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Abstract

A novel method based on fusion of texture and shape information is proposed for
facial expression and Facial Action Unit (FAU) recognition from video sequences.
Regarding facial expression recognition, a subspace method based on Discriminant
Non-negative Matrix Factorization (DNMF) is applied to the images, thus extract-
ing the texture information. In order to extract the shape information, the system
firstly extracts the deformed Candide facial grid that corresponds to the facial ex-
pression depicted in the video sequence. A Support Vector Machine (SVM) system
designed on an Euclidean space, defined over a novel metric between grids, is used for
the classification of the shape information. Regarding FAU recognition, the texture
extraction method (DNMF) is applied on the differences images of the video se-
quence, calculated taking under consideration the neutral and the expressive frame.
An SVM system is used for FAU classification from the shape information. This
time, the shape information consists of the grid node coordinate displacements be-
tween the neutral and the expressed facial expression frame. The fusion of texture
and shape information is performed using various approaches, among which are
SVMs and Median Radial Basis Functions (MRBFSs), in order to detect the facial
expression and the set of present FAUs. The accuracy achieved in the Cohn-Kanade
database is 92.3% when recognizing the seven basic facial expressions (anger, dis-
gust, fear, happiness, sadness, surprise and neutral), and 92.1% when recognizing
the 17 FAUs that are responsible for facial expression development.

Key words: Facial expression recognition, Facial Action Unit Recognition,
Discriminant Non-negative Matrix Factorization, multi-dimensional embedding,
Support Vector Machines, Radial Basis Functions, Fusion.

1 Introduction

During the past two decades, facial expression recognition has attracted a
significant interest in the scientific community, as it plays a vital role in
human centered interfaces. Many applications such as virtual reality, video-
conferencing, user profiling and customer satisfaction studies for broadcast
and web services, require efficient facial expression recognition in order to
achieve the desired results [1], [2]. Therefore, the impact of facial expression
recognition on the above mentioned application areas, is constantly grow-
ing. Several research efforts have been performed regarding facial expression
recognition. The facial expressions under examination were defined by psy-
chologists as a set of six basic facial expressions (anger, disgust, fear, happi-
ness, sadness and surprise) plus the neutral state [3]. In order to make the
recognition procedure more standardized, a set of muscle movements known
as Facial Action Units (FAUs) that produce each facial expression, was cre-



ated, thus forming the so called Facial Action Coding System (FACS) [4].
These FAUs are combined in order to create the rules governing the forma-
tion of facial expressions, as proposed in [5]. A survey on the research made
concerning facial expression recognition can be found at [6], [7]. Many ap-
proaches have been reported regarding facial expression recognition (direct
or based on FAU recognition). These approaches can be distinguished in two
main directions, those that use texture information (e.g. pixels intensity) and
the rest that use geometrical or shape-based information (e.g. feature node
displacements).

The most frequently used texture features are Gabor filter output [8]-[10],
pixel intensities [11]-[16], Discrete Cosine Transform (DCT) features [15] and
skin color information [17]-[19]. Accordingly, feature extraction methods based
on Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA) [13,20] have been used in order to enhance the performance of texture
information. The classification of the texture information was performed using
Neural Networks (NNs) [7,17,21], empirical classification rules [6,17,19], Bayes
or Adaboost classifiers [9,10,18], SVMs [9,18,22].

The most frequently used shape features are facial features lines [23], mo-
tion information [8], [24,25], or facial action units [26]. These features are
extracted using 2-D or 3-D facial models [5,27,28]. The classification of the
shape information was performed using NNs [17], empirical classification rules
[5,17], dynamic bayesian networks [8,24], dynamic time warping [26], template
matching [29], Hidden Markov Models [30], manifold embedding [31], Bayes
or Adaboost algorithms [32] or SVMs [9,33,34].

In [34], a technique for facial expression recognition has been proposed. The
method employed considers the geometrical information of the Candide nodes,
acquired as the coordinates differences, to use them as an input to SVM sys-
tems in order to achieve facial expression classification for the 6 basic facial
expressions. The method in [34] had the following limitations:

e it is based on node displacements from the neutral state in order to recognize
a basic expression, therefore, the recognition of the neutral state is necessary
as a preprocessing step applied prior to the classification method

e texture information is not taken under consideration as only shape infor-
mation is used.

In the current paper, a novel method for video based facial expression and FAU
recognition is proposed that exploits both the texture and shape information.
The recognized facial expressions are the seven basic ones (anger, disgust, fear,
happiness, sadness, surprise and neutral), while the recognized FAUs are the
ones contained in the rules proposed in [5] (FAUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 15,
16, 17, 20, 23, 24, 25 and 26). The features of the facial texture are obtained by



applying a subspace representation method based on a discriminant extension
of the Non-negative Matrix Factorization (NMF) algorithm [35] (the so-called
DNMEF algorithm [36]) on the images derived from the video sequence. In the
case of facial expression recognition, the DNMF algorithm is applied directly
on the expressive facial images, while in the case of FAU recognition, it is
applied on the differences images. The differences images are calculated by
subtracting the neutral frame of the video sequence from the fully expressed
one. The differences images are used instead of the original facial expression
images, due to the fact that they emphasize the facial regions in motion and
reduce the variance related to the identity specific aspects of the facial image
[37]. We should note that the differences images are only used in the FAU
recognition process and not in the facial expression recognition one. In the
case of FAU recognition, the neutral state is not taken under consideration,
as no FAUs are present in it. Thus, the calculation of the differences images
is, in that case, feasible. The neutral state can be found by using the results
of the proposed facial expression recognition process, in order to derive the
differences images.

The recognition of facial expressions and FAUs when using only either tex-
ture or shape information has certain drawbacks. When only texture is used,
misclassification cases appear due to the lack of shape information in some spe-
cific facial expressions. For example, anger and fear differences images are not
significantly different, implying that they cannot be discriminated well using
only texture information. Such a problem can be solved with the introduc-
tion of shape information. On the other hand, when only shape information
is used, subtle facial movements lead to facial expression misclassifications.
For example, the mouth/lip movement can lead to a wrong facial expression
recognition when either fear or happiness is recognized. By introducing texture
information, these facial expressions are better separated. Thus, the fusion of
texture and shape information is expected to provide superior results. Various
methods were used to achieve the fusion of the two independent sources of
information. The method that provided the best results was the Median Ra-
dial Basis Function (MRBF) NNs and thus it will be the only one described
below.

