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Abstract

Visual speech recognition is an emerging research field. In this paper, we examine the suitability of
support vector machines for visual speech recognition. Each word is modeled as a temporal sequence
of visemes corresponding to the different phones realized. One support vector machine is trained to
recognize each viseme and its output is converted to a posterior probability through a sigmoidal mapping.
To model the temporal character of speech, the support vector machines are integrated as nodes into a
Viterbi lattice. We test the performance of the proposed approach on a small visual speech recognition
task, namely the recognition of the first four digits in English. The word recognition rate obtained is at
the level of the previous best reported rates.

Index terms - visual speech recognition, mouth shape recognition, visemes, phonemes, support vector
machines, Viterbi lattice.
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I. Introduction

Audio-visual speech recognition is an emerging research field, where multi-modal signal
processing is required. The motivation for using the visual information in performing
speech recognition lays on the fact that the human speech production is bimodal by its
nature. In particular, human speech is produced by the vibration of the vocal cords
and depends on the configuration of the articulatory organs, such as the nasal cavity,
the tongue, the teeth, the velum, and the lips. A speaker produces speech using these
articulatory organs together with the muscles that generate facial expressions. Because
some of the articulators, such as the tongue, the teeth, and the lips are visible, there
is an inherent relationship between the acoustic and visible speech. As a consequence,
the speech can be partially recognized from the information of the visible articulators
involved in its production and in particular from the image region comprising the mouth
[1,2,3].

Undoubtedly, the most useful information for speech recognition is carried by the acous-
tic signal. When the acoustic speech is clean, performing visual speech recognition and
integrating the recognition results from both modalities doesn’t bring too much improve-
ment, because the recognition rate from the acoustic information alone is very high, if
not perfect. However, when the acoustic speech is degraded by noise, adding the visual
information to the acoustic one improves significantly the recognition rate. Under noisy
conditions, it has been proved that the use of both modalities for speech recognition is
equivalent to a gain of 12 dB in the signal-to-noise ratio of the acoustic signal [1]. For
large vocabulary speech recognition tasks, the visual signal can also provide a perfor-
mance gain when it is integrated with the acoustic signal, even in the case of a clean
acoustic speech [4].

Visual speech recognition refers to the task of recognizing the spoken words based only
on the visual examination of the speaker’s face. This task is also referred as lipreading,
since the most important visible part of the face examined for information extraction
during speech is the mouth area. Different shapes of the mouth (i.e., different mouth
openings, different position of the teeth and tongue) realized during speech cause the
production of different sounds. One can establish a correspondence between the mouth
shape and the phone produced, even if this correspondence is not one-to-one, but one-to-
many, due to the involvement of invisible articulatory organs in the speech production.
For small vocabulary word recognition tasks, we can perform good quality speech recog-
nition using the visual information conveyed by the mouth shape only.

Several methods have been reported in the literature for visual speech recognition. The
adopted methods vary widely with respect to: 1) the feature types, 2) the classifier used,
and 3) the class definition. For example, Bregler and Omohundro used time delayed
neural networks (TDNN) for visual classification and the outer lip contour coordinates
as visual features [5]. Luettin and Thacker used active shape models to represent the
different mouth shapes and gray level distribution profiles (GLDPs) around the outer
and/or inner lip contours as feature vectors, and finally built whole-word Hidden Markov
Model (HMM) classifiers for visual speech recognition [6]. Movellan employed also HMMs
to build the visual word models, but he used directly the gray levels of the mouth images
as features after simple preprocessing to exploit the vertical symmetry of the mouth [7].
In recent works, Movellan et al. have reported very good results when partially observable
(SDE) models are integrated in a network as visual speech classifiers instead of HMMs
[8], and Gray et al. have presented a comparative study of a series of different features
based on Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) in an HMM-based visual speech recognizer [9].
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Despite the variety of existing strategies for visual speech recognition, there is still
ongoing research in this area attempting to: 1) find the most suitable features and classi-
fication techniques to discriminate effectively between the different mouth shapes, while
preserving in the same class the mouth shapes produced by different individuals that
correspond to one phone; 2) require minimal processing of the mouth image, to allow for
a real time implementation of the mouth shape classifier; 3) facilitate the easy integration
of audio and video speech recognition modules [1].

In this paper, we contribute to the first two of the aforementioned aspects in visual
speech recognition by examining the suitability of support vector machines (SVMs) for
visual speech recognition tasks. The idea is based on the fact that SVMs have been proved
powerful classifiers in various pattern recognition applications, such as face detection,
face verification/recognition, etc. [10,11,12,13,14,15]. Very good results in audio speech
recognition using SVMs were recently reported in [16]. No attempts in applying SVMs
for visual speech recognition have been reported so far. According to the best of the
authors’ knowledge the use of SVMs as visual speech classifiers is a novel idea.

One of the reasons that partially explains why SVMs have not been exploited in auto-
matic speech recognition so far is that they are inherently static classifiers, while speech
is a dynamic process, where the temporal information is essential for recognition. A so-
lution to this problem was presented in [16], where a combination of HMMs with SVMs
is proposed. In this paper a similar strategy is adopted. We shall use Viterbi lattices to
create dynamically visual word models.

