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Abstract 

A novel face recognition algorithm that uses dynamic training in a multistage clustering scheme is presented and 

evaluated. This algorithm uses discriminant analysis to project the face classes and a clustering algorithm to 

partition the projected face data, thus forming a set of discriminant clusters. Then, an iterative process creates 

subsets, whose cardinality is defined by an entropy-based measure, that contain the most useful clusters. The best 

match to the test face is found when only a single face class is retained. This method was tested on the ORL, 

XM2VTS and FERET face databases, whereas the UMIST database was used in order to train the proposed 

algorithm. Experimental results indicate that the proposed framework provides a promising solution to the face 

recognition problem. 

 

Index Terms: Face recognition, dynamic training, multilevel clustering, discriminant analysis.  
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1.  INTRODUCTION 

Face recognition (FR) is an active research field that has received great attention in the past several years. A face 

recognition system usually attempts to determine the identity of the test face by computing and ranking all 

similarity scores between the test face and all human faces stored in the system database that constitute the 

training set. However, the performance of many state-of-the-art FR methods deteriorates rapidly when large, in 

terms of the number of faces, databases are considered [1, 2]. Specifically, the facial feature representation 

obtained by methods that use linear criteria, which normally require images to follow a convex distribution, is not 

capable of generalizing all the introduced variations due e.g. to large differences in viewpoint, illumination and 

facial expression, when large data sets are used. When nonlinear face representation methods are employed, 

problems such as over-fitting, computational complexity and difficulties in optimizing the involved parameters 

often appear [1]. Moreover, the performance of face recognition methods deteriorates when there is lack of a 

sufficiently large number of training samples for each face in the database as, in this case, the intra-person 

variations cannot be modelled properly. More specifically, linear methods, such as linear discriminant analysis 

(LDA), often suffer from the small sample size (SSS) problem, where the dimensionality of the samples is larger 

than the number of available training samples [3]. 

Recently, various methods have been proposed in order to restrict the maladies that are imposed by the two 

aforementioned types of problems on the recognition performance. The ‘divide and conquer’ principle, by which 

a database is decomposed into smaller sets in order to piecewise learn the complex distribution by a mixture of 

local linear models, has been widely used. In [1], a separability criterion is employed to partition a training set 

from a large database into a set of smaller maximal separability clusters (MSCs) by utilizing an LDA-like 

technique. Based on these MSCs, a hierarchical classification framework that consists of two levels of nearest 

neighbour classifiers is employed and the match is found. The work in [4] concentrates on the hierarchical 

partitioning of the feature spaces using hierarchical discriminant analysis (HDA). A space-tessellation tree is 

generated using the most expressive features (MEF), by employing Principal Component Analysis (PCA), and 

the most discriminating features (MDF), by employing LDA, at each tree level. This is done to avoid the 

limitations linked to global features, by deriving a recursively better-fitted set of features for each of the 

recursively subdivided sets of training samples. In general, hierarchical trees have been extensively used for 

pattern recognition purposes. 
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LDA is an important statistical tool that has been shown to be effective in face recognition or verification 

problems [5, 6]. Traditionally, in order to improve LDA-based methods and provide solutions for the SSS 

problem, LDA is applied in a lower-dimensional PCA subspace, so as to discard the null space (i.e., the subspace 

defined by the eigenvectors that correspond to zero eigenvalues) of the within-class scatter matrix of the training 

data set [5]. However, it has been shown [7] that significant discriminant information is contained in the 

discarded space and alternative solutions have been sought. Specifically, in [8] a direct-LDA (DLDA) algorithm 

is presented that discards the null space of the between-class scatter matrix, which is claimed to contain no useful 

information, rather than discard the null space of the within-class scatter matrix. More recently, in an attempt to 

address the SSS problem, the regularized LDA method (RLDA) was presented in [9], which employs a 

regularized Fisher’s separability criterion. The purpose of regularization is to reduce the high variance related to 

the eigenvalue estimates of the within-class scatter matrix, at the expense of potentially increased classification 

bias. 

The use of static training structures, where the input data is not involved in determining the system parameters, 

has been abundant when designing pattern classification systems. However, it has been demonstrated that the 

classification performance can be improved by employing dynamic training structures. In this spirit, the Dynamic 

face recognition Committee Machine (DCM) was presented in [10], consisting of five state-of-the-art pattern 

classification algorithms. The proposed dynamic structure requires for the input to be directly involved in the 

combining mechanism that employs an integrating unit to adjust the weight of each expert according to the input. 

A gating network is used to identify the situation that the input image is taken and assign particular weights to 

each expert. Experimental results indicate that using this dynamic structure gives higher recognition rates rather 

than using a static one where the weights for each expert are fixed. In [11], the authors derive an owner-specific 

LDA-subspace in order to create a personalized face verification (2-class classification) system, where the owner 

identity is the true identity. The training set is partitioned into a number of clusters and the cluster that contains 

face data that are most similar to the owner face is identified. The system assigns the owner training images to 

this particular cluster and this new data set is used to determine an LDA subspace that is used to compute the 

verification thresholds and matching score, when a test face claims the identify of the owner. The authors show 

that verification performance is enhanced when owner-specific LDA-subspaces are utilized, rather than using the 

LDA space created by processing the entire training set. 
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This paper presents a novel framework that uses Dynamic Training in a Multistage Clustering process that 

employs discriminant analysis. For notation compactness, this algorithm shall be referred to as DTMC throughout 

the rest of this paper. This methodology is not restricted to face recognition, but is able to deal with any problem 

that fits into the same formalism. At this point, it is imperative that two terms that are frequently used in this 

paper are defined: ‘class’ refers to a set of face images from the same person, whereas ‘cluster’ refers to a set of 

classes. 

