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Abstract

Support Vector Machines are a general algorithm based on guaranteed risk bounds
of statistical learning theory. They have found numerous applications, such as in
classification of brain PET images, optical character recognition, object detection,
face verification, text categorization and so on. In this paper we propose the use
of support vector machines to segment lesions in ultrasound images and we assess
thoroughly their lesion detection ability. We demonstrate that trained support vec-
tor machines with a Radial Basis Function kernel segment satisfactorily (unseen)
ultrasound B-mode images as well as clinical ultrasonic images.
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1 Introduction

Support Vector Machines (SVMs) are a state-of-the-art pattern recognition
technique whose foundations stem from statistical learning theory (Vapnik,
1995, 1998; Cristianini and Shawe-Taylor, 2000). However, the scope of SVMs
goes beyond pattern recognition, because they can also handle two more learn-
ing problems, i.e., regression estimation and density estimation. An SVM is
a general algorithm based on guaranteed risk bounds of statistical learning
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theory, i.e., the so-called structural risk minimization principle. It is a learn-
ing machine capable of implementing a set of functions that approximate best
the supervisor’s response with an expected risk bounded by the sum of the
empirical risk and the Vapnik-Chervonenkis (VC) confidence. The latter is
a bound on the generalization ability of the learning machine, that depends
on the so-called VC dimension of the set of functions implemented by the
machine. There is a close relationship between SVMs and regularization net-
works (Evgeniou et al., 2000b) and the Radial Basis Function (RBF) classi-
fiers (Schoelkopf et al., 1997). Among the many tutorials on SVMs that can
be found in literature, we refer to (Burges, 1998; Osuna et al., 1997). SVMs
have found numerous applications such as in optical character recognition,
object detection, face verification, text categorization, and so on. In the field
of medical imaging they have been applied to the classification of brain PET
volumes (Bonneville et al., 1998). Another relevant application of SVMs is
in breast cancer diagnosis and prognosis where the Wisconsin breast cancer
dataset was used for a binary classification task (the tumor is malignant or
benign) (Mangasarian et al., 1995).

Two approaches in the segmentation of ultrasound B-mode images can be iden-
tified in the related literature. The first approach tries to reduce the speckle so
that the success of any segmentation algorithm applied to the filtered image
afterward increases. In this approach detection (i.e., segmentation) and esti-
mation (i.e., filtering) are treated in parallel (Kotropoulos and Pitas, 1992;
Kotropoulos et al., 1994). Another approach convolves the amplitudes of the
ultrasound B-mode image with a block shaped kernel whose domain and height
are modulated by the local signal level (Collaris and Hoeks, 1995). Adap-
tive smoothing techniques could also be applied (Karaman et al., 1995). Log-
compression is shown to enhance the weak backscatterers (Dutt and Green-
leaf, 1996). The authors have derived the statistics of log-compressed echo
images using the K-distribution model for the echo envelope in order to quan-
tify the extent of speckle formation and to reduce it adaptively. An analog
cellular neural network algorithm that combines optimal nonlinear filtering,
fuzzy logic, and constrained wave propagation in order to estimate the con-
tinuous contour of the inner boundary of the left ventricle from a sequence
of echocardiographic images is described in (Rekeczky et al., 1999). The sec-
ond approach deals only with the segmentation problem taking into account
the speckle properties. The segmentation of echographic images using mathe-
matical morphology was studied in (Klingler et al., 1988). A multiresolution
texture segmentation approach that addresses texture characterization, im-
age resolution, and the time to complete the segmentation was developed in
(Muzzolini et al., 1993). Maximum a posteriori probabilistic segmentation of
ultrasound images was treated in (Ashton and Parker, 1995). Methods to eval-
uate the performance of segmentation algorithms in synthetic aperture radar
images were developed based on the properties of coherent speckle in (Caves
et al., 1998).
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In this paper, we propose the application of SVMs to the segmentation of
ultrasonic images. SVMs have successfully been applied to object detection
tasks (Papageorgiou and Poggio, 1999; Evgeniou et al., 2000a; Mohan et al.,
2001). In these tasks a rich, overcomplete dictionary of Haar wavelet features
was used to describe an object class. Special effort has been paid toward the
thorough and compact representation of the object class that encompasses
the geometric constraints for each class (centroid, top and bottom boundary
edges, permissible scales). This is not the case with our work. We have not
employed any wavelet features and have not made any attempt to derive any
representation of the lesion area, because the lesion areas vary in different
ultrasound images. We are interested in learning the local signal properties
that discriminate the lesion areas from the background in tissue mimicking
ultrasound B-mode images and to exploit these properties to segment clin-
ical ultrasonic images. Accordingly, we assess the performance of SVMs on
ultrasound B-mode images that simulate a homogeneous piece of tissue with
a circular lesion in the middle (Verhoeven et al., 1991) using several win-
dow sizes and compare the performance of the proposed method to that of
thresholding the L2 mean filtered image (Kotropoulos and Pitas, 1992) and
the method proposed by Collaris and Hoeks (Collaris and Hoeks, 1995) using
the area under the Receiver Operating Characteristic (ROC) and the prob-
ability of detection for a fixed probability of false alarm as figures of merit.
We consider both light and dark lesions as well as cases where the lesion has
an equal number density of scatterers to the background or a lower number
density of scatterers than the background. We demonstrate that SVMs with
Radial Basis Function kernels (RBF-SVMs) segment the ultrasound B-mode
images more effectively than thresholding the L2 mean filtered image. Their
generalization ability is assessed by applying the trained RBF-SVMs on test
images different from those used in the training phase.