The approaches for building the word models can be classified into the approaches
where whole word models are developed [16,7,6] and those where viseme-oriented word
models are derived [17,18,19]. In this paper, we adopt the latter approach, because
it is more suitable for an SVM implementation and offers the advantage of an easy
generalization to large vocabulary word recognition tasks without a significant increase
in storage requirements. It maintains also the dictionary of basic visual models needed
for word modeling into a reasonable limit.

The word recognition rate obtained is on the level of the best previous reported rates in
literature, although we will not attempt to learn the state transition probabilities. When
very simple features (i.e., pixels) are used, our word recognition rate is superior to the
ones reported in the literature. Accordingly SVMs are a promising alternative for visual
speech recognition and this observation encourages further research in that direction. It
is well known that the Morton-Massaro law (MML) holds when humans integrate audio
and visual speech [20]. Experiments have demonstrated that MML holds also for audio-
visual speech recognition systems. That is, the audio and visual speech signals may be
treated as if they were conditionally independent without significant loss of information
about speech categories [20]. This observation supports the independent treatment of
audio and visual speech and yields an easy integration of the visual speech recognition
module and the acoustic speech recognition module.

The paper is organized as follows. In Section II a short overview on SVM classifiers is
made. We review the concepts of visemes and phonemes in Section III. We discuss the
proposed SVM-based approach to visual speech recognition, in Section IV. Experimental
results obtained when the proposed system is applied to a small vocabulary visual speech
recognition task (i.e., the visual recognition of the first four digits in English) are described
in SectionV and compared to other results published in the literature. Finally, in Section
VI, our conclusions are drawn, and future research directions are identified.
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II. Overview on SVMs and Their Applications in Pattern Recognition

SVMs constitute a principled technique to train classifiers that stems from statistical
learning theory [21,22]. Their root is the optimal hyperplane algorithm. They minimize
a bound on the empirical error and the complexity of the classifier at the same time.
Accordingly, they are capable of learning in sparse high-dimensional spaces with relatively
few training examples. Let {xi, yi}, i = 1, 2, . . . , N , denote N training examples where
xi comprises an M -dimensional pattern and yi is its class label. Without any loss of
generality we shall confine ourselves to the two-class pattern recognition problem. That
is, yi ∈ {−1, +1}. We agree that yi = +1 is assigned to positive examples, whereas
yi = −1 is assigned to counterexamples.

The data to be classified by the SVM might be linearly separable in their original
domain or not. If they are separable, then a simple linear SVM can be used for their
classification. However, the power of SVMs is demonstrated better in the nonseparable
case, when the data cannot be separated by a hyperplane in their original domain. In
the latter case, we can project the data into a higher dimensional Hilbert space and
attempt to linearly separate them in the higher dimensional space using kernel functions.
Let Φ denote a nonlinear map Φ : RM → H where H is a higher-dimensional Hilbert
space. SVMs construct the optimal separating hyperplane in H. Therefore, their decision
boundary is of the form:

f(x) = sign

(
N∑

i=1

αi yi K(x,xi) + b

)
(1)

where K(z1, z2) is a kernel function that defines the dot product between Φ(z1) and Φ(z2)
in H, and αi are the nonnegative Lagrange multipliers associated with the quadratic op-
timization problem that aims to maximize the distance between the two classes measured
in H subject to the constraints

wT Φ(xi) + b ≥ 1 for yi = +1

wT Φ(xi) + b ≤ 1 for yi = −1 (2)

where w and b are the parameters of the optimal separating hyperplane in H. That is,
w is the normal vector to the hyperplane, |b|/‖w‖ is the perpendicular distance from the
hyperplane to the origin, and ‖w‖ denotes the Euclidian norm of vector w.

The use of kernel functions eliminates the need for an explicit definition of the nonlinear
mapping Φ, because the data appear in the training algorithm of SVM only as dot
products of their mappings. Frequently used kernel functions are the polynomial kernel,
K(xi,xj) = (mxT

i xj + n)q and the Radial Basis Function (RBF) kernel, K(xi,xj) =
exp{−γ|xi − xj|2}. In the following, we will omit the sign function from the decision
boundary (1) that simply makes the optimal separating hyperplane an indicator function.

To enable the use of SVM classifiers in visual speech recognition when we model the
speech as a temporal sequence of symbols corresponding to the different phones produced,
we shall employ the SVMs as nodes in a Viterbi lattice. But the nodes of such a Viterbi
lattice should generate the posterior probabilities for the corresponding symbols to be
emitted [23], and the standard SVMs do not provide such probabilities as output. Several
solutions are proposed in the literature to map the SVM output to probabilities: the cosine
decomposition proposed by Vapnik [21], the probabilistic approximation by applying the
evidence framework to SVMs [24], the sigmoidal approximation by Platt [25]. Here we
adopt the solution proposed by Platt [25], since it is a simple solution which was already
used in a similar application of SVMs to audio speech recognition [16].
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The solution proposed by Platt shows that having a trained SVM, we can convert
its output to probability by training the parameters a1 and a2 of a sigmoidal mapping
function, and that this produces a good mapping from SVM margins to probability. In
general, the class-conditional densities on either side of the SVM hyperplane are exponen-
tial. So, Bayes’ rule [26] on two exponentials suggests the use of the following parametric
form of a sigmoidal function:

P (y = +1|f(x)) =
1

1 + exp(a1f(x) + a2)
(3)

where:
- y is the label for x, given by the sign of f(x) (y = +1 iff f(x) > 0),
- f(x) is the function value on the output of a SVM classifier for the feature vector x to
be classified, and,
- a1, a2 are the parameters of the sigmoidal mapping to be derived for the currently
trained SVM under consideration with a1 < 0.
P (y = −1|f(x)) could be defined similarly. However, since each SVM represents only
one data category (i.e., the positive examples), we are interested only in the probability
given by (3). The latter equation gives directly the posterior probability to be used in a
Viterbi lattice. The parameters a1 and a2 are derived from a training set (f(xi), yi) using
maximum likelihood estimation. In the adopted approach, we use the training set of the
SVM, (xi, yi), i = 1, 2, . . . , N , to estimate the parameters of the sigmoidal function. The
estimation starts with the definition of a new training set, (f(xi), ti), i = 1, 2, . . . , N ,
where ti are the target probabilities. The target probabilities are defined as follows.
• When a positive example (i.e. yi = +1) is observed at a value f(xi), we assume that this
example is probably in the class represented by the SVM, but there is still a small finite
probability ε+ for getting the opposite label at the same f(xi) for some out-of-sample
data. Thus, ti = t+ = 1− ε+.
• When a negative example (i.e. yi = −1) is observed at a value f(xi) we assume that
this example is probably not in the class represented by the SVM, but there is still a
small finite probability ε− for getting the opposite label at the same f(xi) for some
out-of-sample data. Thus, ti = t− = ε−.
Let us denote by N+ the number of positive examples in the training set (xi, yi) , i =
1, 2, . . . , N . Let N− be the number of negative examples in the training set. We set
t+ = 1− ε+ = N++1

N++2
and t− = ε− = 1

N−+2
.

The parameters a1 and a2 are found by minimizing the negative log likelihood of the
training data, which is a cross-entropy error function given by

E(a1, a2) = −
N∑

i=1

ti log(pi) + (1− ti) log(1− pi) (4)

where

ti =

{
t+, for yi = +1
t−, for yi = −1

(5)

and

pi =
1

1 + exp(a1f(xi) + a2)
. (6)

In Eqs. (4) and (6), pi, i = 1, 2, . . . , N , is the value of the sigmoidal mapping for the
training example xi, where f(xi) is the real valued output of the SVM for this example.
Due to the negative sign of a1, pi tends to 1 if xi is a positive example (i.e., f(xi) > 0)
and to 0 if xi is a negative example (i.e., f(xi) < 0).

July 25, 2002 DRAFT



7

III. Visemes and Phonemes

A. Phonetic Word Description

The basic units of the acoustic speech are the phones. Roughly speaking, a phone is an
acoustic realization of a phoneme, a theoretical unit for describing how speech conveys
linguistic meaning. The acoustic realization of a phoneme depends on the speaker’s
characteristics, the word context, etc. The variations in the pronunciation of the same
phoneme are called allophones. In the technical literature, a clear distinction between
phones and phonemes is seldom made.

In this paper, we are dealing with speech recognition in English, so we shall focus
on this particular case. The number of phones in the English language varies in the
literature [27,28]. Usually there are about 10-15 vowels or vowel-like phones and 20-25
consonants. The most commonly used computer-based phonetic alphabet in American
English is ARPABET, which consists of 48 phones [2]. To convert the orthographic
transcription of a word in English to its phonetic transcription, one can use the publicly
available CMU pronunciation dictionary [30]. The CMU pronunciation dictionary uses
a subset of the ARPABET consisting of 39 phones. For example, the CMU phonetic
transcription of the word “one” is “W-AH-N”.

B. The Concept of Viseme

Similarly to the acoustic domain, we can define the basic unit of speech in the visual
domain, the viseme. In general, in the visual domain, we observe the image region of
the speaker’s face that contains the mouth. Therefore, the concept of viseme is usually
defined related to the mouth shape and the mouth movements. An example where the
concept of viseme is related to the mouth dynamics is the viseme OW which represents
the movement of the mouth from a position close to O to a position close to W [2].
In such a case, to represent a viseme, we would need to use a video sequence, a fact
that would complicate the processing of the visual speech to some extent. However,
fortunately, most of the visemes can be approximately represented by stationary mouth
images. Two examples of visemes defined in relationship to the mouth shape during the
production of the corresponding phones are given in Figure 1.

Fig. 1. From left to right: mouth shape during the realization of phone /O/; mouth shape during the
realization of phone /F/, by subject Anthony in the Tulips1 database [7].