Initially, facial feature extraction is carried out by making use of the multilevel 2-D wavelet decomposition 

(MWD2) algorithm [12, 13], which provides dimensionality reduction and its use has been shown to be 

appropriate for classification purposes [6, 14, 15]. Then, the training and test face feature vectors are projected 

onto a MDF-space that is created by employing the RLDA method of [9]. Subsequently, the k-means algorithm is 

used to partition the training data into a set of discriminant clusters. The distance of the test face from the cluster 

centroids is used to collect a subset of clusters that are closest to the test face. The cardinality of this subset is set 

through an entropy-based measure that is calculated by making use of the discrete probability histogram. Then, a 

new MDF-space is created from this cluster subset with its dimensions set so as to reduce classification problems 

that stem from possible large variations in the set of images of each face class. The training data projected to this 

new space are again clustered and a new subset that is closer to the test face is selected. This process is repeated 

in as many iterations as necessary, until a single cluster is selected that contains just one face class. The identity 

of this face class is set as the best match to the identity of the test face. 

The proposed method is computationally efficient, compared to ‘divide and conquer’ techniques such as the 

one in [1] where multiple classification results are produced by applying an individual discriminant analysis 

process and a nearest-neighbour classifier to each cluster. Our method uses a single discriminant analysis 

operation at each clustering level, with the number of clustering levels being generally much smaller than the 

number of clusters since only a small subset of the training data is retained at each level. A heavy computational 

cost also accompanies algorithms that construct hierarchical trees or space tessellation, as is the case with using 

the HDA algorithm in [4]. The purpose of this type of algorithms is to provide a manageable discriminant 

solution for each and every face class by recursively subdividing the complete set of training samples into smaller 

classification problems. On the other hand, at each clustering step our algorithm only has to provide a 

discriminant solution for the face classes that are closer to the test face; the training data that correspond to the 

remaining face classes are discarded. 
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The structure of the DTMC algorithm is flexible to the adding of new training faces. Specifically, when a new 

training face is added to the database the only change needed in the DTMC process is to increase the dimension 

of the first MDF-space by one. The characteristics of the test face will determine which set of clusters, which 

may or may not contain the new face class, will be retained for the clustering level that follows. On the contrary, 

the hierarchical tree structure requires a complete re-learning of the full training space since the new MDF space 

at the first tree level may lead to an entirely different decomposition result. 

The MDF-spaces that the hierarchical tree or space tessellation structures utilize are generated in the learning 

phase and are not biased by the characteristics of the test face. On the contrary, the MDF-spaces created at each 

clustering level of the DTMC algorithm are indeed biased with respect to the characteristics of the test face. 

Based on the conclusions of [10] and [11] that have been summarized above, more accurate classification results 

are to be expected by DTMC since it employs a dynamic classification structure that utilizes a series of test-face-

specific subspaces. 

The outline of this paper is as follows: Section 2 describes the feature extraction method that utilizes the 

MWD2 algorithm, reviews the RLDA method that is used to extract the MDF-spaces before each clustering 

process and presents the k-means algorithm that is used to partition the training data as well as the entropy-based 

measure that is used to define the number of clusters that are retained. Section 3 describes the complete DTMC 

face recognition methodology that is proposed in this paper. Experimental results are reported in Section 4, where 

the DTMC methodology is tested using the well-established UMIST [16], ORL [17], and XM2VTS [18] 

databases in order to assess its recognition capabilities on standard data sets. Moreover, the performance of 

DTMC is compared to a number of FR algorithms that have been recently proposed by the research community. 

 

2.  FEATURE SELECTION AND THE DTMC BUILDING BLOCKS 

This section briefly describes how the MWD2 algorithm is utilized to extract features from the face images at a 

selected decomposition level. In addition, the RLDA and k-means algorithms that DTMC uses are briefly 

reviewed. Finally, the entropy-based measure that is used at each clustering level to select a subset of the training 

data is presented. 

2.1   Feature Selection using MWD2 
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A proper wavelet transform can result in robust image representations with regard to illumination changes and 

be capable of capturing substantial facial features, while keeping computational complexity low [14]. The 

structure of the MWD2 algorithm that is employed in the feature extraction step of our algorithm in order to 

produce a multi-resolution image representation is described in detail in [12, 13]. An analysis filter bank that 

usually consists of a low-pass filter, Lo_D , and a high-pass filter, Hi_D , is utilized to decompose the signal into 

its low frequency component and its high frequency components at three different orientations [19]. 

The maximum decomposition level dJ  of a signal is related to the signal’s highest resolution level J  by 

jJJ d −= , where j  is the current resolution level of the signal. In this paper, the criterion that is used to define 

dJ  requires that at least one coefficient of the convolved output is calculated properly, bearing in mind that the 

convolved output is down-sampled by a factor of 2 at each scale. Thus, the following should be satisfied: 

( )( ) ( )hLo_DHi_D
J NNNN v

d ,min1,max2 <− , where vN  and hN  are the vertical and horizontal dimensions of the 2-D 

signal f , and Hi_DN  and Lo_DN  are the lengths of the filter kernels Hi_D  and Lo_D , respectively. dJ  is 

calculated by 
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Earlier studies showed that the low resolution components of a wavelet decomposition are the most 

informative for face classification purposes [6]. In [20] it was concluded that facial expressions and small 

occlusions affect the image intensity manifold locally, which, under frequency-based representation, shows that 

only the high-frequency spectrum is affected. Similarly, in [21] it was shown that the effect of different facial 

expressions can be attenuated by removing the high-frequency components. As a result, the wavelet coefficients 

that correspond to the lowest-frequency band at scale dJ  (or equivalently at resolution level 0=J ), 0Af ≺ , are 

selected as the set of features that the DTMC algorithm will process. The spline biorthogonal wavelet ‘bior3.5’ 

[13] is used to define the coefficients of the analysis filter bank (FIR) filters, Lo_D and Hi_D . 

