

3D Robot Localization and Mapping summary

J.M.M. Montiel (University of Zaragoza), J. Ramiro Martinezde Dios (University of Seville), I. Pitas (Aristotle University of Thessaloniki)

pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 2.7

3D Localization and Mapping

3D scene mapping and vehicle/sensor (primarily camera) localization:

- *Mapping*: create or get 2D and/or 3D maps.
- Localization: find the 3D location based on sensors.
- Simultaneous Localization and Mapping (SLAM).
- Information fusion in localization and mapping.

Sensors

- On-vehicle Sensors:
 - Lidar
 - Monocular camera
 - IMU
 - laser altimeter
 - RTK D-GPS.
- Embedded processing units:
 - Intel NUC NUC6i7KYK2 i7-6770HQ
 - Jetson TX2

Structure from Motion (SfM) recovers:

- a) the relative camera poses and
- b) the three-dimensional (3D) scene structure, from a set of camera images (calibrated or noncalibrated).
- Visual Odometry is a particular case of SfM.
- Focuses on estimating the 3D motion of the camera sequentially, as a new frame arrives, in real time.

Visual odometry

Visual odometry based methods for mapping

Lidar Odometry and Mapping (LOAM):

- It is an odometry estimation and mapping method that calculates the trajectory of the laser, using high-level features based on the properties of rotatory lasers.
- It identifies as data features both corner and surface points.
- It generates a map that contains both of them separately.

Geometrical mapping

• 3D LIDAR:

- SLAM-like algorithm based on Prediction-Update Recursions.
- Extract from the LIDAR measurements: corner and surface points.
- **Prediction**: Estimate LIDAR-based odometry from different scans using the ICP algorithm.
- *Update*: Matching of the LIDAR scan with the estimated map.
- Good estimate of robot 6 DoF pose and geometrical map.

Visual camera:

- Extraction of features using detectors such as SURF, SIFT or ORB.
- Estimation of visual odometry.
- Robot odometry is a combination of:
 - LIDAR-based odometry.
 - Visual odometry.
 - · IMU.

Geometrical mapping

Experiments

Repeatibility

	Dataset	Mean Error (m)	Median Error (m)	Min Error (m)
	1	0,1377	0,1073	0,00098
ı	2	0,1053	0,0769	0,00045
	3	0,0847	0,0578	0,00083
	4	0,1074	0,0792	0,00078
	5	0,1722	0,1560	0,00130

3D Scene mapping from multiple uncalibrated images

Images obtained from Google Earth.

3D models reconstructed using 50 images from Google Earth.

Localization

- Not an easy task.
- Unconstrained nature of robot/drone movements → use of high-fidelity algorithms and sensors that do not reply on them.
- Many methods used for Mapping, are also used for Localization.
- Localization methods can be used as an alternative, in case of GPS failure.

AMCL algorithm

AMCL algorithm

ORB-SLAM

Among top performers in sparse features VSLAM.

- Robust, real-time, large scale operation.
- Able to operate in general scenes.
- Prototype ORB-SLAM system ready to use.

Frame / keyframe

- Local Map.
- Keyframe-based systems:
- Localization and Mapping are separated into two steps:
- Full BundleAdjustment:
 - KeyFrames and map points.
- Regular video frames:
 - Only camera pose is computed.

Information Analysis Lab

ORB-SLAM system overview

Features

Why is place recognition difficult

Likely algorithm answer:

YES

FALSE POSITIVE

NO

Perceptual aliasing is common in indoor scenarios

Data fusion in drone localization

- INPUT: measurements from multiple sensors.
- OUTPUT: 3D geometrical map X_m and the 3D drone pose estimation X_r .

Final result: 3D maps

- Formats:
 - 3D triangle mesh.
 - 3D Octomap.
- Octomap:
 - The Octomap is a fully 3D model representing the 3D environment, where the UAV navigates.
 - It provides a volumetric representation of space, namely of the occupied, free and unknown areas.
 - It is based on octrees and using probabilistic occupancy estimation.

Projection of crowd location onto the 3D map

Semantic 3D Mesh Map Annotation

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

