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Abstract

This paper illustrates different approaches to the analysis of biological signals based on non-linear methods. The
performance of such approaches, despite the greater methodological and computational complexity is, in many
instances, more successful compared to linear approaches, in enhancing important parameters for both physiological
studies and clinical protocols. The methods introduced employ median filters for pattern recognition, adaptive
segmentation, data compression, prediction and data modelling as well as multivariate estimators in data clustering
through median learning vector quantizers. Another approach described uses Wiener-Volterra kernel technique to
obtain a satisfactory estimation and causality test among EEG recordings. Finally, methods for the assessment of
non-linear dynamic behaviour are discussed and applied to the analysis of heart rate variability signal. In this way
invariant parameters are studied which describe non-linear phenomena in the modelling of the physiological systems
under investigation.
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1. Introduction

In many studies of biological phenomena, non-
linear mechanisms probably play an important
role: they are certainly connected to the great
interactions among sub-systems of different na-
tures which generally constitute the system under
analysis, and to the non-linear characteristics of
various kinds of responses. Therefore, if one wants
to correctly enhance information from these stud-
ies, one has to employ properly tuned and tested
algorithms of signal processing which, by defini-
tion, ought to take into account the non-linear
nature of the process. By such an approach one
may avoid oversimplification, typical of classical
linear modelling, which obviously is not capable
of capturing information bounded to different
non-linear behaviour, like entrainment, modula-
tion phenomena, on-off mechanisms of responses,
variable gain, threshold and saturation character-
istics, and conclamate chaotic behaviour.

The disadvantages of non-linear methods of
signal processing are: (i) that they do not gener-
ally present solutions in closed mathematical
forms; and (ii) that they are generally more com-
plex, both from a structural and from a computa-
tional point of view.

In the following we will consider different ap-
proaches of non-linear methods which will be
applied to various examples taken from biological
systems.

2. Non-linear algorithms of signal processing and
modelling

2.1. Adaptive FIR weighted order statistic filtering

Median filtering is a non-linear filtering tech-
nique that performs particularly well in the pres-
ence of impulsive type noise. An even more im-
portant property is its ability to preserve sharp
changes in the input signal. Several algorithms
have been developed recently to optimise median
type filters. In this paper we will apply an adap-
tive FIR weighted order statistic hybrid (FWH)
filter to EEG burst-suppression (BS) pattern and
discuss the possibilities of using adaptive median
type filters in physiological signal processing.

2.1.1. Methods

The median operation, originally used in statis-
tics, was introduced for signal processing by Tukey
[1] in the 1970s. The median ofasetof N=2k +1
values {x(n —k),...,x(n),...,x(n +k)} can be
computed by sorting the data according to their
values x, < X, < ... < Xy, and choosing the
middle sample x,, ,, as the output.

The performance of median and median-type

filters can be described by means of root signal

analysis and statistical analysis. It has been shown
by Gallagher and Wise {2] that consecutive me-
dian filtering will turn any finite length signal into
a root signal, i.e., a signal which is invariant to
further filtering with the particular filter. The root
signals of median filter consist of regions with at
least k + 1 consecutive identically valued sam-
ples, called constant neighbourhoods, and mono-
tonic regions between the constant neighbour-
hoods, called edges. The statistical analysis of
median filter has shown that median is the maxi-
mum likelihood estimate of location in the pres-
ence of uncorrelated additive double exponential
or Laplacian noise [3], in other words: the be-
haviour of median in the case of long-tailed noise
distributions is analogous to the behaviour of
mean in the case of Gaussian noise. However,
median filter tends to remove signal details which
are small compared to the filter window. Also, it
may cause edge jitter and streaking and the com-
putation is slow in the case of long windows due
to the time consuming sorting operation.