C. Phoneme to Viseme Mappings

To be able to perform visual speech recognition, ideally we would like to define for
each phoneme its corresponding viseme. In this way, each word could be unambiguously
described according to its pronunciation in the visual domain. Unfortunately, invisible
articulatory organs are also involved in speech production, that renders the mapping
of phonemes to visemes into many-to-one. Thus, there are phonemes that cannot be
distinguished in the visual domain. For example, the phonemes /P/, /B/, and /M/
are all produced with a closed mouth and are visually indistinguishable, so they will be
represented by the same viseme. We also have to consider the dual aspect corresponding
to the concept of allophones in the acoustic domain. The same viseme can have different
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realizations represented by different mouth shapes due to the speaker variability and the
context.

Unlike the phonemes, in the case of visemes there are no commonly accepted viseme
tables by all researchers [1], although several attempts toward this direction have been un-
dertaken. For example, it is commonly agreed that the visemes of the English consonants
can be grouped into 9 distinct groups, as in Table I [1]. To obtain the viseme groupings
the confusions in stimulus-response matrices measured on an experimental basis are an-
alyzed. In such experiments, subjects are asked to visually identify syllables in a given
context, such as vowel-consonant-vowel (V-C-V) words. Then the stimulus-response ma-
trices are tabulated and the visemes are identified as those clusters of phonemes in which
at least 75% of all responses occur. This strategy will lead to a systematic, application-

TABLE I
The most used viseme groupings for the English consonants [1].

Viseme group index Corresponding consonants
1 /F/; /V/
2 /TH/; /DH/
3 /S/; /Z/
4 /SH/; /ZH/
5 /P/; /B/; /M/
6 /W/
7 /R/
8 /G/; /K/; /N/; /T/; /D/; /Y/
9 /L/

independent, mapping of phonemes to visemes. Average linkage hierarchical clustering
[18] and self-organizing maps [17] were employed to group visually similar phonemes based
on geometric features. Similar techniques could be applied for raw images from mouth
regions as well.

However, in this paper we do not resort to such strategies, because our main goal
is the evaluation of the proposed visual speech recognition method. Thus, we define
only those visemes that are strictly needed to represent the visual realization of the small
vocabulary used in our application and manually classify the training images to a number
of predefined visemes, as is explained in Section V.

IV. The Proposed Approach to Visual Speech Recognition

Depending on the approach used to model the spoken words in the visual domain, we
can classify the existing visual speech recognition systems to systems using word-oriented
models and those using viseme-oriented models [4]. In this paper, we develop viseme-
oriented models. Visemic based lipreading was investigated also in [18,17]. Each visual
word model can be represented afterwards as a temporal sequence of visemes. Thus,
the structure of the visual word modeling and recognition system can be regarded as a
two-level structure:
1. At the first level, we build the viseme classes, one class of mouth images for each
viseme defined. This implies the formulation of the mouth shape recognition problem
as a pattern recognition problem. The patterns to be recognized are the mouth shapes,
symbolically represented as visemes. In our approach, the classification of mouth shapes
to viseme classes is formulated as a two-class (binary) pattern recognition problem and
there is one SVM dedicated for each viseme class.
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2. At the second level, we build the abstract visual word models, described as temporal
sequences of visemes. The visual word models are implemented by means of the Viterbi
lattices, where each node generates the emission probability of a certain viseme at one
particular time instant.
One can notice that the aforementioned two-level approach is very similar to some tech-
niques employed for acoustic speech recognition [16], justifying thus our expectation that
the proposed method will ensure an easy integration of the visual speech recognition
subsystem with a similar acoustic speech recognition subsystem.

In this section, we will focus on the first level of the proposed algorithm for visual
speech modeling and recognition. The second level involves the development of the visual
symbolic sequential word models using the Viterbi lattices. The latter level is discussed
only in principle.

A. Formulation of Visual Speech Recognition as a Pattern Recognition Problem

The problem of discriminating between different mouth shapes during speech produc-
tion can be viewed as a pattern recognition problem. In this case, the set of patterns is
a set of feature vectors {xi}, i = 1, 2, . . . , P , each of them describing some mouth shape.
The feature vector xi is a representation of the mouth image. xi can represent the mouth
image at low-level (i.e., the gray levels from a rectangular image region containing the
mouth), it can comprise geometric parameters (i.e., mouth width, height, perimeter, etc.)
or the coefficients of a linear transformation of the mouth image. All the feature vectors
from the set have the same number of components, M .

Let us denote the pattern classes by Cj, j = 1, 2, . . . , Q where Q is the total number of
classes. Each class Cj is a group of patterns that represent mouth shapes corresponding
to one viseme.

