Interest (ROI).

• To track the detected object over the video frames.
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2D Object Tracking
• ROI is typically a bounding box at time 𝑡 defined by:

• its center/size parameter vector 𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ
𝑇 or

• the upper left lower right rectangle coordinates

𝑥𝑙 , 𝑦𝑙 , 𝑥𝑟 , 𝑦𝑟 .

• Object ROI center: 𝐜 = 𝑥𝑐 , 𝑦𝑐
𝑇.

• Object trajectory: object ROI center coordinates over

time.

• Moving region: a series of tracked object ROIs over time.

• Object instance: object region ROI plus other info.
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2D Object Tracking
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2D Object Tracking
• 2D visual object tracking is performed on the image

plane:

• object ROI coordinates and trajectory are defined in

(𝑥, 𝑦, 𝑡) image plane coordinates (typically in pixels, sec).

• 2D visual object racking associates each detected object

ROI in the current video frame with one in the next video

frame.
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2D Object Tracking
• 3D object tracking is performed on a world coordinate

system: (𝑋, 𝑌, 𝑍, 𝑡) (in meters, sec).

• 3D object following is a control problem, ensuring a

vehicle follows a physical object moving in a world

coordinate system: (𝑋, 𝑌, 𝑍, 𝑡).
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2D Object tracking 
requirements
In order to track a moving object, a tracker has to confront:

• 3D geometric solid object motion (3D translations,

rotations) causing 2D object image transformations:

• notably 2D translation, rotation, scaling or projective

transformations object scaling.

• Effects of camera motion and/or parameter change:

• zooming, global motion field;
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2D Object tracking 
requirements
• In order to track a moving object, a tracker has to confront:

• Partial occlusion,

• Object image deformation,

• Motion blur,

• Fast object image motion,

• Illumination variations,

• Background clutter.
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2D Object Tracking

12

𝐱𝑝𝑖



2D Object Tracking
Detection-tracking loop:

• Object (re)detection.

• Object position prediction in the next frame and search

region initialization (optional).

• Object localization in the next video frame:

• Feature/Similarity/Correlation matching.

• Handling tracking failure (optional):

• Occlusion detection and handling;

• Object/background model update;

• Background discrimination.



Object tracking

Given two video frames at time 𝑡, 𝑡 + 1 and a detected object at

time 𝑡 described by:

• a vector ො𝐲(𝑡) = [ො𝐲1
𝑇|𝐱𝑇|𝓘 𝓜 ො𝐲2

𝑇
]𝑇(𝑡) consisting of:

• ROI parameter vector ො𝐲1(𝑡) = 𝑥, 𝑦, 𝑤, ℎ 𝑇.

• ROI image content (feature) vector 𝐱𝑇(𝑡).
• A unique object id 𝓘.

• Object model 𝓜 (optional). It can be learnt:

• a) a set of representative images, b) an ML model.

• (optional) Object identification/recognition:

• produce a class vector ො𝐲2 𝑡 ∈ 0, 1 𝑚.
• At times, 𝓘 may coincide with the winner class label ො𝐲1𝑤.



Object tracking

Track this object in video frame 𝑡 + 1:

• (Optional) Predict object position 𝑥, 𝑦 𝑇 𝑡 + 1 ;
• Find ROI parameter vector ො𝐲1(𝑡 + 1) = 𝑥, 𝑦, 𝑤, ℎ 𝑇 within a

search region on video frame 𝑡 + 1;
• Retain object id 𝓘 𝑡 + 1 = 𝓘 𝑡 ;
• update model vector 𝓜(optional);

• Object identification/recognition (optional)

• produce a class vector ො𝐲2 𝑡 + 1 ∈ 0, 1 𝑚.



2D Object Tracking
Tracking failure sources:

• Occlusion, drifting to the background.

• In such cases, object re-detection is employed.

• If any of the detected objects coincides with any of the
objects already being tracked, tracking/detection
information can be merged.