The use of the DNMF algorithm for facial expression recognition has been
motivated by the fact that it can achieve a discriminant decomposition of
faces, as noted in [36]. In the frontal face verification problem [36], the DNMF
method achieves a decomposition of the facial images, whose basis images
represent salient facial features, such as eyes, eyebrows or mouth. We believe
that the preservation of these salient features in the learning process of DNMF
is caused by the class information taken into account by the algorithm, since
these features are of great importance for facial identity verification. We also
believe that the extension of the DNMF' algorithm to facial expressions and
FAU recognition problem is well motivated, since the algorithm is capable



of decomposing the images into facial parts that play a vital role to facial
expression and FAU recognition [38],[39]. In the facial expression recognition
problem, the class is composed of the images that belong to the same facial
expression. Hence, there is a correlation between the features discovered by
DNMF algorithm and the facial expression classification framework. This is
indeed shown in the Section 6, where it is demonstrated that the DNMF basis
images are salient facial parts that preserve discriminant information for every
facial expression, like smile, lowered eyebrows etc, in contrast to the NMF basis
images that do not display spacial locality of such high quality and Local-NMF
(LNMF) basis images [40] that do not correspond directly to facial parts, even
though they have better spacial localization than the equivalent basis images
of NMF algorithm.

In the case of facial expression recognition, the shape information is calculated
extracting the deformed Candide facial grid that corresponds to the facial ex-
pression depicted in the video sequence [34]. A space is created (via multidi-
mensional scaling [41]-[43]) taking under consideration the distances calculated
for every node to node correspondence between the training and testing grids.
An SVM system is then used for the classification of the extracted shape infor-
mation. In the case of FAU recognition, the shape information is extracted by
calculating the Candide node displacements between the neutral and the ex-
pressive frame [34] that forms the facial expression. The FAU classification is
obtained using a bank of two-class SVM systems. For facial expression recog-
nition, both the texture and shape information extraction subsystems have
as output the facial expression class whose center has the least distance from
the test sample expression under examination. For FAU recognition, the set
of FAUs that are adequate for facial expression representation are detected
[5]. The experiments performed using the Cohn-Kanade database indicate a
recognition accuracy of 92.3% when recognizing the seven basic facial expres-
sions and 92.1% when recognizing the 17 basic FAUs. The FAU recognition
is almost 10% better than the corresponding FAU recognition rate achieved
when this set of FAUs and the Candide grid were used in [34].

Summarizing, the contributions of this study are:

e The extension of the DNMF algorithm presented in [36] for facial expression
and FAU recognition.

e The introduction of a novel classification framework for facial grids that
involves the definition of a new Euclidean space, based on metric multidi-
mensional scaling, and its application to the Candide grids for facial ex-
pression recognition. This framework constitutes the recognition of seven
facial expression feasible unlike [34] where the neutral state could not be
recognized.

e The combination of texture and shape information for facial expression and
FAU recognition.



The proposed method is different to the method in [34] since:

e facial expression recognition involves 7 facial expressions, the 6 basic ones
(anger, disgust, fear, happiness, sadness and surprise) plus the neutral state.
In [34], only the recognition of the 6 basic facial expressions is feasible since
the knowledge of the neutral state is mandatory. In the proposed system the
whole Candide grids are used instead of the nodes coordinates differences
that were used in [34].

e A novel classification framework for grids that is comprised of two parts,
an initial Euclidean embedding and a following multiclass SVM system, is
proposed.

e Texture information is also used and its results are fused with shape infor-
mation results to achieve better classification rates.

The rest of the paper is organized as follows: The systems used for facial
expression and FAU recognition are outlined in Section 2. The DNMF algo-
rithms for facial expression and FAU recognition are described in Section 3.
The methods used for shape information extraction is presented in Section 4.
The procedure followed in order to achieve the fusion of the extracted texture
and shape information, is described in Section 5. The database used for the
experiments and some observations regarding the results are described in Sec-
tion 6.1. The recognition accuracy rates achieved for facial expression and FAU
recognition are presented in Sections 6.2 and 6.3, respectively. Conclusions are
drawn in Section 7.

2 System description

The system is composed of three subsystems: texture information extraction,
shape information extraction and their fusion for final classification. A facial
expression image database is created for the experiments. Regarding facial ex-
pression recognition, for each image sequence the fully expressive image from
every video sequence is taken under consideration. In the case of FAU recog-
nition, the difference images (see Figure 1), created by subtracting the neutral
image intensity values from the corresponding values of the fully expressive
image, are used for the texture information extraction subsystem. The dif-
ferences images are used instead of the original facial expression images, due
to the fact that they emphasize the facial regions in motion and reduce the
variance related to the identity specific aspects of the facial image for FAU
recognition [37]. The same image sequences are also used as input to the shape
extraction information subsystem.

The grid tracking system used was the one described in [44]. An example of
the Candide grids for every facial expression can be seen in Figure 2.



Fig. 1. Differences images between neutral pose and fully expressive one. They are
split into facial regions containing the most expressive difference information.
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Fig. 2. An example of the Candide grid for every facial expression.

In the case of facial expression recognition, the extracted information is used as
an input to the information processing subsystem that includes an Euclidean
embedding. Finally, the information classification subsystem consists of a 7-
class SVM system that classifies the embedded deformed grid into one of the
7 facial expression classes under examination. The subsystem used for facial
expression recognition is shown in Figure 3.

For facial expression recognition, the output information from both the texture
and shape classifiers consists of the distances of the test video sample from
the winning class. These distances are fed to the fusion subsystem to provide
the final classification result, i.e. the facial expression class the video sequence
belongs to.

Facial expressions can also be described as combinations of FAUs, as proposed
in [5]. As can be seen from the rules (Table 1), the FAUs 1, 2, 4, 5, 6, 7, 9,
10, 12, 15, 16, 17, 20, 23, 24, 25 and 26 are necessary for fully describing all
facial expressions (see Figure 4). Therefore, we concentrate on the detection
of these 17 FAUs. The operators +, or in Table 1 refer to the logical AND,
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Fig. 3. System architecture for facial expression recognition in facial videos.

Table 1
The FAU to facial expressions rules as proposed in [5].

Expression FAU coded description [5]

Anger 447+ (((23 or 24) with or not 17)or (16 + (25 or 26)) or (10 4 16 + (25 or 26)))

with or not 2

Disgust ((10 with or not 17) or (9 with or not 17)) + (25 or 26)
Fear (14+4)+ (5+7)+20+ (25 or 26)
Happiness 6+ 12+ 16 + (25 or 26)
Sadness 1+4+ (6or7)+ 15+ 17 + (25 or 26)
Surprise (14 2) + (5 without 7) + 26

OR operations, respectively.

When FAU recognition is attempted, the extracted information obtained from
the grid tracking system is used to calculate the Candide nodes differences
between the neutral and fully expressive frame. The nodes differences are used
as an input to a bank of 17 two-class SVM systems, each one corresponding
to a FAU to be detected. Each SVM system is able to recognize if the FAU
under examination is present or absent in the video sequence being examined.
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Fig. 4. Set of FAUs to be recognized and the corresponding part of the facial grid.