A network of Q parallel SVMs is designed where each SVM is trained to classify test
patterns in class Cj or its complement CC

j . We should slightly deviate from the notation
introduced in Section II, because a test pattern xi could be assigned to more than one
classes. It is convenient to represent the class label of a test pattern, xk, by a (Q× 1)
vector yk whose jth element, ykj, admits the value 1 if xk ∈ Cj and −1 otherwise. It may
occur more than one elements of yk to have the value 1 if fj(xk) > 0, where fj(xk) is the
decision function of the jth SVM. To derive an unambiguous classification we will use
SVMs with probabilistic outputs, that is, the output of the jth SVM classifier will be the
posterior probability for the test pattern xk to belong to the class Cj, P (yj = 1 | fj(xk)),
given by (3). This pattern recognition problem can be applied to visual speech recognition
in the following way:
• Each unknown pattern represents the image of the speaker’s face at a certain time
instant.
• Each class label represents one viseme.
Accordingly, we shall identify what is the probability of a viseme to be produced at any
time instant in the spoken sequence. This gives the solution required at the first level
of the proposed visual speech recognition system, to be passed to the second level. The
network of Q parallel SVMs is shown in Figure 2.

B. The Basic Structure of the SVM Network for Visual Speech Recognition

The phonetic transcription represents each word by a left-to-right sequence of phonemes.
Moreover, the visemic model corresponding to the phonetic model of a word can be easily
derived using a phoneme-to-viseme mapping. However, the aforementioned representa-
tion shows only which visemes are present in the pronunciation of the word, not the
duration of each viseme. Let Ti, i = 1, 2, . . . , S, denote the duration of the ith viseme
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Fig. 2. Illustration of the parallel network of binary classifiers for viseme recognition.

in a word model of S visemes. Let T be the duration of the video sequence that results
from the pronunciation of this word.

In order to align the video sequence of duration T with the symbolic visemic model
of S visemes, we can create a temporal Viterbi lattice [23] containing as many states
as the frames in the video sequence, that is, T . Such a Viterbi lattice that corresponds
to the pronunciation of the word “one” is depicted in Figure 3. For this example, the
visemes present in the word pronunciation have been denoted with the same symbols as
the underlying phones.

Fig. 3. A temporal Viterbi lattice for the pronunciation of the word “one” in a video sequence of 5
frames.

Let D be the total number of visemic models defined for the words in the vocabulary.
Each visemic model, wd, d = 1, 2, . . . , D, has its own Viterbi lattice. Each node in
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the lattice of Figure 3 is responsible for the generation of one observation that belongs
to a certain class at each time instant. Let lk = 1, 2, . . . , Q be the class label where
the observation ok generated at time instant k belongs to. Let us denote the emission
probability of that observation by blk(ok). Each solid line between any two nodes in the
lattice represents a transition probability between two states. Let us denote by alk,lk+1

the transition probability from the node corresponding to the class lk at time instant k
to the node corresponding to the class lk+1 at time instant k + 1. The class labels lk and
lk+1 may be different or not.

Having a video sequence of T frames for a word and a Viterbi lattice for each visemic
word model, wd, d = 1, 2, . . . , D, we can compute the probability that the visemic word
model wd is realized following a path ` in the Viterbi lattice as

pd,` =
T∏

k=1

blk(ok) ·
T−1∏

k=1

alk,lk+1
. (7)

The probability that the visemic word model wd is realized can be computed by

pd =
L

max
`=1

p` (8)

where L is the number of all possible paths in the lattice. Among the words that can be
realized following any possible path in any of the D Viterbi lattices, the word described
by the model whose probability pd, d = 1, 2, . . . , D, is maximum (i.e., the most probable
word) is finally recognized.

In the visual speech recognition approach discussed in this paper, the emission prob-
ability blk(ok) is given by the corresponding SVM, SV Mlk . To a first approximation,
we assume equal transition probabilities alk,lk+1

between any two states. Accordingly, it
is sufficient to take into account only the probabilities blk(ok), k = 1, 2, . . . , T , in the
computation of the path probabilities pd,` which yields the simplified equation

pd,` =
T∏

k=1

blk(ok). (9)

Of course, learning the probabilities alklk+1
from word models would yield a more refined

modeling. This could be a topic of future work.

V. Experimental results

To evaluate the recognition performance of the proposed SVM-based visual speech
recognizer, we choose to solve the task of recognizing the first four digits in English.
Towards this end we used the small audiovisual database Tulips1 [7], frequently used in
similar visual speech recognition experiments. While the number of the words is small,
this database is challenging due to the differences in illumination conditions, ethnicity and
gender of the subjects. Also we must mention that, despite the small number of words
pronounced in the Tulips1 database compared to vocabularies for real-world applications,
the portion of phonemes in English covered by these four words is large enough: 10 out
of 48 appearing in the ARPABET table, i.e., approximately 20%. Since we use viseme-
oriented models, and the visemes are actually just representations of phonemes in the
visual domain, we can consider the results described in this section as significant.

Solving the proposed task requires first the design of a particular visual speech recog-
nizer according to the strategy presented in Section IV. The design involves the following
steps:
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1. to define the viseme to phoneme mapping;
2. to build the SVM network;
3. to train the SVMs for viseme classification;
4. to generate and implement the word models as Viterbi lattices.
Then we use the trained visual speech recognizer to assess its recognition performance in
test video sequences.

A. Experimental Protocol

We start the design of the visual speech recognizer with the definition of the viseme
classes for the first four digits in English. We first obtain the phonetic transcriptions of
the first four digits in English, using the CMU pronunciation dictionary [30]:
“one” −→ “W-AH-N”
“two” −→ “T-UW”
“three” −→ “TH-R-IY”
“four” −→ “F-AO-R”.