To overcome the drawbacks of the median fil-
ter several extensions have been introduced, one
of which is the weighted median (WM) filter [4].
The WM filter is defined by

D(n) = Med{w,Ox(n—k),...,w,Ox(n +k)}
(2.1.1)

where wOx means x repeated w times. WM
filters can be optimised to minimise certain error
criterion or to preserve certain patterns or struc-
tures in the signal. The latter is of special interest
in image processing applications. Also the WM
filter uses time order information which improves
the ability of the filter to preserve details in the
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signal. The WM filter can be extended to weighted
order statistic (WOS) filter where the output is
w,: the largest sample in the weighted data set of
Eq. 2.1.1. WM filter is a special case of WOS
filter with

N
wy=1/2) =1xw,.

i=1

Another extension to the median filter is the FIR
median hybrid (FMH) filter, where the output is
the median of the outputs of & FIR subfilters,
applied to the input signal:

D(n) = Med{Y|(n),...,Y,(n)}; Y:(n)

N-1
= Y hyx(n—k+j),i=1,... k. (212)
j=0

FMH filters can be designed to preserve sharp
changes in signal baseline, as median filter does
while the computation time is reduced signifi-
cantly. Also, better noise attenuation can be
achieved due to the FIR subfilters. FMH filters
have been applied to the trend detection problem
in physiological signal processing [5,6].

To combine the good properties of the afore-
mentioned filter algorithms, the FIR-WOS hybrid
(FWH) filter was introduced recently. The output
of the general FWH filter is the w: the largest
value of the set {w,OY|(n),..., w,OY,(n)}), where
Y(n), i=1,...,k are the outputs of FIR subfil-
ters. Yin and Neuvo [7] present fast algorithms
for the adaptation of FWH filters to minimise
MAE criterion. There are two ways to adapt the
FWH filters: (i) all the coefficients of the FIR
subfilters and the weights of the WOS filter are
adapted simultaneously; and (ii) separately op-
timised FIR filters are used, while only the weights
of the WOS part of the filter are adapted during
the adaptation of the FWH filter.

In this paper we will consider a special case of
adaptive FWH filter, shown in Fig. 1. The coeffi-
cients of the FIR filter are optimised separately
using the Widrow-Hoff LMS adaptation algo-
rithm and the WOS part of the filter is optimised
using the following relations [7]:

N — w
optimal o) )
Wiener filter | ]

T \
T e\

x,(n)
%) ‘ \\ FWH output
Z l R T R L
i L
X (n) — - ! :i / Y
§ Wy (n) /\}/W0 (ﬂ) ‘

WOS filer |4
adaptation | \Ti
— !
D(n)
desired response

Fig. 1. The structure of the FWH filter used in the experi-
ment.
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i (n) = U(Y(n) = I); (2.18)
_J1, ifx>0

U(x) = {0, otherwise (2.19)

U(X)=1/(1+e *); (2.1.10)
X, ifX=0

P(X) = {f)(, otherwise (2.1.11)

where u is the adaptation step size. By introduc-
ing some simplifications, the algorithm can be
made as fast as the Wiener filter adaptation algo-
rithm:

wy(n+1) =Plwy(n) = 2u(D(n) — D'(n))]
(2.1.12a)

wn+ 1) =P[w,(n) +2u(D(n)
-D'(m)U(Y,(n) - D'(m))],
ji=1,...,K. (2.1.12b)

However, this algorithm is dependent on the ini-
tial weight vector and is likely to end up with a
local minimum. A suitable initial weight vector
can be found by random search or using genetic
algorithms [7]. Another way is to start the adapta-
tion with the algorithm of Eq. 2.1.3, and after
several iterations turn to the fast algorithm of Eq.
2.1.12.

2.1.2. Results: burst-suppression of EEG

Burst-suppression pattern of EEG signal was
used to compare the performance of the Wiener
filter and the adaptive FWH filter of Fig. 1. The
BS pattern can be described as mixed frequency
high amplitude bursts on DC-shift alternating with
periods of suppressed EEG. Usually EEG signal
is recorded with low time constant of analog
prefilters and the DC-shift cannot be seen in the
recording. In our experiment we used 5 EEG
recordings of isoflurane induced BS pattern. The
signals were recorded with time constant 5 s
(cut-off frequency approximately 0.03 Hz), where
the DC-shift is turned into a saw-tooth like pat-
tern (Fig. 3a), and sampled at frequency 200 Hz.
The ability of the filter algorithms to preserve the
DC pattern while suppressing the burst activity
was tested.