The subsystem used for FAU recognition is shown in Figure 5.
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Fig. 5. System architecture for FAU recognition in facial videos.

For FAU recognition, the output information from both the texture and shape
classifiers consists of a set of activated FAU in the examined video sequence.
This set is fed to the fusion subsystem to provide the final classification result,
i.e. the set of activated FAUs in the examined video sequence.




3 Texture information extraction and classification

In this Section, the extension of DNMF for facial expression and FAU recog-
nition will be provided, starting by revisiting the NMF algorithm.

3.1  Facial expression recognition using texture information

For facial expression recognition, each expressive image y € ) belongs to one
of the 7 basic facial expression classes {1, )s,...,Vr}. The facial image is
scanned row-wise to form a vector x € R%.

Let x = [z1,...,2F),q = [q1, ..., qr| be positive vectors x; > 0, ¢; > 0, then
the Kullback- Lelbler (KL) Divergence (or relative entropy) between x and q
is defined [45] as:

KL(x|lq) 2 Y (= m% +g— ). (1)

I3 (2

NMF tries to approximate the facial expression image x by a linear combi-
nation of the elements of h € %ﬂ‘f such that x ~ Zh, where Z € §R£XM is a
non-negative matrix, whose columns sum to one. In order to measure the error
of the approximation x ~ Zh the K L(x||Zh) divergence can be used [35]. In
order to apply NMF, the matrix X € RY*F = [z, ;] should be constructed,
where x; ; is the i-th element of the j-th image. In other words, the j-th column
of X is the x; image. NMF aims at finding two matrices Z € RI*M = [z;,]
and H € RY*E = [hy, ;] such that :

X ~ ZH. (2)

After the NMF decomposition, the image x; can be written as x; ~ Zh;;,
where h; is the j-th column of H. Thus, the columns of the matrix Z can
be considered as basis images and the vector h; as the corresponding weight
vector. The h; vectors can also be considered as the projected vectors of lower
dimensionality representing the original facial expression vector x;.

The defined cost for the decomposition (2) is the sum of all KL divergences
for all images in the database. This way the following metric can be formed :

Ti,j
Dn(X||ZH) = ) KL(x;||Zh;) = (x;;1In (72 L)t Z zikhij — i)
j ij k %kl
(3)

as the measure of the cost for factoring X into ZH [35]. The NMF factorization
is the outcome of the following optimization problem :
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1%1%1 Dy (X||ZH) subject to (4)

Zig 2> 0, hyj >0, sz =1, Vj.

NMEF has non-negative constraints on both the elements of Z and of H. These
nonnegativity constraints permit the additive combination of multiple basis
images in order to represent a facial expression. In contrast to PCA, no basis
images subtractions can occur. For these reasons, the nonnegativity constraints
correspond better to the intuitive notion of combining facial parts in order to
create a complete expressive face. By using an auxiliary function and the
Expectation Maximization (EM) algorithm [35], the following update rules
for hy; and z;, guarantee a non increasing behavior of (3):

> ”iﬁ% —
R D Ve D
i = P =y (5)
'Lzzk

h() x;] -
PONNCS! )2 PR T

'L,k — ~ik
Zj hk’,a

(6)

e fii
Rik — . (7)
>4 z,k
where ¢ is the iteration number. Since x; ~ Zh;, a natural way to compute the
projection of x; to a lower dimensional feature space using NMF is x; = Z'x;
where Z' is the pseudo-inverse of Z, given by Z' = (ZTZ)~'Z".

In order to incorporate discriminant constraints [36] in the NMF cost function
and find the discriminant facial regions that are activated in the image for
each different facial expression, let the vector h; that corresponds to the jth
column of the matrix H be the coefficient vector for the p—th facial i 1ma e of
the r-th facial expression class, which will be denoted as 1, (r) = [n{() 1. np7 7.
The mean vector of the vectors n(T for the facial expression class r is denoted
by p® = [\ ... 187, the mean of all classes by g = [u1 ... pa]7 and the
cardinality of each facial class ), by N,, respectively. Then, the within scatter

for the coefficient vectors h; is defined by:

7 N,
r r r r)\T
=3 > @ —u)(ny — p) (8)
r=1 p=1

whereas the between scatter matrix is defined as:

Sy = No(p — p) () — )" 9)

r=1

11



A modified divergence can be constructed inspired by the minimization of the
Fisher criterion. This is done by requiring tr[S,] to be as small as possible,
while tr[S,] is required to be as large as possible. The new cost function is
given by:

Dy(X||ZpH) = Dy(X||ZpH) + ytr[S,] — 0tr[S,], (10)

where v and  are positive constants. Following the same EM approach used
by NMF [35] and LNMF [40] techniques, the following update rules for the
weight coefficients hy ; that belong to the r-th facial expression class are,

]eFr:{ ;;%Np+177 ;leP}[36]
L, Tt \/Tf +4(2y — (27 +20) )b D T2ty s
h - 17,1 1,5 11
kg 2(2y — (27 +20) 7) S
where T} is given by:
1
T AANAL

The update rules for the bases Zp are the same as in NMF and can be given
by (6) and (7). The above decomposition is a supervised non-negative matrix
factorization method that decomposes the facial expression images into parts,
while enhancing class separability. The matrix Z}, = (ZEZp)~'ZE, which is
the pseudo-inverse of Zp, is then used for extracting the discriminant features
as x = Zx. It is interesting to note here that there is no restriction on how
many dimensions we may keep for x and that the DNMF bases are common
for all the different facial expression classes in the database, contrary to the
DNMF algorithm applied for FAU recognition, where the extracted bases are
class specific.

In order to make a decision about the facial expression class the test image
belongs to, the image is projected to the lower dimensional feature space
derived from applying the DNMF algorithm. The Euclidean distance between
the projection x = ZEX and the center of each facial expression class m; is
calculated and the image is classified to the closest facial expression class:

re= min_[|Z}(x — m;)]. (13)

i=1,..

°y

3.1.1 FAU recognition using texture information

For FAU recognition, the differences images of each video sequence, calculated
by subtracting the neutral frame from the expressive one, are used. Each differ-
ences image belongs to one of the 2 classes representing the presence/absence
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of k-th FAU {y“), y,ﬁ”}. Each differences image calculated is initially normal-
ized. The smallest intensity value for every image is defined and its absolute
value is added to each pixel, resulting that way in a positive image. In both
cases, the input image is afterwards scanned row-wise to form a vector x% € %i
of dimension F'. As in the DNMF for facial expression recognition, we form
the matrix X° that has as columns the x° images. The corresponding weight
matrix H has columns the vectors 7751) for the presence of the FAU and nZ(Q)
for its absence.