We then try to define the viseme classes so that
• a viseme class includes as few phonemes as possible;
• we have as few different visual realizations of the same viseme as possible.

The definition of viseme classes was done based on the visual examination of the video
part from the Tulips1 database. The clustering of the different mouth images into viseme
classes was done manually based on the visual similarity of these images. By this pro-
cedure we obtained the viseme classes described in Table II and the phoneme-to-viseme
mapping given in Table III.

TABLE II
Viseme classes defined for the four words of the Tulips1 database [7].

Viseme group
index

symbolic
notation

Viseme description

1 (W) small rounded open mouth state
2 (AO) larger rounded open mouth state
3 (WAO) medium rounded open mouth

state
4 (AH) medium ellipsoidal mouth state
5 (N) medium open, not rounded,

mouth state; teeth visible
6 (T) medium open, not rounded,

mouth state; teeth and tongue
visible

7 (TH) medium open, not rounded
8 (IY) longitudinal open mouth state
9 (F) almost closed mouth position; up-

per teeth visible; lower lip moved
inside

We have to define and train one SVM for each viseme. To employ SVMs one should
define the features to be used to represent each mouth image and select the kernel function
to be used. Since the recognition and generalization performance of each SVM is strongly
influenced by the selection of the kernel function and the kernel parameters, we devoted
much attention to these issues. We trained each SVM using as kernel function the linear,
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TABLE III
Phoneme-to-viseme mapping used in the experiments conducted on the Tulips1 database

[7].

Viseme group index Corresponding phonemes
1, 2 or 3

(depending on speaker’s /W/, /UW/, /AO/
pronunciation)

1 or 3
(depending on speaker’s /R/

pronunciation)
4 /AH/
5 /N/
6 /T/
7 /TH/

8 or 4
(depending on speaker’s /IY/

pronunciation)
9 /F/

the polynomial, and the RBF one. In the case of the polynomial kernel, the degree of
the polynomial q was varied between 2 and 6. For each trained SVM, we compared
the predicted error, precision, and recall on the training set, as computed by SVMLight
[31], for the different kernels and kernel parameters, and we finally selected the simplest
kernel yielding the best values for these estimates. That kernel was the polynomial
kernel of degree q = 3. The RBF kernel gave the same performance estimates with the
polynomial kernel of degree q = 3 on the training set, but at the cost of a larger number
of support vectors. A simple choice of a feature vector such as the collection of the
gray levels from a rectangular region of fixed size containing the mouth, scanned row by
row, is proved suitable whenever SVMs have been used for visual classification tasks [15].
More specifically, we used two types of features to conduct the visual speech recognition
experiments:
• The first type comprised the gray levels of a rectangular region of interest around the
mouth, downsampled to the size 16× 16. Each mouth image is represented by a feature
vector of length 256.
• The second type represented each mouth image frame at the time Tf by a vector of
double size (i.e., 512) that comprised the gray levels of the rectangular region of interest
around the mouth downsampled to the size 16 × 16, as previously, and the temporal
derivatives of the gray levels normalized to the range [0, Lmax − 1], where Lmax is the
maximum gray level value in mouth image. The temporal derivatives are simply the
pixel by pixel gray level differences between the frames Tf and Tf − 1. These differences
are the so-called delta features.

Some preprocessing of the mouth images was needed before training and testing the
visual speech recognition system. It concerns the normalization of the mouth in scale,
rotation, and position inside the image. Such a preprocessing is needed due to the fact
that the mouth has different scale, position in the image, and orientation toward the
horizontal axis from utterance to utterance, depending on the subject and on its position
in front of the camera. To compensate for these variations we applied the normalization
procedure of mouth images with respect to scale, translation and rotation described in
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[6].
The visual speech recognizer was tested for speaker-independent recognition using the

leave-one-out testing strategy for the 12 subjects in the Tulips1 database. This implies
training the visual speech recognizer 12 times, each time using only 11 subjects for training
and leaving the 12th out for testing. In each case we trained first the SVMs, and then the
sigmoidal mappings for converting the SVMs output to probabilities. The training set
for each SVM in each system configuration is defined manually. Only the video sequences
from the so-called Set 1 from the Tulips1 database were used for training. The labeling
of all the frames from Set 1 (a total of 48 video sequences) was done manually by visual
examination of each frame. We examined the video only to label all the frames according
to Table III except the transition frames between two visemes, denoting differently the
same viseme class for each subject. Finally, we compared the similarity of the frames
corresponding to the same viseme and different subjects, and decided if the classes could
be merged. The disadvantage of this approach is the large time needed for labeling, which
would not be needed if HMMs were used for segmentation. A compromise solution for
labeling could be the use of an automatic solution for phoneme-level segmentation of the
audio sequence and the use of this segmentation on the aligned video sequence also.