We chose 10 bursts from the 5 recordings (2
from each) to generate a test signal. The test
signal was filtered with a high-pass filter (cut-off
frequency 1.6 Hz) and a known DC-pattern (Fig.
2a) was added so that the sharp rise in the DC-
pattern occurred at the beginning of bursts, as is
the case with natural bursts. Seven bursts from
the test signal were used to optimise the filter
algorithms and then the whole test signal was
filtered with the optimal filters (Fig. 2). The MAE
and MSE between the outputs of the filters and
the known DC-pattern are given in Table 1. Both
errors are about 25% smaller for the FWH filter.
Fig. 2 shows that the main advantage of the FWH
filter is its ability to follow sharp changes in the
signal baseline. In Fig. 3 the performance of the
filters on the original BS data is shown.

2.2. Non-parametric Wiener-Volterra analysis

An evoked potential can be interpreted as the
impulse response of the sensory pathway involved
in the transmission of information from a sensory
organ to cortical structures. Considering the na-
ture of synaptic transmission, it is likely that
non-linear properties play an important role in
the input-ountput relationship of this process.

%WJ‘WW %WWW

Cc

0 1 2 3 4 5 6 7 8 9
time {seconds)
Fig. 2. (a) The DC-pattern of the test signal; (b) the test
signal; (c) the test signal filtered with the Wiener filter; and (d)
the test signal filtered with the optimal FWH filter.
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Fig. 3. (a) Original burst-suppression pattern slightly cor-
rupted by ECG artifact; (b) BS pattern filtered with the
Wiener filter; and (¢) BS pattern filtered with the optimal
FWH filter.

Table 1
MAE and MSE between the known DC-pattern and the filter
outputs

MAE (x10%) MSE (x 10%)
Wiener filter 2.96 1.81
FWH filter 2.27 1.24

Identification of the non-linear properties using a
non-parametric approach based upon a Wiener-
Volterra description [8] of the system properties
is proposed to obtain first indication of the sec-
ond-order non-linearities involved.

2.2.1. Methods

An evoked potential is the response of a neural
pathway to a sensory stimulus. To improve the
(often very poor) signal to noise ratio in a clinical
setting, such a response most often is determined
by averaging responses to multiple stimuli. If the
duration of the stimuli is sufficiently short, the
evoked response can be considered to be the
impulse response of the sensory system under
study.

Furthermore, if the system is linear this im-
pulse response entirely characterises the system

properties, and the output y(¢) to any input, x(¢)
can be determined by:

y(£) =h, + /°° h(7)x(t - 7)dr 22.1)

with A, the average DC component of the output
and h, the impulse response. However neural
pathways, when considered as a system receiving
an input at — for instance —— a receptor and
showing a response measured at a scalp elec-
trode, have non-linear properties. We only have
to refer to the highly non-linear nature of the
synaptic transmission to illustrate this. Basically,
there are two approaches to model the system
properties of non-linear systems. When the na-
ture and order of the non-linearities are modelled
(e.g. based upon knowledge about the physiologi-
cal mechanisms underlying the neural generators),
a parametric approach using differential equa-
tions can be used.

However, when entire sensory pathways under-
lying scalp evoked activity are studied, there is
not enough available knowledge to use this ap-
proach. A non-parametric description in terms of
a Volterra series may be useful in this case.

Wiener proved that for a broad class of station-
ary non-linear systems this input-output relation-
ship can be described by a Volterra series of
orthogonal terms:

y() =hy + f_x h()x(t— 7)dr

+fjmf_ih2('rl, 75)

Xx(t—7)x(t = 7y)drdr, + ... (2.2.2)
Here, the functions k; are independent of the
actual input x(¢) and are called the kernels of the
system. Wiener proved that the kernels can be
determined by applying Gaussian white noise
(GWN) at the input and calculating the cross-cor-
relation of the input process and the measured
output y(¢). Krausz [9] translated this approach
to a time-discrete version and proved that a set of
kernels of a given system can be determined by
processing the output of the system when the
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input receives a Poisson process of Dirac-im-
pulses (the discrete equivalent to GWN) at the
input. Such a Poisson process is described as:

x()=Y &(t—t),

i=0

with ¢, the time the i-th impulse is applied. The
interval between two subsequent impulses, ¢, —
t;_, is exponentially distributed:

P(t,—t,_ <T)=1-¢e"""

with o the average rate of input impulses.