2.2   Finding MDF-spaces using RLDA 

The RLDA method uses the following regularized Fisher’s discriminant criterion, which is particularly robust 

against the SSS problem compared to the original one [9]: 
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where bS  is the between-class scatter matrix, wS  is the within-class scatter matrix and 10 ≤≤ R  is a parameter 

that controls the strength of regularization. The RLDA algorithm is described in detail in [9]. The purpose of 

regularization is to reduce the high variance related to the eigenvalue estimates of wS , at the expense of 

potentially increased bias of the estimation of W . The determination of the optimal value for R  is 

computationally demanding, as it is based on exhaustive search [9]. In this work, an approximation of this 

optimal value is found, at each clustering level, by using data from the UMIST database. 

2.3   The k-means Clustering Method 

Given a set of N  data vectors, realized by ,,1, Nnn …=y  in the d-dimensional space, k-means is used to 

determine a set of K  vectors in dℜ , called cluster centroids, so as to minimize the sum of vector-to-centroid 

distances, summed over all K  clusters [22, 23]. The objective function of k-means that is used in this paper 

employs the squared Euclidean distance and is presented in [22]. After the cluster centroids are found, a single 

vector x  can be assigned to the cluster with the minimum vector-to-cluster-centroid distance, among the K  

distances that are calculated. The Euclidean distance measure is used to calculate these distances:   

     ( ) iiiD μxμx −=, ,    Ki ,...,1= .                       (3) 

2.4   Reducing the Cardinality of the Training Set  using an Entropy-based Measure 

Let us consider a set of K  clusters, or partitions, in the data space T . The surrounding Voronoi region of the 

i-th cluster is denoted as iV . Theoretically, the a-priori probability for each cluster to be the best matching one to 

any sample vector x  of the feature space is calculated as such, if the probability density function ( )xp  is known:  

           ( ) ( )∫=∈=
iVii dpVPP xxx .            (4) 

For discrete data, the discrete probability histogram can replace the continuous probability density function  as 

follows [24]:  

           ( ) { }
N

Vj
VPP ij

ii

∈
=∈=

x
x

|#
,            (5) 
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where {}⋅#  represents the cardinality of a set and N  the size of the training data set whose members are 

.1,,1,0, −= Njj …x  

Let us consider a set of K  partitions in the training data space T  and their distribution ( )KPPPP ,,, 21 …= . 

The entropy, a commonly used measure that indicates the randomness of the distribution of a variable, can be 

defined as [24]: 

( ) ∑
=

−==
K

i
ii PPPHH

1
2log            (6) 

An ‘ideal’ data partitioning separates the data such that overlap between partitions is minimal, which is 

equivalent to minimizing the expected entropy of the partitions over all observed data.  

In this work, the entropy-based measure is calculated in a new data space TT ' ⊂ , which consists of a subset 

that retains 'K of the total K  clusters that are generated by making use of the k-means algorithm. Let us assume 

that the 'K  clusters contain 'Y  face classes. A necessary assumption that is used to calculate the entropy is that a 

true match to the test face class X  exists within the 'T  space. Let the probability for the i - th  face class '
iY , 

that is now contained in 'T , to represent a true match for X  be ( )XY |'ii pP = . Since the prior probabilities 

( )XY |'ip  are unknown, they can be defined using the discrete probability histogram, as in (5), as: 

           ( )
'

'

|'
Y

YXY
N

N
pP i

ii == ,                                   (7) 

where 'Y
N  is the total number of face images contained in 'T  and '

i
N
Y

 is the number of times that class i  is 

represented in 'T , e.g. '
i

N
Y

 different images of the person that is associated with class i  are contained in 'T . 

Practically, in order to reduce computations, entropy can be approximated by substituting (7) into (6), as will be 

shown in the following section. The approximated entropy values are used to guarantee that at each step of the 

DTMC algorithm an easier, in terms of the ability to achieve better separation among the classes, classification 

problem is defined. Simply, a threshold HT  is applied on the entropy value H  to limit the number of different 

classes that 'T  will contain. Essentially, this is done by limiting the number of clusters 'K  that comprise 'T . 
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3.   THE DTMC FACE RECOGNITION METHODOLOGY 

The DTMC algorithm is a multilevel process that, at each level, attempts to solve a redefined classification 

problem that is formulated by making use of dynamic training. Let us assume that an image X  of a test face is to 

be assigned to one of the Y  distinct classes ,1, Yii …=Y  that lie in the training set space T . In addition, let us 

assume that each i - th  class in T  is represented by 
i

NY  images and the total number of training images is YN . 

The face images that comprise the training set T  can be denoted by .,,1, YNnn …=Y  

3.1   DTMC Algorithm: Step 1 

Initially, facial features are extracted from the test and training data by applying the MWD2 algorithm and 

collecting the wavelet coefficients that correspond to the lowest frequencies at decomposition level dJ , where 

dJ  is calculated using (1). Essentially, the approximation wavelet coefficients 0A≺X  and 

,,,1,0 YNnAn …≺ =Y  that are generated are then converted to 1-D vectors, by means of row concatenation, 

thus forming x~  and ,,,1,~
YNnn …=y  respectively. The training feature vectors are grouped in a matrix Y~ , 

such that each of its columns holds a single feature vector. 

3.2   DTMC Algorithm: Step 2 

RLDA is applied on Y~  and the discriminant matrix W  is found by utilizing the criterion in (2). All possible 

dimensions of the discriminant space are retained, thus, W  consists of 1−Y  columns. The training and test 

feature vectors are then projected to the MDF-space by  

             nn yWy ~~' Τ= ,  YNn ,...,1=                                (8) 

and 

               xWx ~~ ' Τ= .                          (9) 

Each training feature vector '~
ny  is stored in a column of '~Y . 