Periodic object re-detection:

• It can account for new object appearance (typically
every 5-100 video frames).

• Forward and backward tracking:

• when the entire video is available.



2D Object Tracking
• Introduction

• Prediction in object tracking

• Feature Point based trackers
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• Object Detection Performance Metrics
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Object position 

prediction

Kalman filter for object position/velocity parameter prediction.

time update 

“predict”

measurement 

update

“correct”



Object position 

prediction
Kalman filter for object position prediction:

• Object state vector: 𝐱𝑡 = 𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦
𝑇

(2D image plane 

position, velocity).

• Motion state estimation model: 𝐱𝑡+1 = 𝐀𝐱𝑡 + 𝐧𝑡

• Position prediction:  ො𝐱𝑡+1 = 𝐀ො𝐱𝑡 ,

𝐏𝑡+1 = 𝐀𝐏𝑡𝐀
𝑇 + 𝐐𝑠



Object position 

prediction

• Measurement model: 

𝐳𝑡+1 = 𝐇𝐱𝑡+1 + 𝐯𝑡+1,

𝐊𝑡+1 = 𝐏𝑡𝐇
𝑇 𝐇𝐏𝑡𝐇

𝑇 +𝐐𝑚
−1
.

• Adjustment of 𝐏𝑡+1:

ො𝐱𝑡+1 = ො𝐱𝑡 + 𝐊𝑡+1(𝐳𝑡+1 − 𝐇ො𝐱𝑡+1),

𝐏𝑡+1 = 𝐈 − 𝐊𝑡+1𝐇 𝐏𝑡+1.



2D Object Tracking
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Feature Point based 

Tracking

Feature point based face

tracking:

• Sparse image feature

generation.

• Various image features can be

used.

• Features may have semantic

meaning (e.g., mouth corner).

• Feature points (landmarks) are

individually tracked.

Object

Detection

Occlusion

Handling

Select Features

Track

Features

Result

YES

NO



Feature point based 

Tracking

• Feature point loss, primarily due to occlusion:

• The number of features in each tracked region is checked

in each frame against a specified threshold.

• If the number falls below the threshold, features are

regenerated.

• Feature regeneration also takes place at regular

intervals, in an effort to further enhance the tracking

process.



2D Object Tracking
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Region Similarity 

Tracking

• An object ROI is detected.

• For this ROI, feature vectors are calculated:

• image color similarity features, e.g., color histogram;

• structure similarity features (e.g., LSK).

• They form the object image model.

• A search region is defined around the predicted object

position.

• The search region is divided in overlapping patches.



Region Similarity 

Tracking

• Feature vector similarity between:

• the ones of image patches

• the ones of the image model.

• If feature vector similarity is big:

• tracking is successful.

• When an object appearance change is detected, the

object model is updated.



Region Similarity Tracking
• Color-histogram (CH) similarity

• Only ROIs with the most similar color histograms are

retained.

Search Region

Object ROI in 

previous frame

Similarity matrix MCH



Region Similarity 

Tracking
Local Steering Kernels (LSKs)

• They are a non-linear combination of
weighted distances between a pixel
and its surrounding pixels.

• They exploit both spatial and edge
detection information.

• One LSK vector per pixel is derived.

• LSKs are invariant to brightness &
contrast variations and noise.

LSKs [SEO2010].



Region Similarity Tracking

• Local Steering Kernels:

𝐾 𝐱𝑙 − 𝐱 =
det(𝐂𝑙)

ℎ2
exp −

𝐱𝑙 − 𝐱 𝑇𝐂𝑙
−1 𝐱𝑙 − 𝐱

2ℎ2
.

• 𝐂𝑙 : Covariance matrix of 𝑘 × 𝑘 neighboring pixel gradient
matrix.

• It rotates, elongates, and scales the Gaussian kernel
along the local edge.