The zero, first and second order kernels then
can be determined by calculating the cross-corre-
lation between the input and the measured out-
put, y(t) and the Poisson input:

0=5’_(—t_)
B(7) = ¢,(7) = By, with ¢,(7) = ~3OXE=7)

hz(Tl ,7'2) = %-[02(71 :TZ)

—h(7) = hy(15) — Ry, (2.23)

1
with ¢,(7,7,) = —5y(O)x(t — 1) x(t — 7,)
o
and (v, # 7,)

The zero-order kernel, A, simply is the average
DC component of the measured output. It can be
shown [10] that the function ¢,(7) in Eq. 2.2.3 is
the AC component of the average response to
each individual input impulse using a technique
similar to the averaging known in the conventio-
nal evoked potential technique. The averaging
process will cause an increase in the signal to
noise ratio of the resulting waveform in both
techniques, but two main differences exist
between the two techniques: first, there is no
restriction to the minimum inter-stimulus interval
when using the random stimulation technique
and, secondly, the final result of the new tech-
nique will contain an average effect of non-linear-
ities caused by interference between overlapping
TESPONSES.

The function ¢, in Eq. 2.2.3 can be interpreted
as the AC component of the average response of
the system to each pair of stimuli with an inter-
stimulus interval equal to 6 = 7,— 7, and can
be determined by applying the averaging tech-
nique indicated in Fig. 4. A possible way to inter-
pret the second order non-linearities of a system
is to introduce a correction in the function ¢, —
which is an averaged response to two stimuli —
for the response to the first stimulus which could
be expected if the second stimulus were not pre-
sent, ie., the first order kernel triggered by the
first stimulus of the pair.

This new function, which we call the recovery
kernel is defined as: R(7,,7,) = ¢,(7,,7,) — A (7).
This recovery kernel can be interpreted as the
response to only the second stimulus in a pair of
stimuli with inter-stimulus interval 6 = 7, — 7.
For large values of 6, there will be few effects of
interference (non-linearities) and therefore the
recovery kernel will converge to the first order
kernel for increasing 6. For very small values of
8, the effect of inhibition and refractory periods
will play a significant role, and the response to
the second stimulus will hardly be present in the
response to a pair of stimuli. A practical but
important point in the determination of these
second order effects is that the number of aver-
ages available is much smaller than the number
available for the A ,(7) determination, resulting in
a poorer signal to noise ratio.

sw3
304V sw2 sw5
swi ! sw4 L

20+ |

W‘M' / M m\w/\ M

o «M‘Wf # M , my
O 2N SN M O O o

el 3 100 )4 200 b4 32300 400

time{msec)

Fig. 4. Determination of c,. Each pair of (not necessarily
consecutive) stimuli with a inter-stimulus interval equal to
T,~7, = 8 triggers a new averaging process.



S. Cerutti et al. / Computer Methods and Programs in Biomedicine 51 (1996) 51-73 57

2.2.2. Results: first-order Wiener-Volterra kemnel in
the processing of evoked potentials

The results of a conventional evoked potential
recording and the first order kernel determined
using the high-frequency, random stimulation
technique measured in a controlled study with
cats are shown in Fig. 5. It can be seen that the
shape of both waveforms up to 40 ms after the
stimulus is comparable. The amplitude of the
middle latency components (10-60 ms) in the first
order kernel waveform however are considerably
smaller than those in the conventional response.
This is caused by the average effect of non-linear-
ities mentioned above. Cluitmans however has
shown [11] that the changes in amplitude and
latencies relative to baseline values in both wave-
forms caused by changing levels of isoflurane-ni-
trous oxide anaesthesia were comparable. This
suggests that obtaining an 4, waveform may be
an alternative to the conventional averaging tech-
nique. A potential practical advantage of the new
technique is that the A, waveform can be ob-
tained faster than the EP waveform, because of
the relatively high average stimulus frequency
allowed.

Fig. 6 shows the recovery kernel for various
values of 8 measured under the same controlled
laboratory conditions as Fig. 5. For reference, the
first order kernel, h,(r) is shown in the upper
graph. All waveforms are determined from a sin-
gle data sct. Both the poorer signal to noise ratio
in the recovery kernels and the convergence to-
wards the £,(7) waveform for increasing values of

Cz — Al
-+ -
v N (
v
af IV eo
na
€ EP
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.
v A
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o h1
Na
o . ! ! | : !