For a two-class problem (like the k-th FAU recognition problem), we should
define the within class scatter matrix of the training set as:

1 1 2 2 2 2
st= Y @)@ - S @ )0 )T (14)
nMey n®ey®

where p,g) and u,(f) are the mean vectors of the classes y,ﬁ” and )),22) (i.e.,
the presence and absence of the k-th FAU), respectively. The between scatter

matrix is defined as:

1 1 1 2 2 2
> NV - 0T Y NP () - ) () - )T
n,ev” n,ev”

= MNP (D = ) (p = ) (15)

where N,gl) and NS), are the cardinalities of the presence and absence of the
k-th FAU classes, respectively. The DNMF cost function to be minimized is
given by:

Da(X°||Z,H) = Dy (X°||ZH) + ~tr[Sy] — dtx[S3]. (16)

where v and  are positive constants. Following the same EM approach used
by NMF [35] and LNMF [40] techniques, the following update rules for the
weight coeflicients hy; that belong to one of the two classes (existence or
absence of a FAU) are derived from:

T, + \/TQ A2y - (2 +20) DR s 20 1)72 L
hi = l . (1)
J 2(2y — (2v + 25)—Nm)
k
where 75 is given by:
1
Ty = (2y +20)(—q D hwn) — 20 — 1. (18)

B AAAL

The update rules for the bases Z% are the same as in NMF and can be given
by (6) and (7). It is interesting to note here that the extracted DNMF bases
are now class specific (different bases for each FAU).
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In order to find if a FAU is activated in the facial differences image x, the
image is projected to the lower dimensional feature space derived from the
DNMEF algorithm. The distance used for the classification of the k-th FAU is

given by:

. T,.6 i
uf = min | Z' (x* — m}”)| (19)
where m,(cl) and m,(f) are the mean differences images of the first and second

class (presence and absence of k-th FAU), respectively.

4 Shape information extraction and classification

4.1 Shape information extraction subsystem

The shape information extraction system is composed of two subsystems: one
for Candide grid node information extraction and another one for grid node
information classification. The grid node information extraction is performed
by a tracking system. Candide node tracking is performed by a pyramidal
variant of the well-known Kanade-Lucas-Tomasi (KLT) tracker [46]. The loss
of tracked features is handled through a model deformation procedure that
increases the robustness of the tracking algorithm. The algorithm, initially
fits and subsequently tracks the Candide facial wireframe model in video se-
quences containing the formation of a dynamic human facial expression from
the neutral state to the fully expressive one. The facial features are tracked in
the video sequence using a variant of the KLT tracker [46]. If needed, model
deformations are performed by mesh fitting at the intermediate steps of the
tracking algorithm. Such deformations provide robustness against node losses
and increase tracking accuracy. The algorithm automatically adjusts the grid
to the face and then tracks it through the image sequence, as it evolves over
time. The grid initialized in semi-automatic way. That is, elastic graph match-
ing [47] is applied and afterwards some nodes that may have been misplaced
are corrected manually. At the end, the grid tracking algorithm produces the
deformed Candide grid that corresponds to the formed facial expression. A
poser with the corresponding grid for the six basic facial expressions plus the
neutral state is shown in Figure 6.

4.2 Facial expression recognition using shape information

The extracted grids are afterwards normalized. The normalization procedure
ensures the common scaling, orientation and coordinates system, so that their

14



Surprise Neutral

Fig. 6. An example of each facial expression for a poser from the Cohn-Kanade
database.

comparison is feasible. The grids are initially moved so that the tip of the
nose for every grid is the center of the coordinates system. Afterwards, their
scaling is processed in such a way that the length and the width of the grid
is constant. Finally, the angle that is defined using the horizontal line that
joins the inner eyes corners and the vertical line that joins the center of the
forehand with the tip of the nose, is checked so that is also common for all
grids. The normalized grids are then used as an input to the shape extraction
information subsystem where a metric-multidimensional scaling is performed
in order to create a new Euclidean feature space. The projection of the input
data on that new space is then used as an input to a SVM classifier for the
classification of the shape information.

4.2.1  Metric-multidimensional scaling

Given two Candide grid point sets: A = {ay,...,a,} and B = {by,...,b,},
we propose the following metric in order to measure the similarity between
deformed grids :

dr(A,B) = > llai=bl. (20)

1
p a;EAb;EB

It can be easily proven that the proposed measure satisfies the following prop-
erties:

o reflectivity i.e., dy(A;, A;) =0
e positivity i.e., dy(A;, A;j) > 01if A; # A,
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o symmetry i.e., dy(A;, A;) = d(A;, A)
e triangle inequality i.e., dy(A;, A;) < du(A;, C)+du(C, Aj) where A;, A;, C
grids.

Thus, the proposed distance as a proper similarity measure [48]. We will use
this similarity measure in order to define a metric multidimensional scaling

[41)-[43].

Let {Ai,..., Ay} be the set of training facial grid database. The similarity
matrix of the training is defined as:

[D]i; = du(Ai, Aj). (21)

We will use the dissimilarity matrix D in order to define an embedding X €
RN where k < N is the dimensionality of the embedding and the i-th
column of X, denoted as x;, corresponds to the feature vector of the facial
grid A; in the new Euclidean space. In order to find the embedding X, the
matrix B is defined as:

B— —%JDJ (22)

where J = In.n — w1n1% € RYV*Y is the centering matrix, where Iy, is
the N x N identity matrix and 1, is the N-dimensional vector of ones. The
matrix J projects the data so that the embedding X has zero mean. The eigen-
decomposition of the matrix B will give us the desired embedding. The matrix
B is positive semi-definite (i.e., it has real and non-negative eigenvalues), since
the distance matrix D is Euclidean. Let p be the number of positive eigenvalues
of matrix B. Then, the matrix B can be written as:

1 M 1
B =QAQ" = QA-> . A:QT = GTMG (23)

where A is a diagonal matrix with the diagonal consisting of the p positive
eigenvalues, which are presented in the following order: first, positive eigen-
values in decreasing order and finally the zero values. The matrix Q is an
orthogonal matrix of the corresponding eigenvectors. The matrix M is equal
to M = 1,4, where I,,, is the identity p x p matrix. The matrix G is the
embedding of the set of facial grids in the Euclidean space $ [48]:

G =A;Q; (24)

where Ay contains only the non-zero diagonal elements of A and Qj is the
matrix with the corresponding eigenvectors.