Region Similarity 

Tracking

• Cosine similarity between histogram vectors 𝐡1 and 𝐡2:

𝑆 =
𝑠2

1−𝑠2
,

𝑠 𝐡1, 𝐡2 = cos 𝜃 =
𝐡1
𝑇𝐡2

𝐡1 𝐡2
.

• It can be used both for image color and structure feature

vectors.



Region Similarity 

Tracking

• Extract LSKs resemblance

map 𝐑𝐼 to a stored object

ROI in a previous frame

(object appearance

model).

LSK features of 
stored object ROI



Region Similarity 

Tracking

• Extract LSKs resemblance

map 𝐑𝑄 to the object ROI

instance in the previous

video frame.

LSK features of object ROI 
in the previous frame



Face/Object Tracking 

based on LSKs
• Extract the new object position.

+

λ

1-λ

extract

RI

RQ

R

Rmax



Region Similarity Tracking

Overall LSK tracker block diagram. 



Region Similarity Tracking

LSK tracker results.



2D Object Tracking
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Correlation trackers

37

Obtain initial video 
frame

Train a Correlation 
tracker model 𝐰

Extract ROI

Obtain next video 
frame

Use model 𝐰 to find new ROI position.
Search in a broader area near previous location

End? Stop process
YES

NO



Correlation trackers
Kernelized Correlation Filter (KCF) tracker:

• KCF is a very fast video tracker. Ideal for embedded

system applications.

• It can be adapted to use various features (pixel intensity,

HOG, etc.) or even use deep features provided by

Convolutional Neural Networks (CNNs).

• Standard KCF has no scaling adaptation mechanism but

can be modified to this end.
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KCF Tracker
• Various image descriptors can be used with KCF.

• Current implementations deploy:

• Grayscale features

• HOG 

• Features calculated with deep neural networks

39



KCF Tracker
Linear regression

• Goal: training a linear function 𝑓(𝐱) = 𝐰𝑇𝐱 that minimizes

the objective function:

min
𝐰

σ𝑖=1
𝑁 (𝑓 𝐱𝑖 − 𝑦𝑖)

2+𝜆 𝐰 2.

• 𝐱𝑖 ∈ ℝ𝑛, 𝑖 = 1,… ,𝑁: object ROI feature vectors

• 𝑦𝑖, 𝑖 = 1,… , 𝑁: regression targets

• 𝐰: KCF tracker model (unknown KCF weight vector).

• 𝜆: regularization parameter.



Linear regression solution:

𝐰 = (𝐗𝐗𝑇 + λ𝐈)−1𝐗𝐲,   

• 𝐗 = 𝐱1…𝐱𝑁 : 𝑁 × 𝑛 data matrix.

• 𝐲 = 𝑦1,… , 𝑦𝑁
𝑇: regression target vector.

• 𝐰: unknown weight vector.

• Regularized pseudoinversion is used.

• It forms the theoretical basis for KCF object tracking.

• In the following, 𝐗𝑇 will be used in the place of 𝐗, as is the

typical notation in the literature.

KCF Tracker



Cyclic Shift trick:

• Train a classifier with one object template image vector

𝐱 = 𝑥0…𝑥𝑁−1
𝑇and several virtual negative samples obtained

by permutating its entries.

• All 𝑁 vector 𝐱 permutations produce the circulant matrix 𝐗:

𝐗 =

𝑥0 𝑥1 𝑥2 ⋯ 𝑥𝑁−1
𝑥𝑁−1 𝑥0 𝑥1 ⋯ 𝑥𝑁−2
𝑥𝑁−2 𝑥𝑁−1 𝑥0 ⋯ 𝑥𝑁−3
⋮ ⋮ ⋮ ⋱ ⋮
𝑥1 𝑥2 𝑥3 ⋯ 𝑥0

.