3.3   DTMC Algorithm: Step 3 

The k-means algorithm is then employed in an effort to partition the training data ,,1,~'
YNnn …=y  into the 

Y  distinct face classes. The square-Euclidean-distance-based objective function of [22] is employed and Y  

centroid vectors ,,,1,~ ' Yii …=μ  are found. The distance between each training feature vector and the Y  
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centroids is found using (3) and the training feature vector is assigned to the cluster associated with the minimum 

distance:  

        ( ) { } in
n
iin

n
i CthenDDif ∈= '' ~min~,~ yμy .                    (10) 

Ideally, a single face class should reside in each cluster, and this cluster should contain all images of that 

particular face. However, this is guaranteed only if the separation among the Y  classes is sufficiently large. The 

Y  distances, between the test feature vector '~x  and the cluster centroids, are found by using (3) and are sorted in 

ascending order in the vector: 

       '~xD = ( )( )iiD μx ~,~sort ' .                      (11) 

3.4   DTMC Algorithm: Step 4 

At this point we would like to redefine the original classification problem to a simpler one, by discarding part 

of the training data and applying discriminant analysis on the new subset. The scatter plot shown in Fig. 1 

illustrates how a classification problem can become easier. Let us assume that a test sample to be classified is 

closer to class 0,1 and 2, and furthest from class 3, in terms of its distance from the class centroids. The 0,1,2,3DL  

solid line that is shown represents the discriminant line generated by RLDA in order to separate the data of all 4 

classes by projecting (using orthogonal projections as the dotted lines in Fig. 1 indicate) the data onto this line. 

Alternatively, 0,1,2DL  is the discriminant line that was generated by RLDA in order to separate the data of class 

0,1 and 2 only. Assuming that the match for the test sample can be found in class 0,1 or 2, it is then clear that 

0,1,2DL  provides a better separation for these three classes than 0,1,2,3DL  and provides greater expectation that 

the test sample will be classified correctly. 

In order to make use of the concept of breaking down the classification problem into a pipeline of easier 

classification problems, one must first guarantee a high probability value for ( )'~xp , which we use to represent 

the expectation that the true match to the test data will reside in the portion of the training data space that is 

retained. If this match does not exist, then ( ) 0~ ' =xp . Let us assume that KK <'  clusters are to be retained. The 

probability that a match for the class of '~x  can be found in the i - th  cluster that is retained, ( )ip |~ 'x , is inversely 

proportional to the distance between '~x  and the centroid of this cluster. For example, if '~x  coincides with the 

centroid of the i - th  cluster this distance is zero and '~x  is more likely to belong to this cluster rather than to any 
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other. As a result, and as (4) indicates, the largest possible value for  ( )'~xp  is attained, if the 'K  clusters that are 

retained are associated with the smallest values of '~xD , and, thus, with the 'K  largest values for ( )ip |~ 'x . 

This set of clusters comprises the new training space 'T : 

                      ( ) ( ) 'T∈≤ iii CthenKDDif '
~

'
'

~,~
x

μx .        (12) 

The training feature vector data in these 'K  clusters are collected by making use of (10). Let us assume that the 

'Y  classes '
iY  are contained in the subset that is selected and that each i - th  class in 'T  is represented by '

i
N
Y

 

images. It is noted that 'iY , instead of iY , is used since now a face class may be represented by a smaller number 

of images, than the initial number that corresponded to all K  clusters.  The reason for this is because in certain 

cases the face images of a person may be partitioned into more than one cluster and the subset of 'K  clusters 

may not contain all the clusters that contain images of this particular face class. Now, the total number of training 

feature vectors is 'Y
N  and these vectors are stored as columns in ''~ T∈sY . The value of 'K  is limited by the 

threshold HT  applied on the entropy value, which, in order to guarantee a low computational cost is 

approximated by substituting (7) into (6), so that the following is satisfied: 

        H

K

i
T

N

N

N

N
ii ≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∑

=

'
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1
2log

Y

Y
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3.5   Dealing with Large Inter-Class Variations 

A new MDF-space needs to be defined in order to attempt to find a match for the test feature vector '~x  with 

one of the 'Y  face classes that reside in the new training space TT ' ⊂ . If each cluster would only contain all 

'
i

N
Y

 training feature vectors of a single face class '
iY , which is the ideal case for the clustering process, the 

dimensions of this new MDF-space should be set to 1' −Y . Let us consider, however, the case where the '
i

N
Y

 

training feature vectors of class '
iY  are distributed into more than one cluster. Essentially, this means that a 

subset of the '
i

N
Y

 vectors was found to be more similar to vectors of different face classes, rather than to the 

remaining vectors of its own class. In this case, the new MDF-space should have additional (discriminant) 

dimensions so as to also be able to discriminate this subset of vectors from the vectors that correspond to 

different identities. 
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In other words, if feature vectors that belong to the i - th  class are distributed into '
iK  clusters, the 

discriminant process will attempt to discriminate among the data of this class using 1' −iK  dimensions, in 

addition to discriminating among the 'Y  different face classes using 1' −Y  dimensions. Thus, the MDF-space is 

defined so as to best discriminate '
dK  classes from one another, where '

dK  is defined as:  

         ( ) '

1

''
'

1 YKK
Y

i
id +−= ∑

=

.            (14) 

This is done to enhance the classification ability of DTMC, since it enables the algorithm to formulate a 

clustering process that considers possible large variations in the set of images that each face class is represented 

by. If these variations are larger than identity-related variations, then these images are clustered into disjoint 

clusters. An example to this would be when a subset of images that correspond to the i - th  training person 

present this person having a beard, or wearing glasses, whereas the rest of this person’s images present it without 

having a beard and without wearing glasses. As a result, the feature vectors that correspond to the images 

showing this subject while having a beard, or wearing glasses, could be clustered with feature vectors of a 

different subject that has a beard, or wears glasses. By using (14), when DTMC attempts to find the match of a 

test face that corresponds to the identity of this i - th  training person, it takes into consideration the fact that the 

test face may have a beard, or not, or wear glasses, or not. As a result, the match with the subset of the training 

images of class i , whose appearance is most similar to the test face, is considered, thus the best match can be 

found.  