The outline of the paper is as follows. The foundations of support vector
machines are described in Section 2. Experimental results are presented in
Section 3 and conclusions are drawn in Section 4.

2 Support Vector Machines

The segmentation of simulated ultrasound B-mode images into lesion and
background regions can easily be described as a binary detection problem.
Let N1 and N2 denote the image rows and columns, respectively. By moving
a running window of dimensions m × m over the image we collect the M =
m2 gray level values of the pixels that fall within the window and we create
an input vector xi ∈ IRM , where i = (ι1 − 1)N2 + ι2 is a running index
that corresponds to the coordinates (ι1, ι2) of the central pixel of the running
window for 1 ≤ ι1 ≤ N1 and 1 ≤ ι2 ≤ N2. Image segmentation can be
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formulated as the estimation of a function f : IRM → {−1, +1} using input-
output independent identically distributed (i.i.d) training data pairs generated
according to an unknown probability distribution P (x, y)

(x1, y1), (x2, y2), . . . , (xL, yL) ∈ IRM × {−1, 1} (1)

such that f correctly classifies the unseen test data (x, y). An input vector x is
assigned to the class y = +1 if f(x) > 0 and to the class y = −1 otherwise. In
the context of ultrasound image segmentation we agree that the class y = +1
refers to the lesion, while the class y = −1 refers to the background. We further
assume that the test data are generated by the same probability distribution
P (x, y) as the training examples. The best segmentation function f is chosen
so that the expected risk

R[f ] =
∫

�(f(x, y))dP (x, y) (2)

is minimized where �(·) denotes an appropriate loss function, e.g. the zero-
one loss �(f(x, y)) = u(−yf(x)) with u(t) representing the unit-step function.
Since the underlying probability distribution P (x, y) is not known, the ex-
pected error (2) cannot be minimized directly. We have to estimate a function
that is close to the optimal one based on the training data pairs and the prop-
erties of the class of functions where f belongs to. The approximation of the
expected risk (2) by the empirical risk

Remp[f ] =
1

L

L∑
i=1

�(f(xi, yi)) (3)

and the attempt to find the function f that minimizes (3) does not solve the
problem, because the empirical risk converges toward the expected risk only if
L → ∞. That is, for small sample sizes there might be large deviations between
the expected and the empirical risk. Overfitting might also occur yielding a
large generalization error, despite the fact that f commits the smallest num-
ber of errors in the training set. To avoid overfitting, one should restrict the
complexity of the class of functions where f comes from (Vapnik, 1995, 1998).
Vapnik-Chervonenkis (VC) theory controls the complexity of a function class
through the notion of the VC dimension h of the class of functions the esti-
mate f is chosen from and aims at finding the function f that minimizes the
upper bound on the expected risk given by (Vapnik, 1995)

R[f ] ≤ Remp[f ] +

√
h(ln(2L

h
) + 1) − ln(η

4
)