KCF Tracker



KCF Tracker
• DFT matrix 𝐅:

𝐅 =

𝑊𝛮
0 𝑊𝛮

0 ⋯ 𝑊𝛮
0

𝑊𝛮
0 𝑊𝛮

1 ⋯ 𝑊𝛮
𝑁−1

⋯ ⋯ ⋱ ⋮

𝑊𝛮
𝑁−1 𝑊𝛮

2(𝑁−1)
⋯ 𝑊𝛮

(𝑁−1)(𝑁−1)

.

• 𝛮 complex roots of unity 𝑊𝛮 = 𝑒−2𝜋𝑖/𝑁,

𝐅−1 =
1

𝑁
𝐅∗.

• Unitary DFT matrix normalization:

𝐔 = 𝐅/ 𝑁, 𝐔𝐻 = (𝐔∗)𝑇 , 𝐔−1 = 𝐔∗, det(𝐔) = 1.



Circulant matrix properties:

• Circulant Matrices can be diagonalized in the Fourier

domain:

𝐗 = 𝐔𝑿𝐔𝐻 ,

• 𝑿 = diag(ො𝐱) is the diagonal matrix of eigenvalues of 𝐗, i.e.,

the DFT of the first row of 𝐗:

ො𝐱 = 𝐅𝐱.

• The inverse of a circulant matrix is also circulant.

• The sum or product of two circulant matrices is also a

circulant matrix.

KCF Tracker



• Example:

• Circulant matrix 𝐗 containing all the possible translations 

of a vector 𝐱 = 1 2 3 4 :

𝐗 =

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

.

KCF Tracker



• Unitary 4 × 4 DFT matrix:

𝐅 =

1 1 1 1

1 −𝑖 −1 𝑖

1 −1 1 −1

1 𝑖 −1 −𝑖

, 𝐔 =

0.5 0.5 0.5 0.5

0.5 −0.5𝑖 −0.5 0.5𝑖

0.5 −0.5 0.5 −0.5

0.5 0.5𝑖 −0.5 −0.5𝑖

,

𝐔 = 𝐔∗ =

0.5 0.5 0.5 0.5
0.5 −0.5𝑖 −0.5 0.5𝑖
0.5 −0.5 0.5 −0.5
0.5 0.5𝑖 −0.5 −0.5𝑖

, 𝐔𝐔∗ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

KCF Tracker
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Using the vector 𝐱 = 1 2 3 4 𝑇:

diag(ො𝐱) =

10 0 0 0
0 −2 + 2𝑖 0 0
0 0 −2 0
0 0 0 −2 − 2𝑖

𝐗′ = diag(ො𝐱∗ ⊗ ො𝐱) =

100 0 0 0
0 8 0 0
0 0 4 0
0 0 0 8

KCF Tracker

𝐗𝑇𝐗 =

30 24 22 24
24 30 24 22
22 24 30 24
24 22 24 30

𝐔𝐗′𝐔H =

30 24 22 24
24 30 24 22
22 24 30 24
24 22 24 30



Regression result in the DFT domain.

𝐗𝑇𝐗 = 𝐅diag(ො𝐱∗ ⊗ ො𝐱)𝐅𝐻.

• ො𝐱∗: conjugate of vector ො𝐱.

Using the above equation in:

𝐰 = (𝐗𝑇𝐗 + λ𝐈)−1𝐗𝑇𝐲 ,

we find:

ෝ𝐰 = (ො𝐱∗ ⊗ ො𝐲)⊘ (ො𝐱∗ ⊗ ො𝐱 + λ),

𝐰 = 𝐅−1 ෝ𝐰.

• ⊗ ,⊘: pointwise vector multiplication/division.

• 𝐰 is essentially a normalized correlation of vectors 𝐱, 𝐲.

KCF Tracker



Non-linear regression

• Kernel trick allows non-linear regression functions

𝑓 𝐳 .
• Nonlinear mapping 𝝓 𝐱 of input vector 𝐱 ∈ ℝ𝑛 to a

kernel space ℝ𝐿: 𝝓 𝐱 ∈ ℝ𝐿, 𝐿 > 𝑛.
• Correlation coefficient vector 𝐰 can be expressed as a

linear combination input samples:

𝐰 = σ𝑖=1
𝑁 𝑎𝑖𝝓(𝐱𝑖).