In this case, the new embedding is:

G, = Aj Q,,}F (25)
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where A, is a diagonal matrix having as diagonal elements the magnitude of
the diagonal elements of A;, in descending order. The matrix Q, contains the
corresponding eigenvectors. For the dimensionality p of the new embedding,
the following inequality holds: p < p < N. As already mentioned, the vector
gl i.e. the i-th column of the matrix G; corresponds to the feature vector of
the grid A; in the Euclidean space.

4.2.2 Multiclass Support Vector Machines in the new space

For every facial expressive grid A; € R?, a feature vector g? is created. The
feature vectors g labelled properly with the true corresponding facial expres-
sions are used as an input to a multi-class SVM. SVMs were chosen due to
their good performance in various practical pattern recognition applications
[34][49]-[52] and their solid theoretical foundations. A brief presentation of the
optimization problem of the multi-class SVMs will be given below. The inter-
ested reader can refer to [53]-[56] and the references therein for formulating
and solving multi-class SVM optimization problems.

The training data are (gf,4),. .., (g, lv), where g € R [; € {1,...,7} are
the corresponding facial expression class labels. The multi-class SVM solves
only one optimization problem [55]. It constructs 7 facial expressions rules,
where the k—th function w{ ¢(g;) + bx separates training vectors of the class
k from the rest of the vectors, by minimizing the objective function:

1 7 N
min 5 Swiwp+CdY > ff (26)
w.,b.§ k=1 J=1k#l;
subject to the constraints:
T T k
le¢(gj) +by; > Wy (g;) + bk +2 — §; (27)

>0, j=1,...,N, ke{l,....Th.

C is the term that penalizes the training errors. b = [by...b7]7 and & =
(€h, ... €k, .. €5]T are the bias and slack variable vectors, respectively. For
the solution of the optimization problem (26), subject to the constraints (27),
the reader can refer to [53,55,56].

The nonlinear mapping ¢ has been used for a high dimensional feature map-
ping for obtaining a linear SVM system in which it should be ¢(g) = g. This
mapping is defined by a positive kernel function, h(g;, g;), specifying an inner
product in the feature space and satisfying the Mercer’s condition [53,57]:

h(g:.g;) = o(g) o(g;). (28)
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The functions used as SVM kernels were the d degree polynomial function:
h(g;, gj) = (ging + 1>d (29)

and the Radial Basis Function (RBF) kernel:
h(g:,g;) = exp(—7 || & — &; [I*)- (30)
where v is the spread of the Gaussian function.

The decision function is:

p(g) = argmax(w; $(g) + br). (31)
The question that remains is how novel grids can be classified using the pro-
posed embedding and multiclass SVM.

4.2.3  Classifying Novel Grids

For testing, let {Gi,...,G,} be a set of n testing (novel) facial grids. The
matrix D,, € RV is created, with [D,);; = du(Gi, A;). The matrix D,,
represents the similarity between the n test facial grids and all the training
facial grids. The matrix B,, € %™ of inner products that relates all the
new (test) facial grids to all facial grids from the training set is then found as

follows: )

B, = _i(D"J —UDJ) (32)
where J is the centering matrix and U = +1,1% € R*Y. The embedding
G,, € R7*" of the test facial grids is defined as:

G, =4,"Q!B]. (33)

The columns of the matrix G,, are the features used for classification. Let
gin € N be the i-th column of the matrix G,,, i.e. the vector that contains the
features of the grid G;. A test grid deformation feature vector is classified to one
of the seven facial expressions using (34). Once the seven-class SVM system
is trained, it can be used for testing, i.e., for recognizing facial expressions on
new facial videos. G; to one of the seven facial expression classes is performed
by the decision function:

1(Gs) = arg, ma (who(gin) + bi). (34)

1111

where w;, and b, have been found during training. The distance that defines
the facial expression class the grid deformation vector belongs to is given by:

sg = max (Wi o(g) + b) (35)
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which is the distance from the class separating hyperplane.

4.8  FAU recognition using shape information

For FAU recognition, the shape information produced from the j-th video
sequence is the Candide node displacements d; of the Candide grid nodes,
defined as the difference between coordinates of this node in the neutral and
expressive frame [34]:

d: = [Az) Ayl]" ie{l,...,104}. (36)

where Ax; ;, Ay, ; are the x, y coordinate displacement of the i-th node in the
j-th image respectively. This way, for every facial image sequence in the train-
ing set, a feature vector g; is created, called grid de formation feature vector
containing the geometrical displacement of every grid node:

g)=I[d; doy...dgy]", j=1,....N (37)

having () = 104 - 2 = 208 dimensions. We assume that each grid deformation
feature vector gg j=1,...,N.

Let V be the database that is consisted of the differences of grids between
the neutral and expressive states as extracted from the video sequences. For
the k-th FAU recognition, the database is clustered into 2 different classes
{V,gl),V,?)} each one representing one possible k-th FAU state (presence or
absence). The grid deformation feature vector g? € R? is used as an input
to 17 two class SVM systems, each one detecting a specific FAU (the FAU
set includes FAUs 1, 2, 4, 5, 6, 7, 9, 10, 12, 15, 16, 17, 20, 23, 24, 25 and
26). Each SVM system, uses the Candide node geometrical displacements to
decide whether a specific FAU is activated for the test grid under examination
or not. The k-th SVM, k£ = 1,...,17 is trained with the examples in V,E,l) =
{(gﬁ,yf), j=1,...,N, yf = 1} as positive ones and all other examples
v,f) = {(gj,y;?), j=1,...,N, y;? = —1} as negative ones. The feature
vectors g; € RC labelled properly with the correct label (I; = 1 when the FAU
under examination is activated and [; = —1 when it is not activated) are used
as an input to a set of two-class SVM systems.

Two class SVM systems are used in order to detect the activated FAUs. The
grid deformation feature vector g? € RY j = 1,...,N is used as an input
to 17 two-class SVM systems, each one detecting a specific FAU from the
ones depicted in Figure 4. Each SVM system uses the grid node geometrical
displacements to decide whether a specific FAU is activated at the grid under
examination or not. In order to train the k-th SVMs network, the following
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minimization problem has to be solved [54]:

1 N
rninsk EWZW/C +CL Y& (38)
Wbk, Jj=1

subject to the separability constraints:

vi(wio(g)) +b) >1-¢f,
>0, j=1,...,N, (39)

where by, is the bias for the k-th SVM, &F = [¢F ... K] is the slack variable
vector and C}, is the term that penalizes the training errors.