3.6.   Iterative Processing 

From this point onwards, steps 2 through 4 of DTMC are repeated in as many iterations as are necessary, until 

a single cluster is selected that contains a single class. For clarity, it is stated that 1' −dK  indicates the length of 

the discriminant vector that is obtained by the RLDA process that will follow, whereas '
dK  is the number of 

clusters that the training data will be clustered into by applying the k-means algorithm. For each iteration, the 

value of the entropy-related threshold HT  that is used to select a subset of the training data, is determined 

heuristically as is explained in the following section. A flow-chart of the DTMC algorithm is shown in Fig. 2 
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4.  EXPERIMENTAL EVALUATION OF DTMC 

In this section, the efficiency of the proposed methodology is evaluated on standard facial image data sets. The 

classification ability of DTMC is investigated by using data from the ORL, XM2VTS and FERET databases, 

whereas the UMIST database was used to set the values of the threshold HT  and the regularization parameter R  

at each clustering level, i.e., at each iteration of the DTMC algorithm. Essentially, as in most face recognition 

applications, the classification experiments that are carried out fall under the SSS problem, since few training 

samples per subject are available. The performance of DTMC is presented for various degrees of severity of the 

SSS problem. This is done by providing recognition rates for experiments where each face class iY  is 

represented by the smallest to the largest possible number of training samples, ΤN . Since DTMC employs 

discriminant analysis, the smallest possible sample number is 2. The largest possible training sample number for 

each face class iY  is determined by the number of available images in this class, 
i

NY , and by considering that at 

least one of these samples needs to be excluded, in order to be able to test the recognition performance for that 

particular class. Thus, the range for the number of training samples ΤN  is [ ]1,,2 −
i

NY… . The remaining images 

that do not comprise the training set are used to test the performance of DTMC, thus, they constitute the test set. 

The training and test sets are created by a random selection on each set of the 
i

NY  images of each face class. To 

give statistical significance to our experiments, this random selection is repeated RN  times and RN  recognition 

rates are accumulated and then averaged in order to calculate the average recognition rate recR :              

  ∑
=

=
R

1 total

correct

R
rec

1 N

i

i

n
n

N
R ,                                              (15) 

where correctn  is the number of correct matches of test faces to their corresponding face class in the training set 

and totaln  is the number of all matching tests that are carried out. 

4.1   Estimation of threshold HT  and regularization parameter R  using the UMIST database 

The UMIST database consists of 20=K  different face classes, each of which is represented by at least 

19=
i

NY  images, 20,,1…=i . The faces are shown at various angles, from left profile to right profile. 

Consequently, 17 recognition rates were derived for training sets that contained 18,,2…=ΤN  images from each 

of the 20 face classes. Each corresponding rate was the average out of 20R =N  repetitions. An approximation to 
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the optimal values of HT  and R  at each clustering level was found by means of exhaustive processing in which 

the overall recognition rate was to be maximized. That is, the goal was to find the maximum possible average 

recognition rate of the experiments with the 17 different quantitative representations of the training set. For 

reference, the recognition rates recR  that were achieved having this criterion been satisfied are shown in Table 1. 

However, they are not meant to be appropriate for comparison with the results of other methods, since the test set 

of the UMIST database was used to determine the values of the DTMC parameters. For the first RLDA step, the 

best value was found to be 0=R , which makes RLDA equivalent to the DLDA method of [8], whereas for the 

remaining RLDA steps that followed the best value was found to be 05.0=R . The best value for thresholding 

the entropy at the first and second clustering levels was found to be 4=HT , and 45.1=HT , respectively. At 

subsequent clustering levels, this value was found to be 0.1=HT . Thus, a single cluster is selected; the face 

classes residing in that cluster are partitioned into a new set of clusters, one for each class, and from that partition 

a single cluster is again selected until only one face class remains in the selected cluster. The average number of 

clusters that were retained at the first and second clustering levels is 35.15' =K  and 14.2' =K , respectively. 

4.2   Evaluation of performance with respect to available number of training samples per subject ( ΤN ), using 

the ORL and XM2VTS databases 

Now that all parameters for the DTMC methodology have been defined, the algorithm is evaluated on the ORL 

and XM2VTS databases. The ORL database consists of 40=K  different face classes, each of which is 

represented by 10=
i

NY  images. The XM2VTS database consists of 200=K  different face classes, each of 

them represented by 8=
i

NY  images.  Fig. 3 and 4 show the boxplots [25] that provide statistical information 

about the recognition rates that are achieved throughout the 20R =N  independent runs, on the ORL and 

XM2VTS databases, respectively. The boxes have lines at the lower quartile, median, and upper quartile values.  

The whiskers are lines extending from each end of the boxes to show the range of the rest of the data, specified at 

1.5 times the inter-quartile range. Outliers are data with values beyond the ends of the whiskers and are indicated 

using ‘+’. The mean recognition rates recR  that correspond to Fig. 3 and 4 are reported in Table 1. For the ORL 

database experiments, the average number of clusters that were retained at the first and second clustering levels is 

94.13' =K  and 84.1' =K , respectively. The corresponding results for the XM2VTS database experiments are 
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12.9' =K  and 51.1' =K . It must be noted that for the face recognition experiments that were carried out, 

usually 3 to 5 clustering levels, or iterations, are required for finding the identity of a test face.  