Fig. 5. Conventional (EP) and first order evoked response
measured in an awake cat. Number of averages in EP: 1000
(90 s. data); Number of averages in #; = 10000 (100-s data).
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Fig. 6. Recovery kernels determined in an awake cat with
auditory stimulation (number of averages = 200).

d can be seen. From these data, it becomes clear
that the effect of non-linearities is much smaller
in the early brain-stem components (0-10 ms)
when compared to the middle latency compo-
nents (> 10 ms).

2.3. Multivariate data clustering through median
learning vector quantizers

Neural networks is a rapidly expanding re-
search field which has attracted the attention of
scientists and engineers in the last decade. A
large variety of artificial neural networks has been
developed based on a multitude of learning tech-
niques and having different topologies [12]. One
prominent example of neural networks is the
learning vector quantizer (LVQ). A novel class of
learning vector quantizers (LVQs) based on mul-
tivariate order statistics is proposed in order to
overcome the drawback that the estimators for
obtaining the reference vectors in LVQ do not
have robustness either against erroneous choices
for the winner vector or against the outliers that
may exist in vector-valued observations. The pro-
posed algorithms can cope very well with multi-
variate data clustering problems. Therefore, they
can find numerous biomedical applications, e.g.
clustering of multiple physiological variables cor-
responding to the same patient and recorded over
a time interval, or clustering of physiological vari-
ables corresponding to different patients and
recorded at the same time instant.
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2.3.1. Methods

The learning vector quantizer (LVQ) is an au-
toassociative nearest-neighbour classifier which
classifies arbitrary patterns into classes using an
error correction encoding procedure related to
competitive learning [13] (Fig. 7). In order to
make a distinction between the (standard) LVQ
algorithm and the proposed variants that are
based on multivariate order statistics, the LVQ
algorithm will hereafter be called linear LVQ
algorithm.

Let us assume a sequence of vector-valued
observations x(#) %#” and a set of variable refer-
ence vectors or weights w(¢); w, e®?, i=
1,2,...,K}. Let w; (0) be randomly initialised.
Competitive learning tries to find the best-match-
ing reference vector w,(¢) to x(¢) (i.e., the winner)
where ¢ = arg min, |x — w,|| with |L|| denoting the
Euclidean distance between any two vectors. This
vector is updated and the process is repeated.
After a large number of iterations, the different
reference vectors w; tend to be placed into the
input space %#” in such a way that they approxi-
mate the probability density function (pdf) f(x) of
the multivariate input data in the sense of some
minimal residual error €= [ Ix — w*f(x)dx

SV VA Ve
O=—=—0=) -

Fa

Fig. 7. The LVQ neural network.

where y is the domain of the input vector-valued
observations and dx is the volume differential in
the space #*. Each reference vector is tuned to a
different domain of the input data. If the stochas-
tic-gradient-descent algorithm [14] is applied to
the minimisation of € in the space w, and the
weight vectors are updated as blocks concen-
trated around the winner, the following linear
recursive relations result:

w,(t+1) =w, () +a()x(t) —w,()] Vie N.(¢)

w,(t+ 1) =w,(¢) Vig N.(¢) (2.3.1)
where a(t) is the adaptation step and N_.(¢) de-
notes a neighbourhood around the winner. In the
following, we use the notation n instead of ¢ to
denote discrete events. It can easily be seen that
the reference vector for each class i=1,..., K at
time n + 1 is a linear combination of the input
vectors x(j) =j=0,...,n that have been assigned
to class i. Moreover, it can be shown that in the
special case of only one class following multivari-
ate Gaussian distribution and the adaptation step
sequence a(n)=1/(n+ 1), the winner vector is
the arithmetic mean of the observations that have
been assigned to the class (ie., the maximum
likelihood estimator of location). Neither in the
case of multiple classes that are normally dis-
tributed nor in the case of non-Gaussian multi-
variate data distributions, is the linear LVQ the
optimal estimator of the cluster means. In gen-
eral, linear LVQ and its variations suffer from
the following drawbacks:

e They do not use optimal estimators for obtain-
ing the reference vectors w; that match the
pdf f,(x) of each class i =1,..., K.

e They do not have robustness against erro-
neous choices for the winner vector, since it is
well known that linear estimators have poor
robustness properties [15].

e They do not have robustness against the out-
liers that may exist in the vector observations.