L
(4)
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that holds with probability 1 − η for 0 ≤ η ≤ 1. The second term on the
right hand side of (4) is the so called VC confidence. There are two strategies
for minimizing the upper bound. The first one is to keep the VC confidence
fixed and to minimize the empirical risk and the second one is to fix the em-
pirical risk to a small value and to minimize the VC confidence. The latter
approach is the so-called structural risk minimization principle. It formally
implies that a structure should a priori be defined in the space of the class
of functions, before the training data appear. Although SVMs implement this
principle, their training algorithm that aims to minimize the VC dimension
is based on an hierarchy that depends on the data (Vapnik, 1995). Fat shat-
tering bounds on the generalization error, R[f ]−Remp[f ], are another type of
bounds that also depend on the data (Shawe-Taylor et al., 1998; Cristianini
and Shawe-Taylor, 2000). From a practical point of view, leave-one-out cross-
validation estimates of the empirical risk are more useful, because they can be
exploited to optimally choose the model parameters (Vapnik, 1998; Lee and
Lin, 2001). Frequently, all the aforementioned bounds are loose. In the follow-
ing, we elaborate on the training algorithm of SVMs. The starting point is the
construction of the optimal hyperplane for linearly separable training vectors
xi. The extension to nonseparable training sets as well as to the nonlinear case
is treated next.

2.1 Separable case

If the training set is separable by a hyperplane, then there exists a function
of the form

fw,b(x) = wT x + b = 0 (5)

that satisfies the following inequalities:

fw,b(xi) ≥ 1 if yi = 1

fw,b(xi) ≤ −1 if yi = −1 (6)

where w is the vector of hyperplane coefficients and b is a bias term. In compact
notation, the set of inequalities (6) can be rewritten as

yi(w
Txi + b) − 1 ≥ 0 i = 1, 2, . . . , L. (7)

The optimal separating hyperplane is the one that maximizes the margin
between itself and the separated vectors (Vapnik, 1998). The margin is given
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by

ρ(w) =
1

2

(
min
i:yi=1

(
fw,b(xi)

‖w‖ ) − max
i:yi=−1

(
fw,b(xi)

‖w‖ )

)
=

1

‖w‖ . (8)

Accordingly, the optimal separating hyperplane is the one that minimizes the
norm

‖w‖2 = wTw (9)

subject to the inequalities (7). From an algorithmic point of view, the mini-
mization of the objective function (9) subject to the constraint functions (7),
is a constrained quadratic optimization problem (Fletcher, 1987). The solution
of the optimization problem under study is given by the saddle point of the
Lagrangian

L(w, b, α) = wTw −
L∑

i=1

αi

(
yi(w

Txi + b) − 1
)

(10)

where α = (α1, α2, . . . , αL)T is the vector of Lagrange multipliers. The La-
grangian has to be minimized with respect to w and b and maximized with
respect to αi > 0. The Kuhn-Tucker (KT) conditions imply that (Fletcher,
1987)

∇wL(wo, bo,αo) = 0 ⇔ wo =
1

2

L∑
i=1

αi,oyixi

∂

∂b
L(wo, bo,αo) = 0 ⇔

L∑
i=1

αi,oyi = 0

yi

(
wT

o xi + bo

)
− 1 ≥ 0 i = 1, 2, . . . , L (11)

αi,o ≥ 0 i = 1, 2, . . . , L

αi,o

(
yi (wT

o xi + bo) − 1
)

= 0 i = 1, 2, . . . , L.

From the conditions (11), one can see that the vector of hyperplane coefficients
we search for, is a linear combination of the training vectors. Moreover, it
is the linear combination of the training vectors whose associated Lagrange
multipliers are nonzero. These training vectors are called support vectors (SVs)
(Vapnik, 1995). Putting the expression for wo into the Lagrangian (10) and
taking into account the KT conditions, we obtain the Wolfe dual functional

W(α) =
L∑

i=1

αi − 1

4

L∑
i=1

L∑
j=1

αiαj yiyj

(
xT

i xj

)
︸ ︷︷ ︸

Hij

(12)
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where Hij is the ijth element of the Hessian matrix H. The maximization of
(12) in the non-negative quadrant of αi, i.e.

αi ≥ 0 i = 1, 2, . . . , L (13)

under the constraint

L∑
i=1

αiyi = 0 (14)

is equivalent to the optimization problem

minimize
1

4
αT H α − 1T α subject to (13) and (14) (15)

where 1 denotes a vector of ones. The optimization problem (15) can be solved
by using any optimization software package, e.g. (Joachims, 1998). For a review
of the optimization algorithms, the interested reader is referred to (Osuna
et al., 1997). Having found the nonzero Lagrange multipliers, αi,o, the optimal
separating hyperplane is given by

f(x) = sgn




1

2

∑
αi,o>0

yi αi,o xT
i︸ ︷︷ ︸

wT
o

x + bo


 (16)

where sgn() denotes the sign function. The bias term, bo, can be obtained from
a pair of support vectors (x+,x−) that belong to different classes as follows:

bo = −1

2

L∑
j=1

αj,o yj xT
j (x+ + x−) . (17)