The face recognition performance of the DTMC algorithm is now compared to the performance of a number of 

face recognition algorithms that have been recently presented in the literature. In order to derive meaningful 

conclusions when comparing the performance of various algorithms, the testing and evaluation methodologies, as 

well as the facial image databases that are used, should be identical. Moreover, we compare our algorithm against 

methods whose data processing procedures are presented in an elaborate fashion, in the literature. In [26], an 

identical experimental process, to the one that was used to evaluate the performance of DTMC, was carried out 

using random selection of the training and test set from the ORL database. Experimental rates are provided for a 

nearest neighbour-based (NN-b) [26], a PCA-based (PCA-b) [27], an LDA-based (LDA-b) [5] and the Markov 

random field-based (MRF) method that is proposed, for 1 to 9 training images per person. The comparison of 

DTMC with just 1 training image per person is not possible. The NN-b and PCA-b methods outperform DTMC 

when 2 training images are used, whereas LDA-b and MRF show a similar performance. When the number of 

training images is in the range of 3 to 9, DTMC shows the best face recognition performance, by outperforming 

the top-performer of the four methods in [26] by 3.87%, 2.91%, 2.39%, 2.38%, 1.7%, 1.4%, and 0.85% 

respectively. The relevant face recognition rates are reported in Table 2. 

A common experiment that is used in order to evaluate the performance of a face recognition algorithm using 

the ORL database is the random selection of five images from each subject for training, whereas the remaining 

five are used for testing; this experimental process has been used in [28, 29, 30, 34]. The relevant face 

recognition rates for this particular experimental setup are reported in Table 3. In [28] face recognition rates for 

the combination of Gabor and PCA method (GPCA) [29], the Gabor-Fisher classifier (GFC) [29], the 

combination of Gabor and the DLDA method (GDLDA) of [8], and the Gabor Generalized Foley-Sammon 

Transform method (GGFST) that is proposed are provided. The DTMC algorithm outperforms these algorithms 

by 6.73%, 1.53%, 1.53%, and 0.53% respectively. For the same experimental setup, the authors in [30] provide 

performance results for the Convolutional Neural Network method (CNN) of [31], the Nearest Feature Line 

method (NFL) of [32], the Multiresolution PCA method (M-PCA) of [33] and the RBF Neural Network method 

(RBFNN) that they propose. The DTMC outperforms CNN by 0.86% and NFL by 0.16% whereas M-PCA and 

RBFNN outperform DTMC by 0.57% and 1.05% respectively. In [34], the same testing procedure is followed to 

test the nearest neighbour classifier (NN) [35], the nearest feature plane method (NFP) [36] and the two 
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classifiers that are proposed, the nearest neighbour line (NNL) and the nearest neighbour plane (NNP). DTMC 

outperforms these algorithms by 2.38%, 1.23%, 1.85%, and 1.28%, respectively. 

In addition, the leave-one-out strategy is employed in [34] to evaluate the performance of the algorithms that 

are proposed. The leave-one-out strategy is also employed in [37] to evaluate the performance of the Fisherfaces 

(FF), Independent Component Analysis (ICA), Eigenfaces (EF) and Kernel Eigenfaces (KEF) algorithms in [38], 

as well as of the 2-Dimensional PCA method (2DPCA) that is proposed, using ORL data. The performance of 

DTMC using this strategy is found in 20 independent runs. DTMC outperforms all these methods with a 

recognition rate of 98.62%. The relevant face recognition rates calculated under the leave-one-out strategy are 

reported in Table 4. 

Furthermore, a second type of experiment was performed in [37] where the first five images of each subject in 

the ORL database comprise the training set, whereas the remaining five constitute the test set. The same 

experiment has been applied for DTMC and the recognition rate was found to be 98.3 %. As a result, DTMC 

again shows the best performance, as the face recognition rates that are reported in Table 5 show.  

In [39], face recognition rates are presented for both the ORL and the XM2VTS databases. Specifically, 4 

images per person make up the training set and the remaining 6 form the test set, when ORL data is used. Results 

are presented for the kernel direct discriminant analysis (KDDA) method in [40] as well as the new KDDA 

(nKDDA) method that is proposed. As Table 6 illustrates, in which results corresponding to the identical 

experimental setup can be found, the DTMC outperforms these methods with a recognition rate of 94.73%. For 

the experiments done on the XM2VTS database, 4 images per person comprise the training set and the remaining 

4 form the test set. Again, recognition rates reported in Table 6, which correspond to the identical experimental 

setup, illustrate that the DTMC method outperforms the best rate reported for KDDA by 8.94% and, in addition, 

outperforms all methods with a recognition rate of 96.54%. 

The most common face recognition experimental setup that is reported in the literature when XM2VTS data 

are used requires 3 images per person to form the training set and a single image per person to form the test set. 

Then, image permutations are done so that each of the 4 images becomes the test image, thus, cross-validation is 

used for testing as is it shown in [41, 42, 43]. The FR rates that are calculated by cross-validation are reported in 

Table 7. The performance of the DTMC method for 100 independent runs of this experimental process reaches 

97.55%. In [41], the performance of seven algorithms is reported, among which the best is the method that is 

proposed and combines a Bayesian probabilistic model with Gabor filter responses (GBPM), with a recognition 
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rate of 97.1%. In [42] the best rate that is reported for the proposed wavelet sub-band representation and kernel 

associative memory algorithm (WKAM), using the same experimental setup, is 83.39%. In [43], recognition rates 

of 99%, that outperform the corresponding rates of DTMC, are achieved by the adaptive clustering Bayesian 

SVM (ACBSVM) and the adaptive clustering unified subspace SVM (ACSSVM) algorithms that are presented. 