Once the labeling was done, only the unambiguous positive viseme examples and the
unambiguous negative viseme examples were included in the training sets. The feature
vectors used in the training sets of all SVMs were the same. Only their labeling as positive
or negative examples differs from one SVM to another. This leads to an unbalanced
training set in the sense that the negative examples are frequently more than the positive
ones.

The configuration of the Viterbi lattice depends on the length of the test sequence
through the number of frames Ttst of the sequence (as illustrated in Fig. 3), and it was
generated automatically at runtime for each test sequence. The number of Viterbi lattices
can be determined in advance, because it is equal to the total number of visemic word
models. Thus, taking into account the phonetic descriptions for the four words of the
vocabulary and the phoneme-to-viseme mappings in Table III, we have 3 visemic word
models for the word “one”, 3 models for “two”, 4 models for “three”, and 6 models for
“four”. The multiple visemic models per word are due to the variability in speakers’
pronunciation.

In each of the 12 leave-one-out tests, we have as test sequences the video sequences
corresponding to the pronunciation of the four words and there are two pronunciations
available for each word and speaker. This leads to a sub-total of 8 test sequences per
system configuration, and a total of 12 × 8 = 96 test sequences for the visual speech
recognizer.

The complete visual speech recognizer was implemented in C++. We used the publicly
available SVMLight toolkit modules for the training of the SVMs [31]. We implemented in
C++ the module for learning the sigmoidal mappings of the SVMs output to probabilities
and the module for generating the Viterbi lattice models based on SVMs with probabilistic
outputs. All these modules were integrated into the visual speech recognition system,
whose architecture is structured into two modules, the training module and the test
module.

Two visual speech recognizers were implemented, trained, and tested with the afore-
mentioned strategy. They differ in the type of features used. The first system (without
delta features) did not include temporal derivatives in the feature vector, while the sec-
ond (with delta features) included also temporal derivatives between two frames in the
feature vector.
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B. Performance Evaluation

In this section we present the experimental results obtained with the proposed sys-
tem without using delta features as well as with delta features. Moreover, we compare
these results to others reported in the literature for the same experiment on the Tulips1
database. The word recognition rates (WRR) have been averaged over the 96 tests ob-
tained by applying the leave-one-out principle. Five figures of merit are provided:
1. The WRR per subject obtained by the proposed method when delta features are used
is measured and compared to that by Luettin and Thacker [6] (Table IV).
2. The overall WRR for all subjects and pronunciations with and without delta features
is reported compared to that obtained by Luettin and Thacker [6], Movellan [7], Gray et
al. [9] and Movellan et al. [8] (Table V).
3. The confusion matrix between the words actually presented to the classifier and the
words recognized is shown in Table VI and compared to the average human confusion
matrix [7] (Table VII) in percentages.
4. The accuracy of the viseme segmentations resulting from the Viterbi lattices.
5. The 95% confidence intervals for the WRRs of the several systems included in the
comparisons (Table VIII) that provide an estimate of the performance of the systems for
a much larger number of subjects.

TABLE IV
WRR for each subject in Tulips1, using (a) SVM dynamic network with delta features;

(b) AAM for inner and outer lip contours and HMM with delta features [6].

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Accuracy [%]
(SVM-based

dynamic network) 100 75 100 100 87.5 100 87.5 100 100 62.5 87.5 87.5
Accuracy [%]

(AAM&HMM [6]) 100 87.5 87.5 75 100 100 75 100 100 75 100 87.5

TABLE V
The overall WRR of the SVM dynamic network compared to that of other

techniques.

Method SVM-based SVM-based AAM and HMM AAM and HMM HMMs [7] HMMs [7]
dynamic dynamic shape+intensity shape+intensity without with
network network inner+outer inner+outer delta delta

without delta with delta lip contour lip contour features features
features features without delta with delta

features [6] features [6]
WRR
[%] 76 90.6 87.5 90.6 60 89.93

Method Global PCA Global ICA blocked filter bank unblocked filter bank Diffusion network
and HMMs [9] and HMMs [9] PCA/ICA (local) [9] PCA/ICA (local) [9] shape+intensity [8]

WRR
[%] 79.2 74 85.4 91.7 91.7

We would like to note that human subjects untrained in lip reading achieved under
similar experimental conditions a WRR of 89.93% whereas the hearing impaired had an
average performance of 95.49% [7]. From the examination of Table V it can be seen
that our WRR is equal to the best rate reported in [6] and just 1.1% below the recently
reported rates in [9,8]. However the features used in the proposed method are simpler than
those used with HMMs to obtain the same or higher WRRs. For the shape + intensity
models [6] the gray levels should be sampled in the exact subregion of the mouth image
containing the lips, around the inner and outer lip contours, and should exclude the skin
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areas. Accordingly, the method reported in [6] requires the tracking of the lip contour
in each frame, which increases the processing time of visual speech recognition. For the
method reported in [9], a large amount of local processing is needed, by the use of a
bank of linear shift invariant filters with unblocked selection whose response filters are
ICA or PCA kernels of very small size (12 × 12 pixels). The obtained WRR is higher
than those reported in [7], where similar features are used, namely the gray levels of the
region of interest (ROI) comprising the mouth, after some simple preprocessing steps. The
preprocessing in [7] was vertical symmetry enforcement of the mouth image by averaging,
followed by low pass filtering, subsampling, and thresholding.