• Instead of seeking 𝐰, it is enough to find 𝑎𝑖 , 𝑖 = 1, . . , 𝑁.

KCF Tracker



Non-linear regression

• The inner product on kernel space ℝ𝐿 can be computed 

using the nonlinear kernel function 𝜅:

𝝓𝛵 𝐱𝑖 𝝓 𝐱𝑗 = 𝜅 𝐱𝑖 , 𝐱𝑗 . 

• It can be precomputed and stores in the 𝑁 × 𝑁 kernel

matrix 𝐊:

𝐊𝑖𝑗 = 𝜅 𝐱𝑖 , 𝐱𝑗 .

• Function 𝜅 𝐱𝑖 , 𝐱𝑗 is known, even if 𝝓 𝐱 may be

unknown.

KCF Tracker



KCF Tracker

Common kernel functions:

• Linear kernel: 𝜅 𝐱𝑖 , 𝐱𝑗 = 𝐱𝑖
𝑇𝐱𝑗.

• Polynomial kernel: 𝜅 𝐱𝑖 , 𝐱𝑗 = (𝑎𝐱𝑖
𝑇𝐱𝑗 + 𝑏)𝑑.

• RBF kernel: 𝜅 𝐱𝑖 , 𝐱𝑗 = 𝑒−( 𝐱𝑖−𝐱𝑗
2
)/2𝜎2 .

• Adaptive kernels (e.g., intersection): 

𝜅 𝐱𝑖 , 𝐱𝑗 = 
𝑘
min 𝑥𝑖𝑘 , 𝑥𝑗𝑘 .



Non-linear regression

• Regression function:

𝑓 𝐳 = 𝐰𝑇𝐳 = σ𝑖=1
𝑁 𝑎𝑖𝜅 (𝐳, 𝐱𝑖).

• Regression function complexity grows linearly with the

number of training samples 𝑁.

KCF Tracker



Non-linear regression

Theorem: Given 𝑁 permutated versions 𝐱𝑖 = 0,… ,𝑁 − 1
of vector 𝐱 , their corresponding kernel matrix 𝐊 is

circulant, if kernel function satisfies 𝜅 𝐱𝑖 , 𝐱𝑗 = 𝜅 𝐏𝐱𝑖 , 𝐏𝐱𝑗 ,

for any permutation matrix 𝐏.

KCF Tracker



The following kernels satisfy the above theorem:

• Radial Basis Function kernels, e.g., the Gaussian

kernel;

• Dot-product kernels, e.g., linear, polynomial kernels;

• Adaptive kernels , e.g., the intersection kernel;

• Exponentiated additive kernels.

KCF Tracker



• Mapping the linear regression solution:

𝐰 = (𝐗𝑇𝐗 + λ𝐈)−1𝐗𝑇𝐲,
to kernel space ℝ𝐿 produces the kernel coefficient

vector 𝐚 = [𝑎1, … 𝑎𝑁]
𝑇 :

𝐚 = 𝐊 + 𝜆𝐈 −1𝐲.

• If 𝐊 is circulant, this solution can be diagonalized to

obtain a fast solution:

ො𝐚 = ො𝐲⊘ (መ𝐤𝐱𝐱 + λ).

• መ𝐤𝐱𝐱 is the 1D Fourier transform of the 𝑁 elements 𝐤𝐱𝐱 =

𝜅 𝐱, 𝐱 .

KCF Tracker



Multiple channels

• Working in the dual space has the advantage of allowing

operation on multiple data channels:

• For example, the orientation bins of a HOG descriptor

can be used by summing over them in the Fourier

domain.

• To deal with multiple channels, it can be assumed that a

vector 𝐱 results from the concatenation of the individual

vectors for 𝐶 channels 𝐱 = 𝐱1
𝑇⋯𝐱𝐶

𝑇 𝑇.