4.3   Evaluation of performance with respect to available number of training samples per subject ( ΤN ) and 

number of subjects (Y ), using the FERET database 

The performance of the DTMC algorithm has also been evaluated using the FERET database which avails 

larger number of face classes, Y . The 'closed universe' model, where the identity that corresponds to each test 

image is included in the training set, is used, as with our previous experiments. The closed-universe model is 

recommended in [44] for evaluating a face recognition algorithm on the FERET database, since it allows one to 

ask how good an algorithm is at identifying the test image. It is noted that we could not implement the FERET 

protocol for which results are reported in [44], where only one image per person is used in the training set and 

one in the test set. This is because the discriminant analysis step that is employed in DTMC requires multiple (at 

least 2) training images per subject. Instead, we implement an alternative testing procedure that is suggested in 

[44] where the number of different face classes, Y , in the training set is varied in order to evaluate the 

performance of the face recognition algorithm with respect to the size of the training set. In addition, the 

experimental process once again observes the recognition performance as the number of training samples, ΤN , 

varies. 

The 1199 different face classes that are available in the FERET database are represented by different number 

of images. The images that correspond to the face classes that are represented by 3 or more images, since at least 

2 training images and 1 test image are required, are permuted so that each image becomes the test image. In the 

training sets that are formed each face class is represented by ΤN  images. For the experiments corresponding to 

10 9, 8, 7, 6, 5, 4, 3, 2,=ΤN  we use the largest possible number of available face classes. These numbers are 

27 48, 66, 90, 103, 119, 130, 255, 480,=Y , respectively. The performance measure in [44] is the probability of 

identification (or percentage of correct matches) which corresponds to the calculation of recR  in (15), therefore, 

the same evaluation measure is used. For the experimental results for the FERET data, the average number of 

clusters that were retained at the first and second clustering levels is 53.10' =K  and 67.1' =K , respectively. 
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Once again, for almost all the experiments 3 to 5 clustering levels were sufficient for the identity of the test face 

to be found. 

The performance results for the DTMC algorithm using the FERET data are presented in Table 8. This table 

illustrates that as ΤN  becomes larger, the performance of DTMC becomes less sensitive to variations in the 

number of face classes Y . For instance, for the recognition results that correspond to 27=Y  and 90=Y  for 

7,...,2=ΤN , it is clear that smaller deviations between these two sets of results are found for larger values of 

ΤN . In addition, when only 2 samples per face class are available in the training set the recognition ability of the 

DTMC algorithm becomes poor when Y  is large. This fact has also been demonstrated in the evaluation results 

that processed the ORL and XM2VTS data. This malady is justified by the fact that the SSS problem is very 

severe since the lack of sufficient training samples causes improper estimation of a linear separation hyperplane 

between the classes, thus discriminant analysis cannot me modeled properly [45]. 

In order to make salient comparisons with other relevant methods, we chose to implement, to the best of our 

understanding, the related state-of-the-art Hierarchical Discriminant Analysis (HDA) algorithm in [4]. The 

number of nodes that are expanded at each level is 10, like the authors in [4] propose. The same pre-processing 

was done on the images and features were generated using the MWD2 algorithm for both HDA and DTMC. 

Since the FERET test provides not only results corresponding to different number of available images per 

subject, but also to different number of face classes, we chose to evaluate this algorithm using FERET data. The 

recognition results for HDA are also shown in Table 8. Once again, we see that when 2=ΤN  recognition results 

are poor. This was expected since LDA is used and once again suffers from the SSS problem. In fact, results 

suggest that RLDA does a better job than using the traditional combination of MEF and MDF spaces under the 

SSS problem, therefore the results agree with the conclusions drawn in [9]. To verify this we run DTMC by 

replacing the RLDA step by first generating MEF and then MDF spaces, as in [4], and lower recognition rates 

were observed; at an average, the recognition rate dropped by 8.11%. From the results in Table 8 it is clear that 

the performance of HDA is more sensitive to the variations of the number of face classes Y , than DTMC is. This 

is because the training of HDA is carried out without any biasing to the features of the particular test face. On the 

other hand, DTMC selects a subset of the training faces that are closer to the test face. As a result, DTMC handles 

large number of face classes much more efficiently than HDA does.  
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When the number of training samples ΤN  gets larger, e.g. equal or larger than 5, both DTMC and HDA 

provide good results for small values of  Y . Therefore, it is expected that deriving the MEF and then the MDF 

spaces accounts for a similar performance to using the RLDA step. In order to verify this, the DTMC algorithm 

was run by replacing the RLDA step with the traditional MEF and MDF discriminant processing and indeed the 

performance of the algorithm deteriorated only mildly. More specifically, for 10,...2=ΤN , the average drop in 

the recognition performance, ( )%recR , respectively, is 8.11, 4.40, 2.55, 1.86, 1.34, 0.97, 0.23, 0.00 and 0.00.  

From the experimental results above it is concluded that the fact that DTMC iteratively selects subsets of the 

facial classes that are closer to the test face is responsible for the algorithm being able to maintain high 

recognition performance when the number of face classes Y  increases.  On the other hand, the RLDA 

discriminant process that DTMC employs, is responsible for providing much larger recognition rates when the 

SSS problem is severe (e.g. when 3 2,=ΤN ),  rather than using the traditional discriminant approaches. 

The experimental comparisons that are presented, illustrate that the DTMC outperforms most recently 

proposed face recognition methods and competes well with the rest of them in various databases and under 

various performance protocols. In addition, the process is quite fast due to the dimensionality reduction that 

MWD2 offers, and due to the reduction of the number of training images and, thus, to the number of comparison 

tests that are carried out at each clustering level. 