2.2 Linearly Nonseparable Case

When the training vectors are not linearly separable, we would like to relax the
constraints (6) by introducing nonnegative slack variables, ξi, i = 1, 2, . . . , L,
to allow the possibility of examples that violate (7) (Vapnik, 1995)

wTxi ≥ 1 − b − ξi if yi = 1

wTxi ≤ b − 1 + ξi if yi = −1. (18)
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The so-called generalized optimal hyperplane is determined by the vector wo

that minimizes the functional

J(w, b, ξ) = wTw + C(
L∑

i=1

ξi)
σ, σ > 0 (19)

subject to:

ξi ≥ 0 i = 1, 2, . . . , L (20)

where C is a parameter chosen by the user that defines the cost of constraint
violations. The larger the parameter C is, the higher penalty to the errors
is assigned. The minimization of (19) subject to (18) and (20) is a convex
programming problem for any integer σ. For σ = 1 or 2, it is a quadratic
programming problem. Moreover, the choice σ = 1 has the advantage that
neither ξt nor their Lagrange multipliers appear in the Wolfe dual problem
(Burges, 1998). The Lagrangian of the optimization problem is given by:

L(w, b, α, ξ,µ) =wTw + C
L∑

i=1

ξi −
L∑

i=1

αi

{
yi(w

Txi + b) + ξi − 1
}

−
N∑

i=1

µiξi (21)

where µi are Lagrange multipliers enforcing the positivity of ξi. To find the co-
efficients of the generalized optimal hyperplane that satisfy ∇wL(wo, bo,αo, ξo,
µo) = 0, one has to find the Lagrange multipliers, αi, i = 1, 2, . . . , L, that
maximize the Wolfe dual problem

W(α) =1T α − 1

4
αTHα subject to 0 ≤ αi ≤ C i = 1, 2, . . . , L

and
∑L

i=1 αiyi = 0. (22)

The comparison of (22) and (15) reveals that the objective function and the
equality constraint (14) remain unchanged, while the Lagrange multipliers are
now upper bounded by C. As in the separable case, only some of the Lagrange
multipliers αi are nonzero. These multipliers are used to determine the support
vectors. There are either support vectors on the margin that satisfy 0 < αi < C
and yif(xi) = 1 or inside the margin area that satisfy αi = C and yif(xi) < 1
(Müller et al., 2001). Having determined the support vectors, wo is derived
by the first equation in (11). A numerically stable solution for the bias term
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is given by (Joachims, 1998; Müller et al., 2001)

b =
1

|I|
∑
i∈I


yi −

L∑
j=1

yjαjx
T
i xj


 (23)

where I = {i : 0 < αi < C} and |I| denotes the cardinality of the set I.

2.3 Nonlinear Support Vector Machines

Thus far, we have described the case of hyperplanes (i.e., linear decision sur-
faces). By examining (22), one may notice that inner products of the training
vectors appear in the Wolfe dual problem, the expression for the optimal
hyperplane coefficient vector wo, and the bias term b. To allow for a more
complex decision surface, the training vectors xi, i = 1, 2, . . . , L are nonlin-
early mapped onto a high-dimensional feature space by Φ : IRM 	→ F and
then a linear separation is attempted in F . If F is a Hilbert space, thanks
to Hilbert-Schmidt theory there exists a kernel function in the original space
IRM that describes the inner product in F (Vapnik, 1995, 1998), i.e.

< Φ(xi), Φ(xj) >= K(xi,xj) (24)

where K(xi,xj) should satisfy Mercer’s condition. That is, for any kernel func-
tion satisfying Mercer’s condition, there exists a space F where this function
generates the inner product. Functions that are usually employed in construct-
ing nonlinear SVMs are the polynomial kernel, the RBF kernel, the sigmoid
kernel, etc. The kernel function mostly used in the experiments reported in
Section 3 is the RBF one defined formally as

K(xi,xj) = exp(−γ‖xi − xj‖2). (25)

