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Abstract

In this paper a novel method for frontal face verification is proposed. It is based on the morphological
signal decomposition, a procedure that is used to model a facial image region as a sum of components.
During the procedure, partial sums of components create a sequence of reconstructed images which
starts with a crude approximation of the facial region that recursively becomes finer. More specifically, a
feature vector is created at each node of a sparse grid superimposed on the facial area by concatenating
the gray level values of the reconstructed images at the grid node position. When a candidate person
claims the identity of a reference person, a variant of dynamic link matching, the so called Morphological
Signal Decomposition - Dynamic Link Architecture, is applied to yield a matching error between the
reference grid and a variable grid that is built over the facial image region of the candidate person. Local
coefficients are derived to weigh the contribution of each node to the total matching error according
to the node discriminatory power. Moreover, an analysis of the discriminatory power of each level in
morphological signal decomposition is undertaken to assess better the behavior of the proposed method.
Experimental results are reported on the M2VTS facial image database yielding a very low equal error
rate.

Keywords : Face verification; Elastic graph matching; Dynamic link architecture; Morphological

signal decomposition; Discriminatory power coefficients.

I. INTRODUCTION

Many techniques for face recognition have been developed in the last two decades whose
principles span several disciplines, such as image processing, pattern recognition, computer
vision and neural networks. The increasing interest in face recognition is attributed to the
needs of numerous commercial and law enforcement applications requiring the automated person
verification and recognition. Although humans recognize faces relatively easily, the robust
machine recognition of faces remains an unsolved problem yet.

Machine perception of faces is applied to the problems of face recognition where the objective
is to find the most similar face that corresponds to a reference face, from a given database, and
face verification whose objective is to either accept or reject the identity claim of a test person.
In the first case the output of the system is an identity, whereas in the second case the output
of the system is a decision about the claim. In this paper, we deal with face verification. For
a verification system, there is a trade-off between the false acceptance rate (FAR) and the false
rejection rate (FRR). The choice of the factor, i.e., FAR or FRR, that should be low depends
on the nature of the application.

A detailed survey of face recognition algorithms and their applications in real systems can
be found in [1]. Two main categories for face recognition techniques can be identified: those

employing geometrical features (for example [2]) and those using gray-level information (e.g.,
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the eigenface approach [3]). A different approach that uses both gray-level information and
shape information has been proposed in [4]. More specifically, the response of a set of 2D
Gabor filters tuned to different orientations and scales is measured at the nodes of a sparse grid
superimposed on the facial image of a person from a reference set. The responses of Gabor
filters form a feature vector at each grid node. In the recall phase, the reference grid of each
person is overlaid on the facial image of a test person and is deformed so that a criterion based
on both the feature vectors and the grid distortion (i.e., the geometry) is minimized. This
pattern matching algorithm is called Dynamic Link Architecture (DLA). An implementation of
DLA based on Gabor wavelets is described in [5].

A comparative study of three algorithms for face recognition, namely, the eigenfaces [3,6], the
auto-association and classification neural networks [7], and the elastic graph matching [4] can be
found in [8]. The outcome of this study reveals that the elastic graph matching achieves a better
performance than the other methods, because it is more robust to lighting, face-position and
expression variations. The eigenfaces and the neural network algorithms require the images to
be of the same scale and viewing angle. Moreover, the aforementioned methods are very sensitive
to lighting variations. The problem of compensating for changes in illumination conditions is
crucial for face recognition algorithms [9,10]. The interested reader may refer to [11] for the
treatment of varying recording conditions.

DLA and its variants has been an active research topic since its invention. A different topology
cost for a particular pair of nodes has been proposed in [12]. It is based on the radius of
the Apollonius sphere defined by the Euclidean distances between the nodes being matched.
Three major extensions to the DLA have been introduced in order to handle large galleries
and large variations in pose and to increase the matching accuracy [13]. Another variant of
elastic graph matching that aims at increasing the robustness of the method under translations,
deformations and changes in background has been proposed [14]. Recently, a novel variant of
DLA based on multi-scale morphological dilation-erosion, the so-called Morphological Dynamic
Link Architecture (MDLA), has been proposed and tested for face authentication [15].