In order to overcome these problems, we propose
a novel class of learning vector quantizers that
are based on order statistics [16,17]. It is well
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known that operators based on order statistics
have very good robustness properties. In the case
of learning vector quantizers we should rely on
multivariate order statistics. There is no unam-
biguous, universally agreeable total ordering of N
p-variate samples x;,...,x, where x;=
,,,,, x,), i=1,...,N. The following so-called
sub-ordering principles are discussed by Barnett
[17}: marginal ordering, reduced (aggregate) or-
dering, partial ordering, and conditional (sequen-
tial) ordering. In marginal ordering, the multivari-
ate samples are ordered along each one of the
p-dimensions:
Xy SXS ... Sxyy, i=1,...,p (23.2)
i.e., the sorting is performed in each channel of
the multichannel signal independently. The i-th
marginal order statistic is the vector x; =
(Xy(iy>+-+» X,i))". The marginal median has the
following definition:

T
(Xt tyoees Xpiui 1) N=2v+
(xl(v)+xl(v+l)

xmed= 2

Xy TX Y
%) N=2»
(2.3.3)

It can be used in the following way in order to
define the marginal median LVQ. Let us denote
by X,(n) the set of the vector observations that
have been assigned to each class i, i=1,...,K
until time # — 1. We find at time » the winner
vector w.(n) that minimises |x(n) — w(n)ll, i =
1,...,K. The marginal median LVQ (MMLVQ)
updates the winner reference vector as follows:

w.(n + 1) = median{x(n) U X (n)}. (2.3.4)
The median operation is given by Eq. 2.3.3. Thus,
all past class assignment sets X,(n), i=1,...,K
are needed for MMLVQ. MMLVQ requires the
calculation of the median of data sets of ever
increasing size, as can be seen from Eq. 2.3.4.
This may pose severe computational problems for

relatively large n. However, for integer-valued
data, a modification of the running median algo-
rithm proposed by Huang et al. [18] can be de-
vised to speed up median calculations by exploit-
ing the fact that the marginal median of the
already assigned samples X (n) is known.

Another definition of the multichannel median
(based on the R-ordering principle) is the so-
called vector median proposed by Astola et al.
[19]. The vector median is the observation that
has the minimum distance from all the remaining
observations, l.c.:

N
I, — Xpeal < X X, —x,|Vj=1,...,N.
i=1

M=

-
I

(23.5

The vector median LVQ (VMLVQ) uses the fol-
lowing formula to update the winner vector w,(#n)
at step n:

w.(n + 1) = vector median {x(n) UX (n)
(2.3.6)

where X(n) is again the set of vector-valued
observations that have been assigned to class i,
i=1,..., K so far and x(n) is the current observa-
tion. The vector median operator in the previous
expression is the one defined in Eq. 2.3.5. The
evaluation of the vector median of a data set is a
rather computationally intensive operation (Eq.
2.3.5) since it requires the evaluation of »# sums,
each containing n — 1 terms of the form [x ;X R
and also the evaluation of the minimum of »n
values. In the case of the vector median LVQ we
have to calculate the vector median (Eq. 2.3.6) for
each time instant n. The fact that the vector
median of the data in X_(n) has already been
evaluated can be exploited in order to speed up
the computations. Both MMLVQ and VMLVQ
keep track of their entire history and therefore all
data samples have equal contribution to the ref-
erence vector update procedure. In the case of
non-stationary data, we can evaluate the marginal
or vector median using a moving window to dis-
card the older samples as new observations be-
come available.
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The marginal weighted median LVQ
(MWMLVQ) can be defined as follows. Let us
denote by
w(n) = (wy(n), wp(n),...,w, (M) (23.7)
the winner vector, i.e., ¢ =i. In MWMLVQ, the

elements of the winner vector are updated as
follows:

w;;(n + 1) = median{C,Ox(n),...,C,,Ox,(0)}
(2.3.8)

where (C,y, Cy,-..,C;,)" is the vector of the
duplication coefficients for the i-th class. The
duplication coefficients can be chosen in such a
way so that they heavily weigh the desired section
of the data (i.e., the new observations or the old
ones). If a weight C;; is zero, this means that the
corresponding sample x(n —1) has not been as-
signed to the i-th class.