3 Experimental results

Simulated ultrasound B-mode images are used in order to evaluate the per-
formance of various image processing algorithms and to select the parameters
involved in them. Such images are suitable to train an algorithm, like the SVM,
that is based on examples and counterexamples, because there we know where
the lesion and the background are. We trained SVMs using the RBF kernel
defined in (25) on training sets selected from simulated ultrasound B-mode
images and we tested their performance on test sets that include unseen input
vectors from either the same image or a different one. In the training phase we
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used the set of simulated ultrasound B-mode images described in (Verhoeven
et al., 1991). They are simulations of a homogeneous piece of tissue (4×4 cm2)
with a lesion in the middle having a diameter of 2 cm. The lesion differs from
the background in the reflection strength, the number of scatterers, or both.
The background has a number density of scatterers 5000 cm−3 that yields a
fully developed speckle. The lesion has a number density of scatterers of ei-
ther 500 cm−3 that yields a sub-Rayleigh distribution or 5000 cm−3 that yields
pixel gray values that are Rayleigh distributed. In the latter case, the second
order statistics are the same in the lesion and the background areas. Table 1
summarizes the characteristics of the simulated B-mode images used in the
experiments.

Table 1
Description of simulated B-mode images used in the experiments; Number density
of scatterers in the background: 5000 cm−3.

Code
name

Transducer
frequency
(MHz)

Lesion/background
amplitude (dB)

Number density of
scatterers in lesion
( cm−3)

derh03f3 3 +3 5000

derh05f3 3 +5 5000

derl03f3 3 –3 5000

derl05f3 3 –5 5000

dlrh03f3 3 +3 500

dlrl03f3 3 –3 500

derh03f5 5 +3 5000

derl03f5 5 –3 5000

Figures 1a and 1b depict simulated B-mode images where the lesion scatter
strength is 3 dB above that of the background (hyperechoic lesions). The lesion
and the background in Fig. 1a have equal number densities of scatterers. The
number density of scatterers in the lesion area in Fig. 1b is 10 times lower
than that of the surrounding area. Both images were recorded with a 3 MHz
transducer. The images have dimensions 241 × 241 and a resolution of 6
bits/pixel.

The gray level histograms of the pixels belonging to the lesion area and to the
background for both images are plotted in Figs. 2a and 2b, respectively.

Patterns can be collected by running a window over the simulated ultrasound
B-mode images. The patterns comprise pixel gray levels within the running
window. Since the lesion area is well defined, we can easily have the ground
truth for each pattern, if we agree that when the central pixel of the running
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(a) (b)

Fig. 1. Simulated ultrasound B-mode images: (a) original image derh03f3; (b) orig-
inal image dlrh03f3. (The original gray levels are multiplied by 4 for display pur-
poses.)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 8 16 24 32 40 48 56 64

P
ro

ba
bi

lit
y 

of
 O

cc
ur

re
nc

e

Pixel Gray Value

Gray level histograms

background
lesion

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 8 16 24 32 40 48 56 64

P
ro

ba
bi

lit
y 

of
 O

cc
ur

re
nc

e

Pixel Gray Value

Gray level histograms

background
lesion

(a) (b)

Fig. 2. Gray level histograms of the pixels belonging to the lesion and background
areas for the (a) original image derh03f3; (b) original image dlrh03f3.

window falls inside the circular lesion then the training pattern is labeled as
a positive one (yi = +1); otherwise, it is labeled as a negative one (yi = −1).
The total number of patterns depends on the shape and the dimensions of the
running window. The shape of the window is recommended to be related to the
lateral and axial correlation size for the ultrasound B-mode image used. For
example, for the images enlisted in Table 1 the speckle dimensions are 15 pixels
in the lateral (vertical) direction and 3 pixels in the axial (horizontal) direction
(Verhoeven et al., 1991). The experiments we conducted did not reveal any
influence of the shape of the running window on the segmentation accuracy.
Accordingly we decided to employ square windows. For 15 × 15 square win-
dows, the total number of positive and negative patterns is 11289 and 40240,
respectively. 1128 positive and another 1128 negative patterns were randomly
selected to form the training set. The components of the training/test patterns
are scaled by the maximum value they admit. The SVMlight implementation
of SVMs was used in all experiments (Joachims, 1998).
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To select the window dimensions and the most efficient kernel we used as
figure of merit the area under the Receiver Operating Characteristic (ROC)
measured on the test patterns. The ROC is defined here as the plot of the
probability of detection versus the probability of false alarm. The area under
the ROC corresponds to the fraction of the correct enforced answers when we
detect the lesion in two stimuli and we know that the signal exists only in one
of them (Thijssen, 1988). An SVM implementation usually returns a single
operating point in the test phase. For example, SVMlight returns the pair of
precision and recall. These probabilities are defined as follows. Precision is
the proportion of image pixels detected as lesion pixels that are indeed lesion
pixels, i.e.