KCF Tracker



Multiple channels

• Previously discussed kernels are based on vector dot

products or vector norms.

• A dot product can be computed by simply summing the

individual dot products for each channel.

• DFT linearity allows the summation of the result for

each channel in the Fourier domain.

• Example: multi-channel analogue of the Gaussian

kernel:

𝜅 𝐱𝑖 , 𝐱𝑗 = exp −
1

𝜎2
𝐱𝑖

2 + 𝐱𝑗
2
− 2𝐅−1 Σ𝑐 ො𝐱𝑖𝑐

∗ ⨀ො𝐱𝑗𝑐 .

KCF Tracker



KCF Tracker
Definition of the regression target 𝐲:

• A 2D Gaussian distribution is

used.

• Higher value corresponds to the

non permuted data vector 𝐱.
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KCF Tracker
• Placing the peak in the middle

will unnecessarily cause the

detection output to be shifted by

half a window.

• Placing the peak at the top-left

element (and wrapping around)

correctly centers the detection

output.
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KCF Tracker
• On video frame 𝑡, calculate:

ො𝐱= 𝐅𝐱,

ෝ𝐰 = (ො𝐱∗ ⊗ ො𝐲)⊘ (ො𝐱∗ ⊗ ො𝐱 + λ),

𝐰 = 𝐅−1 ෝ𝐰.

• To find the new position on video frame 𝑡 + 1 maximize: 

𝑓 𝐳 = 𝐰𝑇𝐳,

• 𝐳: feature vector of an image patch in the search region.

• Highest 𝑓 𝐳 value location indicates the new object

position.
60



KCF Algorithm 
implementation
• Initial frame (𝑡 = 0):

• Initialize ෝ𝐰,

• Initialize ෝ𝐰𝑚, ො𝐱𝑚: interpolated model and target features.
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KCF Algorithm 
implementation
• Next frame (𝑡 = 𝑡 + 1) 

• update target position 𝐜(𝑡 + 1):
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KCF Algorithm 
implementation
• Next frame (𝑡 = 𝑡 + 1)

• interpolate ෝ𝐰𝑚, ො𝐱𝑚:
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Handling Tracking Failure
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Handling Tracking Failure

Occlusion handling:

• If the tracker knows somehow that the target is occluded,

then it acts accordingly:

• Partial occlusion: The tracker tracks but does not

update its model.

• Total occlusion: The tracker is employed as a detector

in a surrounding area.



Handling Tracking Failure

66

Two approaches have been investigated for occlusion

handling:

• Peak-to-Sidelobe-Ratio 𝑟 of the tracker responses 𝑅 =

𝑓 𝒛 :

𝑟 = max 𝑅 −mean 𝑅
std 𝑅

.

• Low 𝑟 values indicate tracker failure, e.g., due to

occlusion.



Handling Tracking Failure

67

• Learn a two-class SVM tracker response model

(occlusion/no-occlusion) from the tracker responses in

other videos.

• Challenge: Partial occlusions are difficult to handle, and the

tracker might confuse them with heavy rotations. In some

cases, the model still needs to be trained, and in other

cases, not.



Handling Tracking Failure
Occlusion handling consists of 3 components:

• Baseline tracker (e.g., KCF, Staple, etc.);

• Occlusion detector trained from the tracker responses on

occluded/non occluded items;

• Re-detection scheme (employing the tracker).

Algorithm

• Initialize tracking;

• Deploy a 2-class SVM classifier in order to detect if target

is occluded or not;

• If occlusion is detected, stop training the tracker;

• Re-detect the target.



Handling Tracking Failure
Occlusion handling (features for SVM classifier):

• Obtain the tracker response 𝑓 𝐳 on a search region, crop

and vectorize the central area (11 × 11 patch),

corresponding to low frequencies.