 

5.  CONCLUSION 

A novel face recognition methodology is proposed and its performance is evaluated. The DTMC algorithm uses 

dynamic training in a multistage clustering scheme in order to classify a test face by solving a set of simpler 

classification problems. This process iterates until one final cluster is selected that consists of a single face class, 

whose identity is set to be the best match to the identity of the test face. Certain parameters of DTMC are defined 

using the UMIST face database. This method was tested on the ORL, XM2VTS and FERET face databases and 

the experimental results show that the proposed framework outperforms most other face recognition methods. 
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Fig. 1: Solving an easier classification problem by retaining a subset of the classes. 
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Fig. 2: Flow-chart of the DTMC algorithm. 
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Fig. 3: Recognition rate versus ΤN  of experiments on ORL. 
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Fig. 4: Recognition rate versus ΤN  of experiments on XM2VTS. 
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Table 1: Mean recognition rates ( )recR  versus number of training samples per subject ( )ΤN .  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 2: Recognition rates of various methods versus the number of training samples per subject, using ORL 
data. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

UMIST ORL XM2VTS 

ΤN  recR  (%) ΤN  recR  (%) ΤN  recR  (%) ΤN  recR  (%) 

2 59.26 11 97.03 2 69.44 2 31.89 

3 82.67 12 97.04 3 91.96 3 93.03 

4 90.20 13 97.38 4 94.73 4 96.54 

5 92.23 14 97.95 5 97.03 5 97.78 

6 92.46 15 98.13 6 98.06 6 97.98 

7 94.94 16 98.42 7 98.50 7 99.05 

8 95.86 17 98.63 8 98.50   

9 95.85 18 100.00 9 98.75   

10 96.03       

 recR  (%) 

ΤN  NN-b [26] PCA-b [27] LDA-b [5] MRF [26] DTMC 

2 81.08 71.19 68.84 68.38 69.44 

3 88.09 79.66 81.74 79.21 91.96 

4 91.82 84.92 86.74 82.63 94.73 

5 94.64 88.31 88.87 86.95 97.03 

6 95.68 90.84 90.84 90.53 98.06 

7 96.80 92.58 91.62 92.17 98.50 

8 97.10 94.05 92.85 94.88 98.50 

9 97.90 95.20 93.75 96.75 98.75 
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Table 3: Recognition rates of various methods for 5 training samples per subject, using ORL data. 
 

Method recR  (%) for 5=ΤN  

GPCA [29] 90.30 

GFC [29] 95.50 

GDLDA [8] 95.50 

GGFST [28] 96.50 

CNN [31] 96.17 

NFL [32] 96.87 

M-PCA [33] 97.60 

RBFNN [30] 98.08 

NN [35] 94.65 

NFP [36] 95.80 

NNL [34] 95.18 

NNP [34] 95.75 

DTMC 97.03 

 
Table 4: Recognition rates of various methods evaluated under the leave-one-out strategy, using ORL data. 

 

Method 
recR  (%) using the leave-one-out 

strategy 

NN [35] 98.25 

NFP [36] 98.25 

NNL [34] 98.50 

NNP [34] 98.50 

FF [38] 98.50 

ICA [38] 93.80 

EF [38] 97.50 

KEF [38] 98.00 

2DPCA [37] 98.30 

DTMC 98.62 
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Table 5: Recognition rates of various methods with the training set being comprised of the first 5 images 
of a subject, using ORL data. 

 

Method 
recR  (%) for 5=ΤN  by selecting the 

first 5 images of each subject 

FF [38] 94.50 

ICA [38] 85.00 

KEF [38] 94.00 

2DPCA [37] 96.00 

DTMC 98.30 

 
 
 
 
Table 6: Recognition rates of various methods for 4 training samples per subject, using ORL and XM2VTS data. 
 

 recR  (%) for 4=ΤN  

Method ORL XM2VTS 

KDDA [40] 91.30 87.60 

nKDDA [39] 91.30 92.50 

DTMC 94.73 96.54 

 
 
 
 
 
Table 7: Recognition rates of various methods calculated under the cross-validation strategy applied to 4 samples 

( )3=ΤN , using XM2VTS data. 
 

Method 
recR  (%) for cross-validation using 4 

samples, out of which 3 are used for training 

GBPM [41] 97.10 

WKAM [42] 83.39 

ACBSVM [43] 99.00 

ACSSVM [43] 99.00 

DTMC 97.55 
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Table 8: Recognition rates for the DTMC and HDA [4] algorithms for various number of face classes, Y , and 

number of training samples, ( )ΤN , using FERET data. 

 

 

 

 

 

 

Mean recognition rates ( )%recR  for various number of training samples per subject ( )ΤN  and various number of 

face classes (Y ) using FERET data. 

ΤN  Method 27=Y  48=Y  66=Y 90=Y 103=Y 119=Y 130=Y  255=Y 480=Y

DTMC 88.65 82.34 77.34 73.85 71.65 69.14 67.72 62.57 57.34 
2 

HDA 79.24 75.53 71.42 66.83 65.14 64.30 62.52 56.21 48.61 

DTMC 96.46 95.30 94.79 94.06 93.82 93.64 93.34 92.54 - 
3 

HDA 89.24 88.73 86.86 83.35 82.42 82.13 81.59 77.25 - 

DTMC 98.48 98.18 97.53 97.40 97.24 96.95 96.17 - - 
4 

HDA 93.67 92.54 91.22 89.31 88.45 87.53    85.70 - - 

DTMC 99.24 99.17 98.83 98.65 98.48 98.61 - - - 
5 

HDA 95.96 95.11 94.42 92.37 91.85 90.32 - - - 

DTMC 99.49 99.34 98.96 98.85 98.67 - - - - 
6 

HDA 97.63 96.40 94.95 93.54 92.76 - - - - 

DTMC 100 100 99.35 99.38 - - - - - 
7 

HDA 99.22 98.83 98.26 97.61 - - - - - 

DTMC 100 100 100 - - - - - - 
8 

HDA 100 99.56 99.03 - - - - - - 

DTMC 100 100 - - - - - - - 
9 

HDA 100 99.71 - - - - - - - 

DTMC 100 - - - - - - - - 
10 

HDA 100 - - - - - - - - 


