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Introduction to Stereopsis CML

 The horizontal separation of the eyes

leads to a difference, stereo parallax, In
Image location and appearance of an
object between the two eyes, called
stereo disparity.

» Stereo parallax is utilized by the brain In
order to extract depth information.
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Basics of Stereopsis

Parallel Stereo vision
Geometry

T: baseline
f focal length
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Basics of Stereopsis

« Stereo images and videos:
« Left and right image/video channels

Left and right video channels.
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A dense disparity map can be
estimated from detecting pixel
correspondences in left and
right images.
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VML

Epipolar Geometry

P (P;orP,)

x Epipolar Plane = ! )
B . . 0

O, Baseline T )( .
B * Epipolar Line

 Epipoles e;, e,.: intersection points between camera centers
projections and image planes.

 Epipolar plane n: 3D plane containing line T and point P.

 Epipolar lines L;, L,.: intersection between = and each image plane.
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The Essential Matrix E VML

« The Essential Matrix E compactly encodes the epipolar constraint:
P'EP, =0,
where:
Tyrip —Tyriz =Ty + Tz Ty — Tyt
E =RTy = |I2122 —Tyraz  —Tyrpq + Tyraz Tyrpq — Ty1az|.
Tyr3p —Tyrsgy  —T,1r31 + 150133 Ty1r3q — TiTsy)

» E is a 3 X 3 rank-deficient matrix. It is is completely determined by the

rotation and translation between the two cameras/views.

 If the WCS coincides with the coordinate system of the left or right camera, E
encodes extrinsic camera parameters (incl. baseline T).
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The Fundamental Matrix F @ML

« The Fundamental Matrix F also encodes the epipolar
constraint:

pngpdl = 0.

« The fundamental matrix F Is related to the essential matrix:
F = (Pl;l)TEPI_ll — (Pl;l)TRTxPI_ll-

* F Is a 3 X 3 rank-deficient matrix.
|t Is defined In pixel coordinates, while E was defined In
camera plane or normalized virtual image plane coordinates.
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Eight-point Algorithm (UmL

« F can be estimated by employing K> 7 left-right pixel
correspondences and the fundamental matrix constraint:

pngpdl = 0.

* We formulate a homogeneous system Xu = 0, where X is as
K x 9 matrix and u contains the 9 entries of matrix F.
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Rectification @ML

* Rectification simplifies the search for pixel correspondences between
VIeWsS:

« Search on epipolar lines becomes a search along a horizontal scan line, at
the same height as the reference pixel.
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Stereo Camera Technologies @ML

* The parallel, side-by-side stereo rig design tries to imitate the
way eyes are positioned on the human face

* The cameras can:
 perform horizontal shifts, thus
changing their inter-axial (baseline)
distance T,
e converge and diverge,
« change zoom and focus.
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Feature Extraction @ML

 Feature detectors:
e SIFT, AGAST, SURF, Hessian Affine, CeNSuRe, BRISK, ORB,
AKAZE, or simply dense sampling.

» Feature descriptors:

« SIFT, SURF, DAISY, HOG, LIOP, LUCID, BRIEF, BRISK, FREAK,
ORB, AKAZE, LATCH, CENTRIST, BinBoost, LMoD.

 Convolutional neural network features.
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Feature Correspondence @ML




Disparity Estimation with NNs @ML

i Left Image Predicted Inverse Depth
e D(x) = fB/d(x)

1
= B
3 ul ) -1,
Inverse Warping g
nstructio Erro - [(x) = L(x+D(x)) .

Warp Image Right Image I,(x)

1,(X) [GAR2016]

Unsupervised NN depth estimation from stereo image pairs.
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Parallel and Converging C\ZML
Camera Setups

A o - Transformation from left/right
P YZ} camera coordinates to world
coordinates in parallel stereo-
rig setup by translation by
T./2.
N Xl [X =% [x-+Z
0 L R P N T ;w | & |7 F
O 7112 1 710, w 2 Zy
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General 3D reconstruction In
a calibrated stereo camera @ML

system

« Due to noise Iin camera
calibration, triangulation refine-
ment may be needed, so that
the rays emanating from the
optical centers of the cameras
and passing through its left
and right projections intersect o
on (or close to) P. T
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Monocular NN Depth EstlmatlonCML

O”D nemaDepthimage from monocular video [APOLLO]. 17



Three-Views and the Point @ML
Transfer

Epipolar Line /4

™,
_£3\ _?3
€177 - €5

Trifocal Plane 7

Epipolar Line /; Epipolar Line /,

« Given two iImage points p4, p, on the first and second image plane,
respectively, the exact position of the corresponding point p; on the
third image plane can be completely specified in terms of p4, p,.
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Multiple Camera Image C\ZML
Acquisition

Circular camera positioning setups.
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3D monument modelling:
Vlatadon Monastery, Thessaloniki
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3D monument modelling:
Vlatadon Monastery, Thessaloniki @ML
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(VML

Q&A

Thank you very much for your attention!

p
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