• When no occlusions or heavy translation occur, response

values 𝑓 𝐳 are larger in this patch.
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Handling Tracking Failure
• VOT 2017 contains occluded/non occluded frame

annotations.

• We obtained the responses of KCF, Staple and Context-

Aware (CA) Staple, using standard HoG features

• We compared our proposed SVM-based Occlusion

detector with other well-known Occlusion detectors from

statistical features (max tracker response, PSR-metric)
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Handling Tracking Failure

Cross-validation tracking accuracies.
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Tracker outputs (green), Window size area (blue), Re-detection area 

(yellow),  target position (red). 

Object re-detection:

• If occlusion is detected, the tracker model is employed 

at the re-detection area.

• The re-detection area is larger than the standard search 

area.



Correlation trackers
Baseline Correlation Trackers:

• Minimum Output Sum of Squared Errors (MOSSE).

• Circulant Structure Kernels (CSK).

• Spatio-Temporal Context (STC).

• Kernelized Correlation Filters (KCF) / Dual Correlation 

Filters (DCF).
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Correlation trackers
Scaling Handling Correlation Trackers:

• Discriminative Scale Space Tracker (DSST).

• Scalable Kernel Correlation Filter (SKCF).

• Scale Adaptive with Multiple Features (SAMF).

• Kernelized Correlation Filter with Detection Proposal 

(KCFDP).
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2D Object Tracking
• Introduction

• Prediction in object tracking

• Feature Point based trackers

• Region similarity trackers

• Correlation trackers

• Object Detection Performance Metrics
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Object Detection 

Performance Metrics

Intersection over Union (IoU):

𝐽(𝒜, ℬ) = |𝒜 ∩ ℬ|/|𝒜 ∪ ℬ|.

• 𝒜,ℬ: estimated, ground truth ROIs (sets, bounding boxes).

• |𝒜|: set cardinality (area counted in pixels)

• Also called Jaccard Similarity Coefficient or Overlap

Score.



Object Detection 

Performance Metrics

Object detection: a) 𝐽 𝒜,ℬ = 0.67; b) 𝐽 𝒜, ℬ = 0.27. 



2D Tracking Performance 
metrics
• Overlap Score 𝐽(𝒜, ℬ) is calculated in a per frame basis.

• Its average value resulting on all frames can be used as the

tracking success metric.

• Whenever 𝐽(𝒜, ℬ) is below 0.5 tracking failure can be

assumed
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Region Similarity Tracking

• Frame Detection Accuracy (frame-based):

𝐹𝐷𝐴 𝑡 =
1

𝑁𝑡


𝑖=1

𝑁𝑡
|𝐺𝑖(𝑡) ∩ 𝐷𝑖(𝑡)|

|𝐺𝑖 𝑡 ∪ 𝐷𝑖 𝑡 |

• Average Tracking Accuracy (video-based):

𝐴𝑇𝐴 =
1

𝑁


𝑡=1

𝑁

𝐹𝐷𝐴(𝑡)

• Overall Tracking Accuracy: 

𝑂𝑇𝐴 =
1

𝑁𝑇


𝑖=1

𝑛

𝑁𝑖𝐴𝑇𝐴𝑖



Region Similarity Tracking

Other tracking performance metrics:

• Tracking precision is the percentage of frames, in which

the estimated locations are within a given threshold (e.g.,

Euclidean distance 20 pixels) from the ground truth target

location.



2D Tracking Performance 
metrics
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• Red box: tracking results.

• Green box: ground-truth. 

• Euclidean distance of

central points: 6 pixels.

• 𝐽 𝒜, ℬ = 0.9

• Tracking: SUCCESS.



2D Tracking Performance 
metrics
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• Red box: tracking results.

• Green box: ground-truth. 

• Euclidean distance of

central points: 61 pixels.

• 𝐽 𝒜, ℬ = 0.4

• Tracking: FAILURE.



Tracker accuracy
• DnD denotes the tracking enhancing framework 

implementation.

• OTB-100 results:
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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