It is well known that mathematical morphology is very rich in providing means for the repre-
sentation and analysis of binary and grayscale images [16,17,18]. The morphological representa-
tion of images is well suited to the description of the geometrical properties of image objects. The
morphological skeleton and the morphological shape decomposition are two popular approaches
for morphological shape representation [19]. Algorithms for shape representation are generally
divided into two classes, namely, the external and the internal algorithms. For example, contour

description algorithms belong to the former class, whereas region-based algorithms belong to
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the latter. In this paper, we deal with an internal algorithm, namely, the morphological signal
decomposition (MSD). MSD is the decomposition of an image object (in our case of the facial
region) into a union of simple components by using the morphological operations of erosion and
dilation [20]. MSD has been successfully applied to the decomposition of a binary shape into
a union of simple binary shapes using maximal inscribable disks [20]. A flexible search-based
shape representation scheme that typically gives more efficient representations than the mor-
phological skeleton and MSD was developed in [21]. MSD can be considered as an alternative
of matching pursuit filters, a nonparametric technique for finding the differences among faces
[22]. Instead of wavelets that are directional edge detectors (e.g., second partial derivatives of
Gaussian densities and their Hilbert transforms) that are used as basis functions used in [22],
we employ a simple structuring function (a cylinder of unit height with a circular cross-section
of radius 2) and instead of inner products we employ mathematical morphology operations.

A novel dynamic link architecture is proposed in this paper. The method combines the
morphological signal decomposition and the elastic graph matching and is tested for face ver-
ification. More specifically, we propose the substitution of the responses of a set of Gabor
filters by the gray level values in the MSD reconstructed images. The reconstructed images are
created by the partial sums of the components during the morphological signal decomposition.
The reconstructed images start from a crude approximation of the facial region that recursively
becomes finer. Moreover, we derive local coefficients that weigh the contribution of each node
as well as of each level in MSD in the total matching error according to their discriminatory
power. Experimental results are reported on the M2VTS database [23]. In order to facilitate
the understanding of the proposed method, two block diagrams describing the face verification
system are sketched that can be used for future reference. The first block diagram illustrates
the modules and techniques used in the training phase of the face verification system developed.
The output of this phase is the creation of a database for the clients that includes the reference
grids, discriminating information for each client (e.g. discriminatory power coefficients), as well
as the person-specific thresholds that will be used in the test phase. This block diagram is
shown in Figure 1. The second block diagram explains the use of the face verification system
in the test phase. A test person claims the identity of a client, and the information stored in
the database for the claimed identity is used in order to decide if the test person has indeed the
claimed identity. This block diagram is shown in Figure 2.

The proposed method introduces the following new points:

o The use of morphological signal decomposition techniques for analyzing the facial image region

in order to form the feature vectors in elastic graph matching.
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o The use of a very simple preprocessing step for compensation of illumination variations.

o The use of discriminative information of the different facial features by weighting the nodes

of the elastic graph in elastic graph matching.

o The use of discriminative information of the different levels of facial image region representa-

tion by weighting the morphological signal decomposition levels in elastic graph matching.
The outline of this paper is as follows. Facial region modeling by using MSD is outlined in

Section II. The proposed Morphological Signal Decomposition - Dynamic Link Architecture

(MSD-DLA) is described in Section III. Several local discriminatory power coefficients are

derived and tested in MSD-DLA framework in Section IV. The experimental protocol used for

the evaluation of the verification efficiency of MSD-DLA and experimental results are presented

in Section V. Conclusions are drawn in Section VI.

II. FAciAL REGION MODELING USING MORPHOLOGICAL SIGNAL DECOMPOSITION

In this section, the feature extraction algorithm used in the proposed pattern matching scheme
is described. The feature extraction is split into two steps:
1. Preprocessing procedure aiming at the compensation of the varying illumination conditions
(Section II-A).

2. Facial region modeling (Section II-B).

A. Preprocessing Procedure

Common problems in automated face recognition are the varying illumination conditions and
the differences in face position, scale and pose. These problems are crucial in the performance
of most techniques. Prior to feature extraction, it is necessary to localize a facial region in the
image, that is to perform face detection. A very attractive approach for face detection is based
on multiresolution images, also known as mosaic images. The face detection algorithm attempts
to detect a facial region at a coarse resolution of the image and subsequently to validate the
outcome by detecting facial features at the next resolution level [24]. Towards this goal, the
method employs a hierarchical knowledge-based pattern recognition system. Recently, a variant
of this method that has very good performance for images with a uniform background has been
proposed in [25]. By using this method, we may: (i) roughly define a region where the face is
included, and (ii) control the placement of a sparse grid over a face for storing a model of each
person in dynamic link matching, as described later.