Pprecision = P{y = 1|f(x) > 0}. (26)

Recall is the proportion of lesion pixels that are detected as lesion pixels, i.e.

Precall = P{f(x) > 0|y = 1}. (27)

To derive the ROC of SVM we compute the following pair:

Pprecision(t) = P{y = 1|f(x) > t} (28)

Precall(t) = P{f(x) > t|y = 1} (29)

for various threshold selections t. It can easily be seen that PD(t) = Precall(t)
while PF (t) can be computed by

PF (t) =
P{y = 1}

P{y = −1}
[
1 − Pprecision(t)

Pprecision(t)

]
Precall(t). (30)

Figure 3 depicts the ROC curves of SVMs with several kernels and window
dimensions trained on the simulated ultrasound B-mode image derh03f3. The
training set was formed by 2256 patterns, as described previously. The test
set was the total number of patterns collected by running a square window
of the corresponding dimensions over the same image. The penalty term C
in (19) was set to the default value by the SVMlight. The particular kernel
functions used are tabulated in Table 2. The parameter values of the kernels
enlisted in Table 2 resulted in the best accuracy on the test set experiments.
The ROC curve for the L2 mean (Kotropoulos and Pitas, 1992) is overlaid
in all figures for comparison purposes. It is seen that the RBF kernel defined
in (25) with parameter γ = 2 yields a better ROC curve than that of the
other kernels. Moreover, the area under the ROC curve becomes greater as
the window dimensions increase. We decided to fix the window dimensions to

12



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
_D

P_F

Receiver Operating Characteristic of SVMs (5x5)

linear SVM
polynomial SVM

RBF SVM
sigmoid SVM

L2 mean

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
_D

P_F

Receiver Operating Characteristic of SVMs (9x9)

linear SVM
polynomial SVM

RBF SVM
sigmoid SVM

L2 mean

(b)

Fig. 3. ROC curves of SVMs for various kernels. (a) Running window of dimensions
5 × 5; (b) Running window of dimensions 9 × 9.

15 × 15 that roughly corresponds to 1 × 5 the speckle dimension in the lateral
and axial directions, respectively.

Having fixed the window dimensions to 15 × 15 and chosen the RBF kernel
function we proceed to the study of the selection of the parameter γ in (25)
and the penalty factor C in (19). The most used choice for γ and C is that
corresponding to the minimum of the test error, i.e., the error measured on the
test data. Alternatively, the parameters can be chosen to minimize an upper
bound of the expected error as is measured on the training set by applying
a leave-one-out cross-validation procedure. Two such bounds are derived in
(Vapnik, 1998; Chapelle and Vapnik, 2000). In the framework of leave-one-out
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Table 2
Kernel functions employed in SVMs for the segmentation of the simulated ultra-
sound B-mode image derh03f3.

Kernel K(xi,xj)

Linear xT
i xj

Polynomial (xT
i xj + 2.0)2

RBF exp(−2.0 ‖xi − xj‖2

Sigmoid tanh(0.001 xT
i xj + 0.1)

estimates a numerically attractive solution for the automatic derivation of the
best parameters γ and C within a predetermined range has been described in
(Lee and Lin, 2001). The latter method has been employed in the RBF-SVM
used to segment the simulated ultrasound B-mode image derh03f3. The search
space was made by the choices C ∈ {1, 2, 4, 8, 16} and γ ∈ {0.5, 1, 2, 4, 8}. The
best model parameters were γ = 1 and C = 8. Table 3 summarizes the leave-
one-out accuracy measured on the training set, the test accuracy, and the
area under the ROC curve. For completeness, the margin, the number of the
support vectors, and the estimated upper bound on the VC dimension are
included in Table 3. The entries for the ad-hoc choice γ = 2.0 and C = 0.5
are also given for comparison purposes. In the following, we shall employ
the optimal parameters for γ and C determined by the procedure described
previously.

Table 3
Selection of model parameters in an RBF-SVM used to segment the simulated
ultrasound B-mode image derh03f3 (Filter window: 15 × 15).