After solving the optimization problem (38) subject to the separability con-
straints (39) [53,57], the function that decides whether the k-th FAU is acti-
vated by a test displacement feature vector g° is:

fi(g) = sign(wid(g’) + by). (40)

The distance of the grid to the decision surface of the k-th FAU (k =1,...,17)
in the test video that produced the grid deformation vector is :

v = wip(g’) + by. (41)

5 Fusion of texture and shape information
5.1  Fusion for facial expression recognition

Various methods were used in our study to achieve fusion of the texture and
shape information results (SVMs and many variations of NNs). However, only
the one that provided the best results (MRBF NN) will be described below,
due to space limitations. The DNMF algorithm, applied to the image x, pro-
duces the distance ry as a result, while SVMs applied to the Candide grid
g, produce the distance sg as the equivalent result. The distances ry and sg,
defined in (13) and in (34), respectively, were normalized in [0, 1] using Gaus-
sian normalization [58]. Thus, a new feature vector ¢, ¢ = [rx  sg|7, is defined
containing information from both texture and shape information sources. The
feature vector ¢ was used as an input to a RBF NN system. The output of
this system is the facial expression class label [. Many variations of RBF NNs
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were tested in our experiments, such as the general RBF NNs, Generalized

Regression NNs (GRNNs) and MRBFs.

5.2 Fusion for FAU recognition

The DNMF algorithm, applied to the difference image x° | produces a score
uk (defined in (19)) as a result, which specifies whether the k-th FAU exam-
ination was activated in the image x°. The SVM application to the vector of

geometrical displacements g°, produces the score v{gﬂ; (defined in (41)) as the

equivalent result. A new feature vector c® = [uf o*

v vss]" is defined containing
information from both texture and shape information sources was created.
The feature vector ¢ was used as an input to a MRBF NNs system to produce

the final decision on FAU recognition.

5.8 Median Radial Basis Function Neural Networks for Fusion

In this Section, we shall describe the best solution found in our experiments for
fusing the scores of the texture and shape classifiers. The best solution has been
an RBF NN [59] based on robust statistics, the so-called MRBF. The use of the
MRBF for fusing the scores has been motivated by its successful application
in fusing the scores of various modalities in the person identification problem
[60].

An RBF network is a two-layer feed-forward neural network, in which various
clusters are grouped together in order to describe classes, thus making it ap-
propriate for nonlinear functional approximation [61]. The inputs of the RBF
network are the previously described vectors c. Each hidden unit implements
a Gaussian function which models a cluster:

¢;(c) = exp[—(c — p;)"S; (c — p;)] (42)

where c is the entry vector, p; is the mean vector, S; is the covariance matrix,
and j = 1,..., L, where L is the total number of hidden units. Each hidden
unit models the location and the spread of a cluster. The output unit consists
of a weighted sum of hidden unit outputs, which are fed into a sigmoidal

function: .
¥(c) = - (43)
1 + exp[— j; Ajoi(c)]

where \; are the output weights associated with the hidden units. The output
consists of a decision function ¢(c) € (0,1).
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A very common approach for estimating the parameters of an RBF network
consists of an adaptive implementation of the k—means clustering algorithm
[62]. Another approach is to use hybrid SVMs plus a RBF system, where the
centers of the classes are estimated using initially a SVM system (i.e., we
use as the RBF centers the learned SVs (Support Vectors) [63]). In [59], a
robust statistics algorithm was proposed for estimating the parameters of the
RBF networks. It was proven that this algorithm provides better parameter
estimates when the clusters are overlapping or in the presence of outliers [59].
MRBF assigns an incoming data vector to a cluster which has the smallest
Euclidean distance:

llei — pjll :mkianZ- — pill- (44)

After assigning a set of vectors to the same cluster, we calculate the center of
the cluster using the marginal median algorithm

pj = med{cj,o, Cj71, ceuy Cj,n} (45)

where c;; for i = 0,...,n are the data samples assigned to the hidden unit j.
In order to limit the computational complexity, we consider only a limited set
of data samples and the formula (45) is calculated from a running window.
For the dispersion estimation we employ the median of the absolute deviations
from the median algorithm:

S — med{|c;o — pjl,-..,|cjn — Py}
J 0.6745 '

(46)

The covariance matrix S; is considered to be diagonal. The output weights
are calculated from the back-propagation algorithm:

Aj = iO[H(Ci) — ¥(e)lv(ci)[l — ¥(ei)]g;(ci) (47)

where H(c;) is the decision function associated with each data sample in the
training set (i.e, H(c;) is the label of ¢;).

MRBF networks use the second order statistics. The radial basis functions
modelling the clusters are not influenced by the presence of outliers in the
MRBF training algorithm, due to the use of the robust median operators [64].
Therefore, MRBF networks are expected to have good classification perfor-
mance.
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6 Experimental results

6.1 Database description

The Cohn-Kanade database has been used in the experiments. This database is
annotated with FAUs. These combinations of FAUs were translated into facial
expressions according to [5], in order to define the corresponding ground truth
for the facial expressions. All the available subjects and videos were taken
under consideration to form the database for the experiments.

The most frequently used approach for testing the generalization performance
of a classifier is the leave-one cross-validation approach [65]. It was devised
in order to make maximal use of the available data and produce averaged
classification accuracy results. The term leave-one out cross-validation does
not correspond to the classical leave-one-out definition, as a variant of leave-
one-out was used (i.e., leave 20% of the samples out) for the formation of
the test dataset in our experiments. However, the procedure followed will be
called leave-one-out from now on for notation simplicity without loss of gen-
eralization. More specifically, all image sequences contained in the database
are divided into 7 facial expression classes (or 17 FAU classes). Five sets con-
taining 20% of the data for each class, chosen randomly, were created. One
set containing 20% of the samples for each class is used as the test set, while
the remaining sets form the training set. After the classification procedure is
performed, the samples forming the test set are incorporated into the current
training set, and a new set of samples (20% of the samples for each class)
is extracted to form the new test set. The remaining samples create the new
training set. This procedure is repeated five times. A diagram of the leave-one-
out cross-validation method can be seen in Figure 7. The average classification
accuracy is defined as the mean value of the percentages of the correctly clas-
sified facial expressions over all data presentations.

The accuracy achieved for each facial expression is averaged over all facial
expressions and does not provide any information with respect to a particu-
lar expression. The confusion matrices [34] have been computed to handle
this problem. The confusion matrix is a n X n matrix containing informa-
tion about the actual class label lab,. (in its columns) and the label obtained
through classification lab. (in its rows). The diagonal entries of the confu-
sion matrix are the number of facial expressions that are correctly classified,
while the off-diagonal entries correspond to misclassifications. The abbrevia-
tions an, di, fe, ha, sa, su and ne represent anger, disgust, fear, happiness,
sadness, surprise and neutral, respectively.
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Training test Test set
- ——— A,
Anger Anger20% | Anger20% | .. | Anger20% | Anger20%
Disgust Disgust 20% | Disgust20% | | Disgust20% |* Disgust 20%
Fear Fear 20% Fear 20% .. | Fear20% « Fear 20%
ngpiness Happiness 20% [Happiness 20% ... |Happiness 20% [+ appiness 20%
Sadness Sadness 20% | Sadness 20% | ... | Sadness 20% Sadness 20%
Surprise Surprise 20% | Surprise20% | ... | Surprise20%  |* Surprise 20%
Neutral Neutral 20% | Neutral 20% | - | Neutral 20% Neutral 20%
!