In order to compensate for differences in luminance, the segmentation of the facial area is
needed. By using a clustering algorithm, i.e., a K-means algorithm [26], we can distinguish

the skin like area from the hair area and the uniform background, because the skin like area
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possesses a greater mean intensity than that of the hair region and the background. The mean
intensity value of the skin area can differ considerably from one recording to another. Indeed, in
Figure 3, the center, i.e., the mean intensity value of the skin region is plotted for the 37 persons
in the M2VTS database shot by shot, where each shot comprises a recording of the 37 persons
at a specific time instant. Therefore, a normalization procedure is needed to equalize the mean
intensity value of the skin area between the test and the reference person prior to the application
of the face verification algorithm. The segmentation of the skin-like image region is needed for
illumination compensation. That is, the two procedures are sequentially applied and the output
of the region segmentation is used as input to the illumination compensation procedure. Let Z
denotes the set of integer numbers. We define the facial image region that can be extracted by
using a face detection module, such as the one proposed in [25], as f(x) : D C Z? — Z, where
x denotes the pixel coordinates, f(-) is the gray level value assigned to a pixel, and D is the
domain of f(x) that corresponds to a facial region. If M, is the mean intensity value of the skin
area of person p, a simple normalization can be obtained by:

or

0= 1657

(1)

where f;,(x) is the normalized image and C'T' a predefined constant intensity value. By using (1),
we can make both the test and the reference image to have the same mean intensity value in the
facial area. We did not try to perform any normalization for face scaling and position, because
DLA is proven to be robust to small scale and position changes between the reference and the
test person facial images. The normalization of the facial image region luminance between two

images of the same person is illustrated in Figure 4.

B. Facial Region Modeling

In this section the modeling of a grayscale facial image region by employing the MSD is
described. Let us denote by f,(x) the normalized image produced according to the procedure
described in Section II-A. In the following, we shall omit the subscript n for notation simplicity.
Given f(x): D C Z? — Z and a structuring function g(x) : G C Z% — Z, the grayscale dilation
of the image f(x) by the structuring function g(x) is noted by (f @ g)(x) and its dual operation,
the grayscale erosion, is defined as (f © g)(x), [27,18]. Let us choose a structuring function of
the form g(x) = 1, Vx : ||x|| < 2. By definition, g(x) is symmetric. Moreover, it can be seen
easily that the structuring function is a cylinder of unit height with a circular cross-section of

radius 2. Let f(x) be approximated by:
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where f;(x) denotes the i-th component and K is the total number of components. MSD
provides a simple method to determine the components. Indeed, if each component is a simple

function that can be expressed as:

fi(x) = [li ® ni g] (%) 3)

where [;(x) is the so-called spine [18] and

nig(x) =lg®go-- ®gl(x), (4)

~

n; times

an intuitive choice for n; g(x) is the maximal function in f(x). That is, to choose n; such that:
[fo(n+1)g](x) <0 vxeD. (5)

Accordingly, the first spine is given by:
h(x) =[f©eng](x) (6)

MSD can then be implemented recursively as follows.
Step 1. Initialization: fo(x) = 0.

Step 2. Find the i-th level of decomposition: starting with n; = 1, increment n; until

[(F = fis) © (i + D)g] (%) <0. (7)

Step 3. Calculate the i-th component by:

filx) = [(f — fic1) ©n; 9} ®ni g ¢ (%) (8)

~ -

'

li(x)

Step 4. Calculate the reconstructed image at the i-th level of decomposition:

fix) = fic1(x) + fi(x). (9)

Step 5. Let M(f — fz) be a measure of the approximation of the image f(x) by its reconstruc-
tion fz(x) at the i-th level of decomposition. Let also L be the maximum number of image
components used for reconstruction. Increment 7 and go to Step 2 until ¢ > L or alternatively
M(f — f;) < T where T is a predefined threshold.

Figure 5 shows the block diagram of the MSD. In Figure 5, the component extraction module
(CE) implements the Step 2 and 3 of the algorithm outlined above. There are several reasons

supporting the use of MSD as a feature extraction algorithm, namely:
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1. The decomposition of a complex object yields simple components that conform with our
intuition. In our case, the component is the maximal inscribable cylinder. In addition, the
method is object-independent, in the sense that it employs generic structuring functions that
do not depend on the object that is approximated [20].

2. It allows arbitrary amounts of detail to be computed and also allows the abstraction from
the detail [20].

3. The representation is unique.

4. MSD employs grayscale erosions and dilations with a flat structuring function, namely, a
cylinder of unit height having a circular cross-section of radius 2. Grayscale erosions and dila-
tions with a flat structuring function can be computed very efficiently using running min/max
selection algorithms [18].

In the case of noisy images, the sensitivity of the crisp mathematical morphology can be reduced

by using soft or fuzzy mathematical morphology [28,29].

