

Fast 2D Convolution Algorithms summary

Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.1

Outline

- 2D linear systems
- 2D convolutions

Discrete-time 2D Systems Linear & Cyclic 2D convolutions 2D Discrete Fourier Transform, 2D Fast Fourier Transform

Other convolution algorithms

Winograd algorithm

Block methods

Applications in Machine Learning Convolutional neural networks

Convolution and correlation

2D convolution applications:

- Machine Learning (Convolutional neural networks)
- Image processing

2D correlation applications:

- Feature matching
- Template matching
- Object detection and tracking

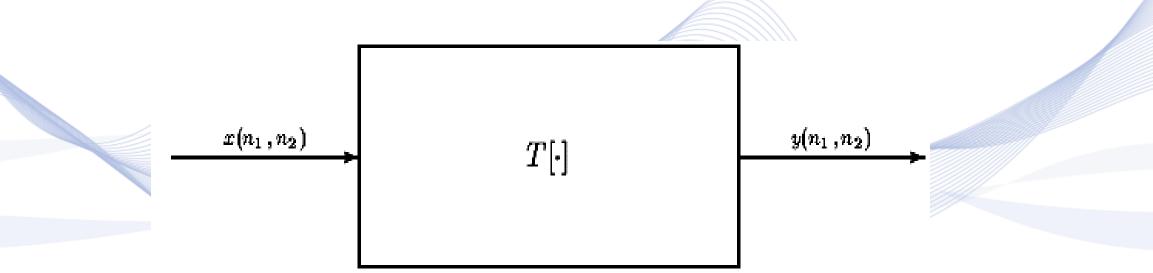
VML

2D Discrete Systems

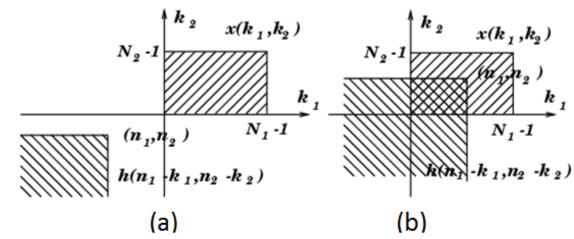
2D system:

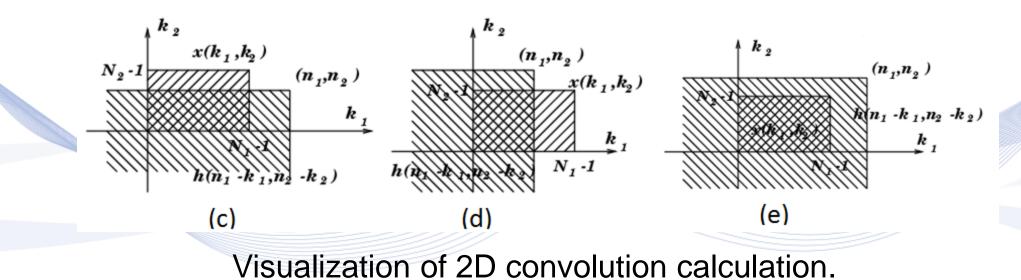
• It ransforms a 2D discrete input signal $x(n_1, n_2)$ into a 2D discretetime output signal $y(n_1, n_2)$:

 $y(n_1, n_2) = T[x(n_1, n_2)].$



Artificial Intelligence & Information Analysis Lab



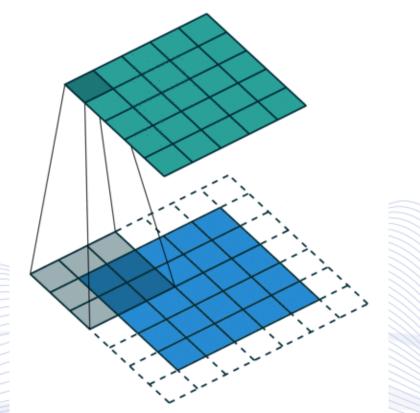


- Finite impulse response (FIR): $h(n_1, n_2)$ is zero outside some filter mask (region) $M_1 \times M_2$, $0 \le n_1 < M_1, 0 \le n_2 < M_2$.
- FIR filters are described by a 2D linear convolution with convolutional kernel *h* of size $M_1 \times M_2$ is given by:

$$y(k_1,k_2) = h(k_1,k_2) * * x(k_1,k_2) = \sum_{i_1=0}^{n-1} \sum_{i_2=0}^{n-1} h(i_1,i_2)x(k_1-i_1,k_2-i_2).$$

• Usually discrete systems without feedback are FIR ones.

a) Image Lena; b) 5×5 moving average filter output.