Fig. 7. Diagram of leave-one-out method used in classification assessment.

6.2 Facial expression recognition

In this Section, facial expression recognition experiments are described. The
facial expressions under examination are the six basic ones plus the neutral
state. Only the best accuracies achieved for any method used are taken under
consideration to make the final conclusions.

6.2.1 Facial expression recognition from texture

The basis images extracted when the NMF, LNMF and DNMF algorithms
were applied are depicted in Figure 8. The accuracy rates obtained for facial
expression recognition using texture information and applying several meth-
ods, such as PCA, PCA followed by LDA, NMF, LNMF and DNMF, are
shown in Figure 9. DNMF clearly outperforms the rest image representations.
The number of dimensions kept after applying PCA plus LDA, were equal to
the number of facial expression classes minus 1, thus equal to 6. The confu-
sion matrix obtained when using DNMF on texture information is presented
in Table 2.a. The best accuracy achieved was equal to 74.3%.

As can be seen from the confusion matrix, sadness seems to be the most
ambiguous facial expression. More specifically, it is misclassified the most as
neutral and anger (23.3% and 7.7% of the cases, respectively). The facial ex-
pression that follows in misclassification rate is fear, which is mainly confused
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with neutral (21% of the cases). The facial expression misclassification de-
scending ordering continues with happiness (misclassified as neutral in 15.6%
of the cases), disgust (misclassified as neutral in 20% of the cases), surprise
(misclassified as neutral in 18.6% of the cases), anger (misclassified as neutral
in 14% of the cases) and neutral (misclassified as anger in 5.5% of the cases).

(c)

Fig. 8. Basis images extracted for (a) NMF, (b) LNMF and (¢) DNMF algorithms.

6.2.2 Shape information extraction using SVMs

The confusion matrix obtained when using SVMs on shape information using
the method described in Section 4, is presented in Table 2.b. The accuracy
achieved was equal to 84.8%. In Figure 10, the accuracy rates achieved for
facial expression recognition when using SVMs with polynomial and RBF
kernels are shown.

As can be seen from the confusion matrix, fear seems to be the most ambiguous
facial expression. More specifically, fear is misclassified the most as happiness,
followed by disgust and neutral (11.8%, 7.3% and 7.2% of the cases, respec-
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Fig. 9. Recognition accuracies obtained for (a) facial expression and (b) FAU recog-
nition using NMF, LNMF and DNMF algorithms.

tively). The facial expression that follows in misclassification rate is sadness,
which is mainly confused with anger (10.8% of the cases). The facial expression
misclassification descending ordering continues with neutral (misclassified as
surprise in 5.8% of the cases), disgust (misclassified as anger in 14.3% of the
cases), anger and happiness (misclassified as disgust and neutral in 6% and
9% of the cases, respectively) and surprise (misclassified as fear in 7.1% of the
cases).

Table 2
Confusion matrices when using (a) texture (74.3%) and (b) shape (84.8%)informa-
tion, respectively.

200

\laber % \teber% | an di fe ha

labae% an di fe ha sa su ne labae% sa su ne
an 7 0 0 5.6 7.7 1.4 5.5 an 91 14.3 0 0 10.8 0 4.8
di 0 74 3.6 3.3 1.5 0 0 di 6 85.7 7.3 0 0 0
fe 3 0 68.2 2.2 1.5 1.5 1.1 fe 0 0 68.2 0 0 7.1 2.4
ha 0 3 3.6 73.3 1.5 1.4 1.1 ha 0 0 11.8 91 4.6 0 0
sa 6 0 0 0 61.5 1.4 0 sa 0 0 5.5 0 80 0 2.4
su 0 3 3.6 0 3 75.7 2.2 su 3 0 0 0 0 92.9 5.8
ne 14 20 21 15.6 23.3 18.6 90.1 ne 0 0 7.2 9 4.6 0 84.6

(a) (b)

6.2.3 Fusion of texture and shape information for facial expression recogni-
tion

The confusion matrix obtained when fusion using MRBF NNs is presented in
Table 3. The accuracy achieved when MRBF NNs were used for the fusion of
the texture and shape results, was equal to 92.3%, which is better than using
either texture or shape information alone. The combination of texture and
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Fig. 10. Facial expression and FAU recognition accuracies using shape and SVMs
for various kernels (a) polynomial kernels (b) RBF kernels.

shape information increases the classification rate for all facial expressions.
More specifically:

e For anger, the final accuracy achieved when fusion is applied is equal to
93.6%, while the equivalent ones before fusion were 77% and 91% for texture
and shape information classification, respectively. The confusion of anger
with fear and neutral that appears when only texture information is used
no longer exists, while the confusion of anger with sadness remains but is
significantly reduced when fusion is introduced. Regarding shape informa-
tion, the confusion of anger with surprise no longer exists when fusion is
introduced, while the confusion of anger with disgust remains but is signif-
icantly reduced.

e For disgust, the final accuracy achieved when fusion is applied is equal to
89.5%, while the equivalent ones before fusion were 74% and 85.7% for
texture and shape information classification, respectively. The confusion of
disgust with surprise and neutral that appears when only texture informa-
tion is used no longer exists. Regarding shape information, the confusion of
disgust with anger no longer exists when fusion is introduced.

e For fear, the final accuracy achieved when fusion is applied is equal to
84.3%, while the equivalent ones before fusion were equal to 68.2% both
for texture and shape information classification. The confusion of fear with
disgust, happiness, surprise and neutral that appears when only texture
information is used no longer exists. Regarding shape information, the con-
fusion of fear with disgust, happiness and neutral no longer exists when
fusion is introduced, while the confusion of disgust with sadness remains
but is significantly reduced.

e For happiness, the final accuracy achieved when fusion is applied is equal
to 97.5%, while the equivalent ones before fusion were 73.3% and 91% for
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texture and shape information classification. The confusion of happiness
with anger, disgust and fear that appears when only texture information is
used no longer exists, while the confusion of happiness with neutral remains
but is significantly reduced. Regarding shape information, the confusion of
happiness with neutral remains but is significantly reduced.

e For sadness, the final accuracy achieved when fusion is applied is equal to
94.3%, while the equivalent ones before fusion were 61.5% and 80% for tex-
ture and shape information classification. The confusion of sadness with
anger, disgust, fear, surprise and neutral that appears when only texture
information is used no longer exists. Regarding shape information, the con-
fusion of sadness with anger and neutral is now absent.

e For surprise, the final accuracy achieved when fusion is applied is equal to
95.6%, while the equivalent ones before fusion were 75.7% and 92.9% for
texture and shape information classification. The confusion of surprise with
anger, fear and happiness that appears when only texture information is
used no longer exists, while the confusion of surprise with neutral remains
but is significantly reduced. Regarding shape information, the confusion of
surprise with fear is now absent.

e For neutral, the final accuracy achieved when fusion is applied is equal to
91.3%, while the equivalent ones before fusion were 90.1% and 84.6% for
texture and shape information classification. The confusion of neutral with
fear and happiness that appears when only texture information is used no
longer exists. Regarding shape information, the confusion of neutral with
anger, fear and sadness is now absent, while the confusion of neutral with
surprise remains but is significantly reduced.