ITII. COMBINED USE OF MORPHOLOGICAL SIGNAL DECOMPOSITION AND DYNAMIC LINK

ARCHITECTURE

Traditionally, linear methods like the Fourier transform, the Walsh-Hadamard transform, the
Gaussian filter banks, the wavelets and Gabor elementary functions have been used in image
pyramids. An alternative way to linear techniques is to use morphological signal decomposition
techniques. In this paper, we propose the substitution of Gabor-based feature vectors used in
dynamic link matching by feature vectors that are extracted from the reconstructed images
ﬁ(x) at the last K consecutive decomposition levels 1 = L — K —1,..., L, where L denotes the
maximal number of decomposition levels. The reasoning for this decision is to omit the very
first reconstructed images that are common to all individuals in the database. The value K=15
was chosen because it yields good results in our experiments. That is, the gray level information
fi at the grid node x for the decomposition levels i = L — 14, ..., L along with the gray level

information f is concatenated to form the feature vector j(x) (also called jet) [4]:

§) = (Fror-1(), - fr(x), £()) - (10)

Alternatively, one may also use the feature vector (fi—x—1(x),. .., fr.(x), f(x)—f(x)). Figure 6
depicts a series of reconstructed images for the facial image region of a sample person from the
database at nineteen decomposition levels. The 20th image at the bottom right is the original
facial image region that is decomposed. Only the last fifteen reconstructed images have been
employed in the DLA that employs the feature vectors given by (10). In Figure 7 the residual

of the morphological signal decomposition is illustrated.
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Let the superscripts ¢ and r denote a test and a reference person (or grid), respectively. The
Ly norm between the feature vectors at the same grid node has been used as a (signal) similarity

Co(3(x0),d(x1)) = 3(x)) — 3= (11)

As in DLA [4], the quality of a match is evaluated by taking into account the grid deformation

as well. Let us denote by V the set of grid nodes. Then, an additional cost function is used:
Ce(l,5) = Ce(djj,dfy) = l|dj; — dj;| Ve V;jeN() (12)

where N (I) denotes the neighborhood of a vertex [ (e.g., a four-connected neighborhood in
our case) and dj; = x; — x;. The objective in DLA is to find the test grid node coordinates
{x!, I € V} that minimize:

C({x!}) = Z{C )+ A Z Ce( dl], 1)} (13)

ley JeN (D)
One may interpret the optimization of (13) as a simulated annealing [30] with an additional
penalty, i.e., the cost for grid deformations in the objective function. Since the cost function
(12) does not penalize translations of the entire graph, the random configuration x; can take
the form of a random translation s of the (undeformed) reference grid and a bounded local
perturbation qy, i.e.:

x{=x] +s+q; @l < gma (14)

where the choice of ¢, controls the rigidity/plasticity of the graph. It is evident that the
aforementioned grid matching procedure, i.e., (13) and (14), differs from the two stage coarse-
to-fine optimization procedure proposed in [4]. In our approach, we replace the two stage
optimization procedure with a probabilistic hill climbing algorithm [30, pp. 9-13] which attempts
to find the best configuration {s, {q;}} at each step. A sparse grid of 8 x 8 equally spaced nodes
has been employed. Figure 8 depicts the grids formed during the matching procedure.

IV. INCORPORATION OF DISCRIMINATORY POWER COEFFICIENTS IN MSD-DLA

Having described the facial modeling that provides the feature vectors to the elastic graph
matching procedure outlined in Section 3, we now proceed in assessing the discriminatory power
of each decomposition level and grid node. Intuitively we expect that all feature vectors will
not be equally powerful in discriminating one person from others. Thus, the weighting of the
graph nodes according to their discriminatory power in elastic graph matching can improve
the performance of the verification algorithm. Several methods that address this issue have

been proposed in the literature. A Bayesian approach yields the more reliable nodes for gender
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identification, beard and glass detection in bunch graphs [31]. An automatic weighting of the
nodes according to their significance by employing a local discriminant is proposed in [5]. A
weighted average of the feature vector similarities by a set of coeflicients that take into account
the importance of each feature in assigning a test person to a specific class is investigated in
[32].

Some facial features (e.g., the eyes, the nose) are more crucial in the verification procedure
than others. For example, the system described in [22] employs regions that contain the noise
tip, the left eye, the right eye and the noise bridge. It is well known that both global and local
features are used for face recognition in a hierarchical manner, where the local features provide
a finer classification [33]. However, the question which features humans use for face recognition
has been subject to much debate [34].

Thus, it will be helpful if we calculate weighting coefficients for the grid nodes that correspond
to the significance of the facial features in the verification procedure. To do so, we formulate
a two-class problem whose objective is to weigh the signal similarity measure at node [ given
by (11) using class-dependent discriminatory power coefficients (DPCs), DP,(S,), so that when

person t claims the identity of person r the distance between them is computed by:

= DBS)C G0, 5()
D S e XN (15)

where S, denotes the class of the reference person r. DP;(S,) of the [-th grid node for the class
S, is a factor that shows how well the intra-class distances are separated from the inter-class
distances at this node. Accordingly, at node | we consider the distances measured between
frontal facial images of the person r (i.e., the distances V¢,r € S,) and the distances measured
between frontal facial images of the person r and all the remaining persons in the database, -i.e.,
the distances Vr € S, and Vt € (S — S;), where S denotes the set of all classes in the database.