Animation of 2D Convolution with input padding.

IIR Edge Detector output.

2D linear correlation

2D correlation of template image h and input image x (inner product):

$$r_{hx}(n_1, n_2) = \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} h(k_1, k_2) x(n_1 + k_1, n_2 + k_2) = \mathbf{h}^T \mathbf{x}(n_1, n_2).$$

- $\mathbf{h} = [h(0,0), ..., h(N_1 1, N_2 1)]^T$: template image vector.
- $\mathbf{x}(n_1, n_2) = [x(n_1, n_2), ..., x(n_1 + N_1 1, n_2 + N_2 1)]^T$: local neighborhood (window) image vector.

2D Discrete Fourier Transform

• Cyclic Convolution Theorem:

$$y(n_1, n_2) = x(n_1, n_2) \circledast \circledast h(n_1, n_2),$$

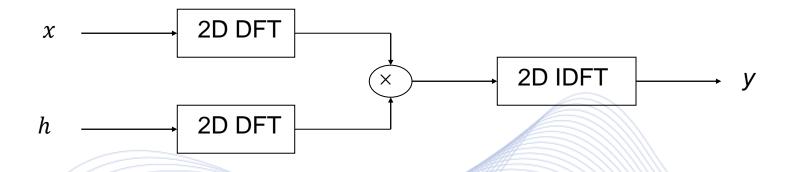
$$Y(k_1, k_2) = X(k_1, k_2)H(k_1, k_2).$$

ML

Cyclic Correlation:

 $\begin{aligned} r_{hx}(n_1, n_2) &= h(n_1, n_2) \circledast \And x(-n_1, -n_2), \\ R_{hx}(k_1, k_2) &= H^*(k_1, k_2) X(k_1, k_2). \end{aligned}$

2D Cyclic Convolution Calculation with DFT



2D convolution calculation using the DFTs.

Winograd 2D cyclic convolution **VML** algorithm

Winograd 2D convolution algorithms or fast 2D filtering: B ■ h_{N-1} $\mathbf{y} = \mathbf{C}(\mathbf{A}\mathbf{x}\otimes\mathbf{B}\mathbf{h}).$ GEneral Matrix Multiplication (GEMM) Α BLAS or cuBLAS routines can be used. С Artificial Intelligence & Information Analysis Lab

Nested convolutions

- Winograd algorithms exist for relatively short convolution lengths.
- Use of efficient short-length convolution algorithms iteratively to build long convolutions
- Does not achieve minimal multiplication complexity
- Good balance between multiplications and additions

Decomposition:

• 2D convolution : $N \times N = N_1 N_2 \times N_1 N_2$, for N_1, N_2 coprime integers $(N_1, N_2) = 1$, can be implemented using nested $N_1 \times N_1$, $N_2 \times N_2$ convolutions.

Artificial Intelligence & Information Analysis Lab

Block-based convolution calculation

2D overlap-add algorithm is based on the distributive property of convolution:

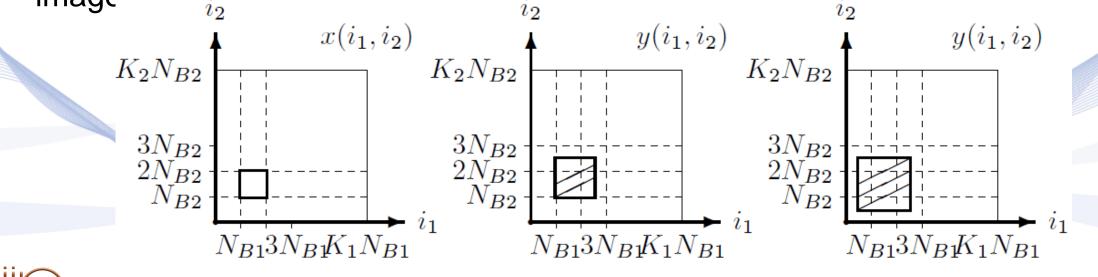
- An image $x(i_1, i_2)$ can be divided into $K_1 \times K_2$ non-overlapping subsequences, having dimensions $N_{B1} \times N_{B2}$ each:
- $x_{k_1k_2}(i_1, i_2) = \begin{cases} x(i_1, i_2) & k_1N_{B1} \le i_1 < (k_1 + 1)N_{B1}, \ k_2N_{B2} \le i_2 < (k_2 + 1)N_{B2} \\ 0 & \text{otherwise.} \end{cases}$
- The linear convolution output $y(n_1, n_2)$ is the sum of the convolution outputs produced by the input sequence blocks:

$$y(i_{1},i_{2}) = x(i_{1},i_{2}) ** h(i_{1},i_{2}) = \sum_{k_{1}=1}^{K_{1}} \sum_{k_{2}=1}^{K_{2}} (x_{k_{1}k_{2}}(i_{1},i_{2})) ** h(i_{1},i_{2}) = \sum_{k_{1}=1}^{K_{1}} \sum_{k_{2}=1}^{K_{2}} y_{k_{1}k_{2}}(i_{1},i_{2}).$$

Overlap-add algorithm

The 'partial' convolutions are performed using FFT and then adding the results:

- The blocks and the filter are transformed to the frequency domain.
- Partial output blocks are calculated using the IFFT of the product as usual.
- Then all the overlapping blocks are added to construct the final output image
 in

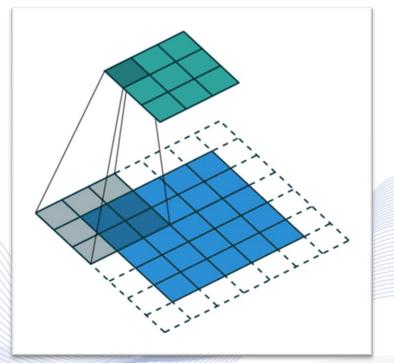


Convolutional Neural Networks

• The convolution kernel is described by the 4D tensor $\mathbf{W} \in \mathbb{R}^{h_1 \times h_2 \times d_{in} \times d_{out}}$:

$$\mathbf{W} = [w_{k_1,k_2,r,o}: k_1 = 1, \dots, h_1, k_2 = 1, \dots, h_2, r = 1, \dots, d_{in}, o = 1, \dots, d_{out}].$$

- r, o: they define the input and output channels.
- $h_1 \times h_2$: convolution mask sizes.



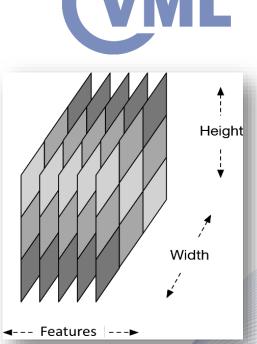
VML

Convolutional CNN Layers

• For a convolutional layer l with an activation function $f_l(\cdot)$, multiple incoming features d_{in} and one single output feature o.

$$w^{(l)}(i,j,o) = f_l \left(b^{(l)} + \sum_{r=1}^{d_{in}} \sum_{k_1 = -q_1}^{q_1^{(l)}} \sum_{k_2 = -q_2}^{q_2^{(l)}} w^{(l)}(k_1,k_2,r,o) x^{(l)}(i-k_1,j-k_2,r) \right)$$

Multiple input features to single feature a transformation



Convolutional Layer Activation Volume (3D tensor)

$$a_{ij}^{(l)}(o) = f_l \left(b^{(l)}(o) + \sum_{r=1}^{d_{in}} W^{(l)}(r, o) * X_{ij}^{(l)}(r) \right) \quad A^{(l)} = [a_{ij}^{(l)}(o): i = 1, \dots, n^{(l)}, j = 1, \dots, m^{(l)}, o = 1, \dots, d_{out}]$$

where $A^{(l)}$ is the activation volume for the convolutional layer $l, W^{(l)}(r, o)$ is a 2D slice of the convolutional kernel $W^{(l)} \in \mathbb{R}^{h_1 \times h_2 \times d_{in} \times d_{out}}$ for input feature r and output feature o, $b^{(l)}(o)$ a scalar bias and $X_{ij}^{(l)}(r)$ a region of input feature r centered at $[i, j]^T$, e.g. $X^{(1)}(1)$ the R channel of an image $d_{in} = C = 3$.

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