When the learning procedure of the proposed
LVQ variations reaches equilibrium, it results in
a partition of the domain of the input vector-val-
ued observations called Voronoi tessellation. This
means that the input space is partitioned
into regions (called Voronoi neighbourhoods)
bordered by hyperplanes such that each region
contains a reference vector which is the nearest
neighbour to any input vector within it. By doing
so a clustering of the input multivariate data is
achieved.

The asymptotic properties of MMLVQ and
VMLVQ have also been studied. Expressions for
the expected stationary state of the reference
vectors when the input data are distributed ac-
cording to 1-D or 2-D contaminated Gaussian or
Laplacian distributions have been derived. Based
on these expressions we were able to find the
theoretical values for the bias in estimating the
unconditional means of the underlying distribu-
tions. The bias introduced by the MMLVQ and
VMLVQ was found to be smaller than the one
introduced by the linear LVQ algorithm [20,21].

2.3.2. Results: comparison between linear and
median learning vector quantizers (LVQ)

The performance of the proposed order statis-
tics LVQs has been tested on finding the cluster

means of a two-dimensional sample set that is
described by the following probability density
function:

f(x,x,) = pU([ —5,20],0 - 5,20
+(1-p)[eN(5,5;1,1;0)
+(1 - e)N(10,10;1,1;0)1,

where U([ —5,20],[ - 5,20]) denotes the pdf of uni-
formly distributed outliers in the domain
[-5,20] x [-5,20] and N(m;,, m,; o;), 0, de-
notes a two-dimensional Gaussian distribution
with mean m;; and standard deviation o;; along
each dimension j, j= 1,2 and correlation coeffi-
cient r. Furthermore, p is the probability of out-
lier occurrence and e the probability for one
sample (that is not outlier) to be distributed ac-
cording to the Gaussian pdf N(5,5;1,1;0). Such a
data set having p=02 and e = 0.5 is shown in
Fig. 8a, together with the trajectories of the
weights determined by the marginal median LVQ
algorithm. It must be stressed that this data set is
heavily corrupted. It is clear that the MMLVQ
converges close to the correct solution, i.e., the
true cluster means. In contrast, the linear LVQ
weights do not converge to the true cluster means
(Fig. 8b), proof that the linear adaptation proce-
dure (Eq. 2.3.1) is very susceptible to outlying
input observations.

2.4. Time delay estimation using non-parametric
methods

The EEG (electroencephalography) and SEEG
(stereoelectroencephalography) analysis during
epileptic seizures led to hypotheses concerning
the behaviour and the interaction modes of the
anatomical structures involved with the disease,
in order to derive a possible epileptic network
[22]. In signal processing terms, this latter point
could be achieved by: (i) the characterisation of
causal links (the interaction modes); (ii) the esti-
mation of the delay; and (iii) the estimation of the
nature of the relation (lincar or non-linear),
between two depth observations X, and X,, re-
flecting the behaviour of the two structures. Only
the second point is dealt with in this presentation.
Several authors have attempted to evaluate the
delay and the similarity between the channels
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Fig. 8. (a) Trajectories of the MMLVQ reference vectors wi(n) i = 1,2 for two classes contaminated by uniformly distributed noise;
and (b) trajectories of the linear LVQ reference vectors w;(n) i = 1,2 for two classes contaminated by uniformly distributed noise.
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[23-26]. Some of them postulate that the tran-
smission channel] is linear and then, by means of
(i) the intercorrelation function, or its improved
extensions [27], and (ii) the coherence function
coupled with the phase of the cross-spectrum,
they estimate the delay and an index of causality.
The works of others [23,26] take into account the
possible non-linearity relationships between the
two observation sequences. As is shown here, an
alternative approach to EEG signal processing
can benefit from the most recent theoretical in-
sights provided by the higher order moments [28].
The present study comsists of comparing four
methods of time delay estimation and linear and
non-linear links determination. The preliminary
results obtained on simulated and in vivo signals
are also reported.