Let My (Sr, 1) be the mean intra-class distance for the class S, at grid node I:
mintra(ST‘7l) = E{Ov(j(xf)hj(xg‘))} V t77q € ST' (16)

and M. (Sr, 1) be the mean inter-class distance between the class S, and (S — ;) at the same
node:

Minger(Sry 1) = E{C,(§(x}),i(x])} VreS,, Vte (S-S, (17)

Let o2

intra

(S,,1) and o2

inter

(Sr,1) be the variances of the intra-class node distances and the inter-
class node distances, respectively, i.e.:

O—i2ntra(8'r’ l) = E{Cg(j(xf),j(x?))} - mizntra(s'r’ l) V t’ e S”" (18)

02.o(Sr 1) = BE{C2(j(x}),§(x]))} — mZ ..(Sr,1) VreS,, Vte(S—S,). (19)

inter inter
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Several measures for the discriminatory power of each node were tested. Obviously, the grid
nodes that do not possess any discriminatory power should be discarded in the face verification

procedure. That is,
if Mineer(Sry 1) < Minea(Sry 1) then  DP(S,) = 0. (20)

Rule (20) is applicable when the two classes cannot be discriminated by the feature vectors at
node [. A plausible choice for DP;(S,) is the distance between the m;..(Sr, 1) and M. (Sr, 1),

i.e., the distance between the center of client distances and the center of the impostor distances:
D'Pl (ST') = minter(ST" l) - mintra(ST" l) (21)

Another measure of the discriminatory power of grid node [ for class S, is Fisher’s Linear Dis-
criminant (FLD) function (or first canonical variate) [26,35]. The latter takes into consideration
both the distance between the two cluster centers as well as the compactness of the two clusters

in order to yield a DPC of the form:

(minter(ST" l) - mintra(ST" l))2

DPF(S,) = 22
l( r) Ui211ter(ST’ l) + Oizlltra(sr’ l) ( )

It can be easily proven that the DPCs given by (22) minimize the ratio:
J _ ZZI\LI Z-;V:l D‘PZ (S’!')D-Pj (S’!‘) (minter (S’f" Z) - mintra(ST' Z)) (minter (S’f'7 j) - mintra(ST'7 j)) (23)

E:?A<D1x%éﬁ)(K”iw45n0+a&mgsmn )
= 7

Minter (Sr i) —Mintra (Sry)]
where N is the cardinality of V, i.e., 64 for 8x8 sparse grids. Provided that the numerator in
(22) remains constant, DP,(S,) is maximized when the denominator {02, (S;,l) + 02,..(Sr, 1)}
is minimized. That is, both variances should be small. Accordingly, we interpret (22) as an

AND rule for the cluster variances. Alternatively, one can use a more relaxed criterion of the

form:
(minter(ST‘7 l) - mintra(ST‘7 l))Z
Jinter (ST‘7 l)aintra(ST 9 l)

The denominator of (24) is interpreted then as an OR rule for the cluster variances. The DPCs

DP(S;) =

(24)

(22) are shown for several persons in the database in Figure 9. As one can see, the nodes that
correspond to the key facial features (e.g. the beard, the bald head), are weighted with larger
coefficients, i.e., they are shown as white disks, than other nodes.

In addition to the discriminatory power of each grid node, we can assign discriminatory
coefficients to the morphological signal decomposition levels as well. Thus, another factor that
can be studied is the discriminatory power of each reconstruction level. To do so, we define the

following feature vector:

i'G) = (fi(x1), fi(xa),... . filxn)) i=L—-—K—1,...,L+1 (25)
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where N denotes, as before, the number of grid nodes and ¢ is the current decomposition level.
For i = L + 1, we have a jet that comprises the gray levels of the initial image. According to
this approach, the face is modeled by K + 1 feature vectors, j'(1),...,j (K + 1). The signal

similarity measure (11) is now redefined as:

C (" (0),3" (1) =l 3" () = 3" () Il - (26)

Our objective is to calculate the coefficients w;(S;), i = 1,..., K + 1, that weigh each decom-
position level of MSD and the initial image f(x). It is straightforward to repeat the procedure
described in this section in order to calculate the desired coefficients for the MSD levels. Having
found the weighting coefficients w;(S, ) for the MSD levels for each class S, the signal similarity

measure (11) can be rewritten as follows:

L
Co(j(x)),j(x])) = \JwL—&-l(Sr)[f(xf) NP+ Y wilSOIfi) = filx)2(27)

i=L—K+1
In Figure 10, the DPCs w;(S,) for all decomposition levels are depicted for four persons (i.e.,
BP,BS,CC and CM) in the database. For example, the fifteenth decomposition level is found
to play a more crucial role for several people (e.g., BS, CC) which is manifested by the greater
value that the corresponding DPC attains for these individuals. This is not the case for the
individuals BP and C'M. Similar observations can be made for the other decomposition levels.
By determining first the weighting coefficients w;(S,), i = 1,2,...,L + 1, and substituting
(27) into (15), we allow the weighting of both the MSD levels and the grid nodes. It will be
shown in the next section that this approach enhances the discrimination among the classes.
The discriminatory coefficients proposed in this section can easily be computed during the
application of the verification algorithm to any database following any experimental protocol.
They can easily be modified when persons are added to, or, deleted from the database, because
the computation (16)-(22) can be made incrementally. The cost of updating the DPCs given
by (22) is only 7 multiplications and 5 additions per distance measure. This number should be
compared to the cost of updating the singular values and the left singular vectors of the data

matrix of N feature vectors in an incremental fashion [36]:
FL(N,M)=0 ((N + M) min(N, M) log3 e) floating point operations (28)

where M is the feature vector dimensionality (i.e., M = K +1 in our case) and e is the machine
precision. A cost F'L(Ny, M), where Ny is the total number of training frontal face images, would
be the paid if principal component analysis (PCA) were only employed, i.e., for an eigenface

approach. If Linear Discriminant Analysis (LDA) were employed then one would roughly pay
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FL(N., M) + O(M?) where we assume that an additional frontal face image for one client is
appended to the training database, each client is represented in the database by N, frontal
face images, and the simultaneous diagonalization of the within-class and between-class scatter
matrices is performed [37, p. 32]. The sum of the aforementioned costs would be paid if a

combination of PCA and LDA were applied, as in [10,15,34].

V. DESCRIPTION OF EXPERIMENTS AND RESULTS

MSD-DLA has been tested on the M2VTS database [23]. The database contains 37 persons’
video data, which include speech consisting of uttering digits and color image sequences of
rotated heads. Four recordings (i.e., shots) of the 37 persons have been collected at different
time instants. Let BP, BS, CC, ..., XM be the identity codes of the persons included in
the database. In our experiments, the sequences of rotated heads have been considered by
using only the luminance information at a resolution of 286 x 350 pixels. From each image
sequence, one frontal image has been chosen based on symmetry considerations. The details
of face detection are out of the scope of this paper. Four experimental sessions have been
implemented to yield client and impostor claims that are quantified by a distance - e.g., (15) -
by employing a combination of “leave-one-out” and rotation estimates. Each session consists of
a training and a test procedure that are applied to their training set and test set, respectively.
Figure 11 depicts the experimental protocol, when person BP and shot 04 are excluded from
the training set. The 4th shot is the test set in that case. The comparisons shown for person
BP are repeated for all other persons in the database. Obviously, similar comparisons are made

by rotating among the available shots.

A. Training procedure

The training set is built of 3 out of 4 available shots comprising 36 out of 37 available
persons. This amounts to 3 x 36 = 108 images. All images of the same person build a class.
By using these images one may compute: (i) 6 distance measures for all pairwise combinations
between the different sample images in the same class, and, (ii) another 6 distance measures
for each pairwise combination between the sample images of any two different classes. It is
worth noticing that sample images that originate from different shots are used in all pairwise
combinations. In total, 6 intra-class distance measures and 35 x 6 = 210 inter-class distance
measures are computed for each of the 36 trained classes. MSD-DLA has been used to yield all
the aforementioned distance measures. Having computed all the 216 distance measures for each
trained class, the objective in the training procedure is to determine a threshold on the distance

measures that should ideally enable the distinction between the sample images that belong to
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the trained class under study, and the sample images that belong to any other class. These
person-specific thresholds are to be used in the test procedure. To elucidate the derivation of
person-specific thresholds, let us consider the case we leave out the fourth shot and exclude all
frontal face images of person BP from the training set. 36 thresholds are determined, namely,
Tps(4,BP), Tcc(4,BP), ..., Txn(4, BP). The threshold Tss(4, BP) is used to discriminate
sample images of person BS that originate from shots 1-3 against all the sample images of the
remaining 35 persons (e.g., CC'— X M) which originate from any of these shots. The threshold is
computed by employing the order statistics of the sequence of the minimum inter-class distances
for each of the training impostors, e.g., for person BS the training impostors are CC-X M. The
vector of 35 minimum distances is ordered in ascending order of their magnitude. An obvious
choice for Tps(4, BP) is to choose the minimum impostor distance, denoted by D). In the

more general case Tps(4, BP) could be chosen as:
TBS(4aBP):D(1+Q)7 Q=0,1,2,.... (29)