As can be seen from the confusion matrix (Table 3), all facial expressions are
correctly recognized in more cases when texture and shape information are
used. This is due to the fact that all facial expressions depend to a great extent
on the posers’ expressive ability. For example, anger can appear only with a
gaze change rather than the equivalent mouth movement, something that can
only be detected by the human eye (therefore being visible as a change in
texture information), while disgust includes a frown that can not be perfectly
represented by the Candide grid due to the lack of enough grid vertices that
should be placed at the wider nose area. Fear can include extremely minor
facial movements in combination with gaze changes, thus making it difficult to
recognize (also being visible as changes in texture information). Sadness may
be expressed as a difference in gaze and a subtle mouth movement and of course
neutral does not include any movement at all. Thus all of the above mentioned
facial expressions are greatly affected by the presence of texture information
when it comes to their recognition. The remaining facial expressions (happiness
and surprise) include more important changes in the form of facial movements.
Their existence however results in major texture changes, e.g. when a person
smiles a white area corresponding to his teeth appears, while when a person is
surprised and opens his mouth a big black area appears. Thus, the recognition
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of happiness and surprise can be also improved when texture information is
available.

Table 3

Confusion matrix achieved fusing texture and shape information using MRBF NNs
for seven facial expressions. The facial expression recognition rate has been 92.3%.

labge (%) \labcl(%) an di fe ha sa su ne
an 93.6 0 0 0 0 0 6.7
di 1.6 89.5 0 0 0 0 0
fe 0 0 84.3 0 0 0 0
ha 2.6 10.5 0 97.5 5.7 0 0
sa 2.2 0 15.7 0 94.3 2.5 0
su 0 0 0 0 0 95.6 2.0
ne 0 0 0 2.5 0 1.9 91.3

A comparison of the recognition rates achieved for each facial expression with
the state of the art [65]-[68], when six facial expression were examined (the
neutral state was not taken under consideration) is depicted in Figure 11. The
total facial expression recognition of the proposed fused architecture has been
94.5% for the six facial expressions. Unfortunately, their is no direct method
to compare the rates achieved by other researchers [65]-[68], since their is not
standard protocol (every one use his own testing protocol). Moreover, some
of the methods like [66-68] have been tested only of the six facial expressions
therefore, the performance of these methods in case the seventh facial expres-
sion (ie.neutral) had been included remains unknown. Only the method in [65]
has been tested for the seven facial expressions and their recognition rate has
been 78.52% which is significantly lower than the performance of the proposed
method that achieved 91.3% for neutral.

6.3 FAU recognition

In this Section, FAU recognition is described. We expected the FAUs 1, 2, 4,
5,6,7, 9,10, 12, 15, 16, 17, 20, 23, 24, 25 and 26, as proposed in the facial
expression recognition rules in [5] (17 FAUs in total).

6.3.1 FAU recognition using texture information

The accuracy rates obtained for FAU recognition using texture information
and by applying several methods, such as PCA, PCA followed by LDA, NMF,
LNMF and DNMF are shown in Figure 9.b. Only one dimension was kept
after applying PCA and LDA, this number being equal to the number of
classification classes (presence or absence of a FAU) minus 1. Only the DNMF
method that provided the best accuracies is taken in consideration for the
fusion experiments. The total classification accuracy achieved was equal to
84.4%.
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Fig. 11. Comparison with recent dynamic facial expression recognition methods.

6.3.2 FAU recognition using shape information

The total accuracy achieved was equal to 86.7%. In Figure 10, the accuracy
rates achieved for FAU recognition when using SVMs are shown. The functions
used as SVM kernels were the polynomial and RBF functions.

6.3.3  Fusion of texture and shape information for FAU recognition

The total accuracy achieved for both cases was equal to 92.1%, which is sig-
nificantly better than the one obtained when using either texture or shape
information. The accuracy rate was increased due to the use of both texture
and shape information. The introduction of texture eliminates some of the con-
fusions observed when using shape information only. This happens as in many
FAUs, the shape information is not enough to fully describe its presence. In
many cases, the available grid nodes fail to describe all possible texture char-
acteristics, such as furrows and wrinkles that may appear on the face. To be
more specific, when FAU 12 is observed (see Figure 12), some vertical furrows
appear between the nose and the corners of the mouth (emphasized with a
cloud of black dots). These furrows cannot be fully described by the Candide
grid deformation due to the absence of properly placed grid nodes. The same
happens with FAU 23 (also shown in Figure 12), where horizontal furrows
appear between the chin and mouth (emphasized with a cloud of black dots).
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Texture can capture all the necessary information where the shape description
would fail, thus making the fusion of the two kinds of information more power-
ful. For FAU 9, the accuracy rate achieved when using texture information was
equal to 86.4%, the equivalent one when using shape information was 91.7%.
Fusion produced an accuracy of 95.8%. The proposed method increased the
accuracy by more than 12% when compared to the accuracy achieved when
only shape information is used (82.7%) [34].

Fig. 12. Furrows that appear when FAUs 12 and 23 are observed and two of the
sparse DNMF bases that correspond to the furrows.

7 Conclusions

A novel and complete (i.e., uses both shape and texture information) method
for facial expression recognition is proposed in this paper. The recognition is
performed by fusing the texture and the shape information extracted from
a video sequence using a subspace representation method and an Euclidean
embedding in combination with a SVMs system, respectively. The results ob-
tained from the above mentioned methods are then fused. Various methods are
used for fusion, including SVMs and MRBF'. The system achieves an accuracy
of 92.3% when recognizing the seven basic facial expressions and 92.1% when
recognizing the 17 basic FAUs. Conclusions regarding the most misclassified
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facial expressions are drawn and the way fusion aids to their easier and most
accurate recognition is indicated.
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