Another measure of the performance assessment is given by comparing the confusion
matrix of the proposed system with the average human confusion matrix provided in [7].

TABLE VI
Confusion matrix for visual word recognition by the dynamic network of SVMs with

delta features.

Digit recognized
one two three four

one 95.83% 0.00% 0.00% 4.17%
Digit two 0.00% 95.83% 4.17% 0.00%

presented three 16.66% 12.5% 70.83% 0.00%
four 0.00% 0.00% 0.00% 100%

TABLE VII
Average human confusion matrix [7].

Digit recognized
one two three four

one 89.36% 0.46% 8.33% 1.85%
Digit two 1.39% 98.61% 0.00% 0.00%

presented three 9.25% 3.24% 85.64% 1.87%
four 4.17% 0.46% 1.85% 93.52%

The accuracy of the viseme segmentation that results from the best Viterbi lattices
was computed using as reference the manually performed segmentation of frames into
the viseme classes (Table III) as a percentage of the correctly classified frames. We
obtained an accuracy of 89.33%, which is just 1.27% lower than the WRR.

The results obtained demonstrate that the SVM-based dynamic network is a very
promising alternative to the existing methods for visual speech recognition. An improve-
ment of the WRR is expected when training of the transition probabilities is implemented
and the trained transition probabilities are incorporated in the Viterbi decoding lattices.

To assess the statistical significance of the rates observed, we model the ensemble {test
patterns, recognition algorithm} as a source of binary events, 1 for correct recognition
and 0 for an error, with probability p of drawing a 1 and (1 − p) of drawing a 0. These
events can be described by Bernoulli trials. Let us denote by p̂ the estimate of p. The
exact ε confidence interval of p is the segment between the two roots of the quadratic
equation [32]:

(p− p̂)2 =
z2
(1+ε)/2

K
p (1− p) (10)
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where zu is the u-percentile of the standard Gaussian distribution having zero mean and
unit variance, and K = 96 is the total number of tests conducted. We computed the 95%
confidence intervals (ε = 0.95) for the WRR of the proposed approach and also for the
WRRs reported in literature [6,7,9,8], as summarized in Table VIII.

TABLE VIII
95% confidence interval for the WRR of the proposed system compared to that of

other techniques.

Method SVM-based SVM-based AAM and HMM AAM and HMM HMMs [7] HMMs [7]
dynamic dynamic shape+intensity shape+intensity without with
network network inner+outer inner+outer delta delta
without with lip contour lip contour features features
delta delta without delta with delta

features features features [6] features [6]
Confidence
interval [%] [66.6,83.5] [83.1,94.7] [79.4,92.7] [83.1,94.7] [49.9,69.2] [82.3,94.5]

Method Global PCA Global ICA blocked filter bank unblocked filter bank Diffusion network
& HMMs [9] & HMMs [9] PCA/ICA (local) [9] PCA/ICA (local) [9] shape+intensity [8]

Confidence
Interval [%] [70.0,86.1] [64.4,81.7] [76.9,91.1] [84.4,95.7] [84.4,95.7]

C. Estimation of the SVM structure complexity

The complexity of the SVM structure can be estimated by the number of SVMs needed
for the classification of each word, as a function of the number of frames T in the current
word pronunciation. For the experiments reported here, if we take into account the total
number of symbolic word models, that is 16, and the number of possible states as a
function of the frame index, we get: 6 SVMs for the classification of the first frame, 7
for the second frame, 8 for the before-last frame, 6 for the last frame, and 9 SVMs for
all remaining frames. This leads to a total of 9 × T − 9 SVMs. As we can see, the
number of SVM outputs to be estimated at each time instant is not large. Therefore the
recognition could be done in real-time, since the number of frames per word is small (on
the order of 10) in general. Of course, when scaling the system to an LVCSR application,
a significanlty larger number of context dependent viseme SVMs will be required, thus
affecting both training and recognition complexity.

VI. Conclusions

In this paper we proposed a new method for a visual speech recognition task. We
employed SVM classifiers and integrated them into a Viterbi decoding lattice. Each SVM
output was converted to a posterior probability, and then the SVMs with probabilistic
outputs were integrated into Viterbi lattices as nodes. We tested the proposed method
on a small visual speech recognition task, namely the recognition of the first four digits
in English. The features used were the simplest possible, that is, the raw gray level
values of the mouth image and their temporal derivatives. Under these circumstances, we
obtained a word recognition rate that competes with that of the state-of-the-art methods.
Accordingly, SVMs are found to be promising classifiers for visual speech recognition
tasks. The existing relationship between the phonetic and visemic models can also lead
to an easy integration of the visual speech recognizer with its audio counterpart. In our
future research, we will try to improve the performance of the visual speech recognizer by
training the state transition probabilities of the Viterbi decoding lattice. Another topic
of interest in our future research would be the integration of this type of visual recognizer
with an SVM-based audio recognizer, to perform audio-visual speech recognition.
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