B. Test Procedure

In the test procedure, three shots create the training set while the fourth one is used as the
test set. Each person in the test set has been considered in turn as an impostor, while the
36 remaining persons have been treated as clients. Each client tries to access under its own
identity, while the impostor tries to access under the identity of each of the 36 clients in turn.
This is tantamount to 36 authentic tests and 36 impostor tests. By repeating the procedure
four times, 4 x 37 x 36 = 5328 authentic claims and 5328 impostor claims are realized in total.
In each authentic or impostor test, the reference grids built for each class are matched and
adapted to the feature vectors computed at every image pixel of the frontal face image of a test
person, that can be either a client or an impostor, using MSD-DLA. Again, we have used the

minimum intra-class or inter-class distances in the comparisons, i.e., for person BP:
D(BPy,{BS}) = min{D(BPy, BS1), D(BPy, BS3), D(BPy, BS3)} (30)

where the first ordinate in distance computations denotes the frontal face image of a test person
and the second ordinate denotes the reference grid for a trained class. Then, the resulting
distance measure is compared against the threshold that has been derived during the training
procedure. For example, if we consider the client and impostor tests produced when person B P

is excluded, a false acceptance occurs when:

D(BPy,{X}) <Tx(4,BP) X =BS,CC,....,XM (31)
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and a false rejection occurs when:
D(Xy,{X}) > Ty(4,BP) X =BS,CC,...,XM. (32)

C. Recewer Operating Characteristics

For a particular choice of parameter (), a collection of thresholds is determined that defines
an operating state of the test procedure. For such an operating state, a false acceptance rate
(FAR) and a false rejection rate (FRR) can be computed. By varying the parameter @ several
operating states result. Accordingly, we may create a plot of FRR versus FAR with a varying
operating state as an implicit set of parameters. Equivalently, the scalar ) can be used as a
varying parameter. This plot is the Receiver Operating Characteristic (ROC) of the verification
technique. ROC curves for MSD-DLA are plotted in Figure 12. The Equal Error Rate (EER) of
MSD-DLA (i.e., the operating state of the method when FAR equals FRR) is another common
figure of merit used in the comparison of verification techniques.

The ensemble {test images, verification algorithm} is a source of binary events:

« 1 for false rejection (or false acceptance) with probability prr (or pra), and,

o 0 for no error with probability (1 —prr) (or (1 —pra)),

respectively. These events can be described by Bernoulli trials. Let us denote by prr and pra
the estimates of FRR and FAR, respectively, that are measured according to the experimental
protocol outlined above. The exact v confidence interval of prr and pp 4 is the segment between
the two roots of the quadratic equation [38]:

2
z
(=) = P2 p(1=p), p=pre,pra and N = 5328 (33)

where z, is the u-percentile of the standard Gaussian distribution having zero mean and unit
variance. The v = 95% confidence interval of the FAR and FRR is indicated with a horizontal
and a vertical error bar, respectively, for all ROCs subsequently.

The EER of the MSD-DLA without weighting the grid nodes with DPCs according to the
experimental protocol, described in this section, is found to be 11.89%. Figure 12 depicts the
Receiver Operating Characteristics of the MSD-DLA by using DPCs given by (21), (22), and
(24), respectively. When the ROC curve is used as a figure of merit for the performance of
an authentication algorithm, the smaller the area under the ROC curve for a certain method
the better the methods performance is. The plot indicates that the verification capability of
MSD-DLA is improved by weighting the grid node contributions by the DPCs given by (22)
or (24). The superimposed 95% confidence intervals indicate that the reduction in FAR and
FRR is statistically significant. Table I summarizes the EERs achieved by MSD-DLA using the
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several DPCs proposed in the paper. It is seen that the use of DPCs given by (22) yields the
best EER which corresponds to an improvement of 5.5%.

The ROC, when DPCs are applied on the MSD levels only, is plotted in Figure 13. In the same
figure, the plot of the MSD-DLA without DPCs is included for comparison purposes. It can be
observed that, without weighting the grid nodes, the discriminant analysis on the MSD levels
does not offer a significant reduction in the area under the ROC of the raw MSD-DLA. Moreover,
it can be seen that the achievements in FAR and FRR are rather statistically insignificant due
to the overlap between the 95% confidence intervals. On the contrary, a statistically significant
improvement is attained by combining DPCs for both grid nodes and MSD levels, as can be
seen in the same figure. Indeed, in this case the EER is found to be 5.7% following the same
experimental protocol. Overall, an improvement of 6.2% has been achieved. To facilitate the
comparison, the best ROC, when DPCs (22) are used on the grid nodes, is repeated in Figure 13

as well.

D. Comparison with other methods

Table II compares the EER achieved by the proposed MSD-DLA, the classical GDLA [5],
and the gray level frontal face matching [39] in the same database according to the described
experimental protocol. The EER achieved when DPCs are used in MSD-DLA and the EER
achieved when local discriminant analysis is applied for feature selection in GDLA [5] is also
quoted. It is obvious that the proposed combination of morphological signal decomposition
and elastic graph matching with discriminatory power coefficients offers a higher verification

efficiency than the standard dynamic link architecture with Gabor wavelets.