Parameters/
method

Leave-
one-out
accuracy
(%)

Test
accuracy
(%)

Area
under
the ROC

Margin Number
of SVs

Upper
bound on
VC di-
mension

γ = 1.0, C =
8.0 (Lee and
Lin, 2001)

94.105 80.12 0.867566 31.461 1650 1981

γ = 2.0, C =
0.5 (ad-hoc)

83.777 80.77 0.852047 26.985 2130 1407

Next we compared the performance of an RBF-SVM to that of the method
proposed by Collaris and Hoeks (Collaris and Hoeks, 1995) and the thresh-
olded L2 mean filtered image (Kotropoulos and Pitas, 1992) on the simulated
ultrasound B-mode image derh03f3. An additional figure of merit taken into
consideration is the probability of detection PD for a fixed probability of false
alarm PF ∈ [5%, 10%]. To enable comparisons we shall use as reference the
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probability of false alarm attained when we threshold the L2 mean filtered
image by a suitable threshold. As has been noted, a comparison based on the
probability of detection PD for a fixed probability of false alarm PF holds
only for this operating point and is sometimes an inadequate figure of merit,
especially when ROC curves cross (Wagner, 1986). On the contrary, the area
under the ROC is a more reliable figure of merit for a complete characteri-
zation of the whole ROC curve. The choice of L2 mean is not a trivial one,
because the L2 mean filter was proven to be the maximum likelihood estima-
tor (ML) of a constant signal corrupted by a multiplicative Rayleigh speckle
noise (Kotropoulos and Pitas, 1992). Moreover, the ML estimator for Gaus-
sian signal-dependent speckle was shown that it resembled the L2 mean filter
and led to the L2 variant of the self-organizing map (Kotropoulos et al., 1994).
Table 4 summarizes the figures of merit measured on the test patterns. The
figures quoted for the method developed in (Collaris and Hoeks, 1995) are the
best ones. They have been obtained by setting both parameters q and K to
1.0. It is seen that the RBF-SVM outperforms its competitors. In the following
the thresholded L2 mean filtered image is employed as baseline technique in
all comparisons.

Table 4
Figures of merit for lesion detection on the simulated ultrasound B-mode image
derh03f3 by applying several methods.

Method Area
under
the ROC

PF

(%)
PD

(%)

(Collaris and
Hoeks, 1995)

0.680 6.61 22.78

L2 mean 0.796 6.52 42.50

RBF-SVM 0.867 5.99 55.23

Table 5 summarizes the figures of merit for lesion detection on the simulated
ultrasound B-mode images described in Table 1 for an RBF-SVM that was
trained on 2256 training vectors of dimensions (225 × 1) using the optimal
parameters for γ and C extracted from the same image. It is seen that the SVM
with an RBF kernel outperforms the baseline technique in all cases. The CPU
time needed to segment a simulated ultrasound B-mode image of dimensions
241 × 241 was approximately 1300 sec on a SUN Ultra-10 workstation with
256 MB RAM. The training procedure lasted approximately 34 sec in all cases.

Figure 4 depicts the ROC curves for two ultrasound B-mode images. In these
images the lesion and the background have the same number density of scatter-
ers and the lesion/background amplitude is +3 dB. The transducer frequency
varies also from 3 MHz to 5 MHz. To assess the statistical significance of
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Table 5
Figures of merit for lesion detection on simulated ultrasound B-mode images (Filter
window: 15 × 15).

Code RBF-SVM L2 mean

name γ C Area
under
ROC

PF

(%)
PD

(%)
Area
under
ROC

PF

(%)
PD

(%)

derh03f3 1 8 0.867 5.99 55.23 0.796 6.52 42.50

derh05f3 1 2 0.947 9.55 86.56 0.916 9.77 78.37

derl03f3 2 4 0.878 8.34 63.34 0.826 8.70 47.61

derl05f3 2 16 0.921 9.28 81.65 0.905 8.80 73.37

dlrh03f3 1 2 0.919 7.09 69.17 0.855 6.86 52.37

dlrl03f3 2 4 0.838 7.63 52.26 0.792 8.79 39.81

derh03f5 2 1 0.903 5.74 78.03 0.855 8.40 63.02

derl03f5 2 1 0.976 9.64 94.56 0.952 10.88 88.74

the rates observed, we model the ensemble {test patterns, segmentation al-
gorithm} as a source of binary events, 1 for a false alarm or 0 for a correct
rejection, with probability PF of drawing a 1 and (1 − PF ) of drawing a 0.
Similarly another source of binary events, 1 for correct detection or 0 for a
false detection, with probability PD of drawing a 1 and (1 − PD) of drawing
a 0 is also assumed. These events can be described by Bernoulli trials. Let us
denote by P̂F and P̂D the estimates of PF and PD, respectively. The exact ε
confidence interval of PF is the segment between the two roots of the quadratic
equation (Papoulis, 1991):

(PF − P̂F )2 =
z2
(1+ε)/2

40240
PF (1 − PF ) (31)

where zu is the u-percentile of the standard Gaussian distribution having zero
mean and unit variance. In a similar manner, the exact ε confidence interval
of PD is the segment between the two roots of the quadratic equation:

(PD − P̂D)2 =
z2
(1+ε)/2

11289
PD (1 − PD). (32)

The ε = 95% confidence interval of PF and PD is indicated with a horizontal
and a vertical error bar, respectively, in the ROCs of Fig. 4. As can be seen
the improvements reported are statistically significant.