VI. CONCLUSIONS

A novel dynamic link architecture that employs morphological signal decomposition as a fea-
ture extraction mechanism has been developed and tested for frontal face verification. The
resulting feature vectors are proven to be at least equally powerful as the feature vectors re-
sulting by convolving the frontal face image with Gabor wavelets. Local discriminatory power
coefficients have been derived that weigh the contribution of each node and each morphologi-
cal signal decomposition level in the distance measure according to their discriminatory power.
The proposed weighting methods do not need more frontal images than those delivered by the
experimental protocol described in Section V. That is, three training frontal face images per
person are needed. This is not the case with [5,15] where 15-20 frontal face images per person
are needed to derive the weighting coefficients. The equal error rate of the morphological signal

decomposition dynamic link architecture on the M2VTS database is found to be 11.89%. By
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weighting the contribution of each grid node and each level of the morphological signal decom-
position, a significant improvement in EER has been achieved, yielding an equal error rate of
5.7%. All figures of merit tabulated in Table II have been obtained using the same experimen-
tal protocol and, therefore, the results are absolutely comparable. The present paper has not
discussed at all issues related to face localization and the treatment of varying illumination con-
ditions or pose. This is because face detection is a difficult, open problem in the literature. For
the treatment of varying illumination conditions and pose, the interested reader may refer to
[11]. Potential applications of the proposed method include person verification in tele-services
and video surveillance.

Future research will address a recursive calculation of discriminatory power coefficients D P;(S;)

and w;(S,) for maximizing a total quality of match.
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EQUAL ERROR RATES (EERS) ACHIEVED BY USING SEVERAL DISCRIMINATORY POWER COEFFICIENTS.

Discriminatory Power Coefficient for Node [ EER (%)
1 11.9
Minter (ST‘a l) - mintra(STa l) (21) 80
(min er(sryl)fmin ra(s"‘ al))z
S DT (5D (22)| 644
inter STyl —Mintra STal 2
(mo':;nte(r(ST?l)orfl’Lntrta(éTal))) (24) 663

TABLE 11

COMPARISON OF EQUAL ERROR RATES FOR SEVERAL VERIFICATION TECHNIQUES IN THE M2VTS

March 11, 2002

DATABASE.

Verification Technique EER (%)
MSD-DLA 11.89
MSD-DLA with DPCs (22) & (27) 5.7
Gray level frontal face matching [39] 8.5
Discriminant GDLA [5] 6.0-9.2
GDLA [5] 10.8-14.4
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Fig. 1. Block diagram of the training phase of the face verification system.
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Fig. 2. Block diagram of the test phase of the face verification system.

Mean intensity value for each face in all shots

190
¥ + Shotl
+ Shot2
* x Shot3
180 * Shot 4
170
Q *
=
S 160 I 1 T
% * [
c
Q
£ tL
S 150 ¥ ¥
() * *
=
*
140 i # i I * T I ¥ % }
1301 I
120 Il Il Il Il Il Il Il Il Il Il Il J
1 4 7 10 13 16 19 22 25 28 31 34 37

Person

Fig. 3. Mean intensity value of the skin area for each person in the database.
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(d) (e) (f)

Fig. 4. Compensation for luminance variations: (a),(d): Initial images of the same person from different
shots. (b),(e): Segmentation of the original image in three regions using K-means clustering for

K=3. (c),(f): Normalized images having the same mean intensity value in the skin region.

Fig. 5. Block diagram of MSD.
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Fig. 6. Reconstructed images at nineteen decomposition levels. The image at the bottom right is the

original one.

Fig. 7. Morphological Signal Decomposition residual.
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Fig. 8. The graph matching procedure in MSD-DLA: model grid, best grid for the test person after
translation and deformation of the grid. Figures (a),(d): Reference person. Figures (b),(e): The
test person is identical to the reference one. Figures (c),(f): The test person is different from the

reference one.
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Fig. 9. Discriminatory power coefficients for the grid nodes in Dynamic Link Architecture. The brighter
a node is the bigger discriminatory power possesses. The intensity of the nodes is normalized for

visualization reasons.
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Fig. 10. Discriminatory power coefficients of the morphological signal decomposition levels for several
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Fig. 12. Receiver Operating Characteristic curves of MSD-DLA where the contribution of each grid

node is weighted by several choices of discriminatory power coefficients, (DPCs).
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Fig. 13. Receiver Operating Characteristic curves of raw MSD-DLA, MSD-DLA when Discriminatory
Power Coefficients are employed for Morphological Signal Decomposition levels only, MSD-DLA
when Discriminatory Power Coefficients are employed for grid nodes only, MSD-DLA when both

the contributions of Morphological Signal Decomposition levels and grid nodes are weighted.
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