Moreover, the trained RBF-SVMs on the aforementioned set of tissue mimick-
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Fig. 4. ROC curves of RBF-SVM and L2 mean for two simulated ultrasound B-mode
images (a) derh03f3; (b) derh03f5.

ing ultrasound B-mode images were successfully applied on a different set of
B-mode images from a contrast/detail phantom recorded at the Biophysics
Laboratory, Department of Ophthalmology, University Hospital Nijmegen,
The Netherlands. Each image contains a region of interest that is displayed
in sector format. In each sector two lesions are present, although they are
not always visible. The images were obtained by scanning a contrast-detailed
phantom, whose description can be found in (Smith et al., 1983), in such a
way that the cones were intersected perpendicularly by the ultrasound beam.
Two images are considered that contain two lesion cross-sections of a large
diameter and a contrast of 3.6 dB and 7.1 dB relative to the background,
respectively. These images are shown in Fig. 5a and 5d. To segment the le-
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sions, we tested RBF-SVMs trained on ultrasound B-mode images derh03f3
and derh05f3 with patterns of dimensions (9 × 1) or (25 × 1). The window
size was chosen so that the fine details of the images are preserved. The best
results were obtained by using the trained RBF-SVM with window size 3 × 3
on derh05f3. The segmented lesions are shown with white gray level in Fig. 5b
and 5e, respectively. Based on visual judgements, it can be seen that the RBF-
SVM segments the lesion satisfactorily in both test images. For comparison
purposes, the segmentations produced by thresholding the L2 mean filtered
images are depicted in Fig. 5c and 5f, respectively. The thresholds have been
chosen so that the same number of positive and negative test examples to
that produced by the RBF-SVM results. It is seen that the two segmentation
results correlate. However, no threshold selection is needed for the RBF-SVM.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Original image depicting two lesions obtained from cone cross-sections
of large diameter and mid-light reflection amplitude. (The original amplitudes are
multiplied by 3 for display purposes.) (b) Segmentation into two classes using a
trained RBF-SVM on the tissue mimicking phantom depicting a circular lesion that
has reflection strength 5 dB higher than the background and equal number density
of scatterers with the background (derh05f3). (c) Segmentation derived by thresh-
olding the L2 mean filtered original image (a). (d) Original image depicting two
lesions obtained from cone cross-sections of large diameter and mid-light reflection
amplitude. (The original amplitudes are multiplied by 3 for display purposes.) (e)
Segmentation result using the same RBF-SVM as in (b). (f) Segmentation derived
by thresholding the L2 mean filtered original image (d).
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Finally, we applied the trained RBF-SVM on ultrasound B-mode image derh05f3
with patterns of dimensions (9 × 1) or (25 × 1) to a clinical ultrasonic im-
age of liver. The image was recorded with a 3 MHz probe at the Institute
of Cancer Research of the Royal Marsden Hospital, Sutton, U.K. The orig-
inal image, its segmentation into two classes using the RBF-SVM, and the
segmentation produced by thresholding the L2 mean filtered original image
are shown in Fig. 6a, 6b, and 6c, respectively. The threshold was chosen as
described previously. Again, based on visual judgements the segmentation is
found satisfactory.

(a) (b) (c)

Fig. 6. (a) Original image of liver recorded using a 3 MHz probe. (The original
gray level values are multiplied by 2 for display purposes.) (b) Segmentation into
two classes using the same RBF-SVM as in Fig. 5. (c) Segmentation derived by
thresholding the L2 mean filtered original image (a).

4 Conclusions

In this paper we have proposed the use of SVMs to segment lesions in ultra-
sound images. We have demonstrated by experiments that RBF-SVMs out-
perform the thresholding of L2 mean filtered images under several lesion and
recording conditions in ultrasound B-mode images. Moreover, we have found
that the trained RBF-SVMs segment satisfactorily other (unseen) ultrasound
B-mode images and clinical ultrasonic images.
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