2.4.1. Methods

The objective is to compare three well es-
tablished methods (the linear and non-linear in-
dexes and the transmission coefficient) versus a
new one based on higher order moment: the
bispectrum.

(i) The first one makes use of the normalised
correlation coefficient given by:

[E{(Xl(n) - E{X](n)})(Xz(n +7)

~E{X,(mH)T
var{ X (n)}var{ X,(n)}

ri(r) =

where E{.) and var{]} represent the expectation
and the variance, respectively.

(i) The second one, proposed by Mars and
Arragon [23], is based on the computation
of the marginal H(X ),H(X,) and cross
H(X,,X,) entropies of the two processes.
The transmission coefficient, evaluated for
different delays 7 between the channels, is
then equal to:

H(X(n)) + H(X,(n+ 7))
—H(X\(n),X,(n+7))
min{ H( X (n),H(X,(n + 7))}

T(r)=

Among the several procedures proposed for
entropy evaluation, the algorithm described
in [25] has been retained.

(iii) The third approach was recently introduced
by Moddemeijer [26], its interest being that,
unlike the previous ones, no assumption is
made on the transmission channel. It con-
sists of building a scatter plot of X, versus
X, and the process X,(n + 7) is approxi-
mated by successive linear straight lines.
The non-linear regression coefficient is
then:

var[ X,(n)] - E{[ X,(n)
—-f(X,(n— T)]2>

2

h zvar[Xg(n)]

The three methods are non-parametric;
their maximum values, from which the time
delay 7= D can be derived, range from 0 to
1 and are close to 1 if high dependency
exists between the channels. The two first
functions are symmetric while #* is not.

(iv) By definition, the bispectrum is the 2D-
Fourier transform of the 3rd order moment.
For a stationary real discrete centered ran-
dom process X,(n), the 3rd order moment is
expressed as:

RX]Xle(m’n) =E{X1(k)
xX,(k +m)X,(k +n)

Thus, the bispectrum is:

BXlexl(wl’wz) = Z ZRX[Xlxl(m,n)

X exp(—j(w,m+ w,n))
=FT{Ry x x(m,n)

where |w,| < 7lw,|< 7, 0, + 0,| < 7 and w,; are
normalised pulse frequencies and FT represents
the Fourier Transform.

In the same way, the cross-bispectrum between
the channels X (n) and X,(n) can be defined as:

By y,x(@,03) = FT{Ry x,y(m,n)



S. Cerutti et al. y Computer Methods and Programs in Biomedicine 51 (1996) 51-73 63

The bispectrum can be computed directly or indi-
rectly; the direct method presented by Nikias and
Pan [29], based on the Fourier Transform of each
process, has been used here. If Tr is a linear
transformation, then the argument of the cross-
bispectrum is linear in w, for a given w,. Thus,
the following function can be evaluated:

(0,0,)
b= ([ BX”‘ ——Sep(jor)de do,

X, XX((U],(J)'))

which is maximum for 7= D. In contrast to the
three previous ones, this method does not provide
information about the nature of the links. This
could be done by its natural extension the cross-
bicoherence [30].

2.4.2. Results: comparison between linear and non-
linear time delay estimation in epilepsy

2.4.2.1. Simulated experiments. Several se-
quences of 4 s of on-depth observations (SEEG)
sampled at 200 Hz were interactively chosen,
transformed, delayed and noise was added. The
performances of the methods were evaluated with
respect to the signal to noise ratio, to different
non-linearities, described by Pijn [26], and to the
observation sequences. Specific sequences, depict-
ing different spectral characteristics, have been
considered: the first one is a background activity
observed between seizures; the second one, a
rapid discharge measured at the beginning of the
seizure; and the last one, an impulse-like se-
quence observed during the seizure. Only one
delay was simulated and corresponded in practice
to a small delay (5 samples). The bispectra and
cross-bispectra were estimated over segments of
128 samples, then averaged over 20 blocks with
an overlapping of 50%.

When no noise is added, on several back-
ground, discharge and impulse activities (10 dif-
ferent sequences of each), for all the non-lineari-
ties considered here, we have observed that the
non-linear regression coefficient 4° and the tran-
smission coefficient T have the better behavior.
In a degraded context (e.g. with additive noise),
the conclusions are different. Fifty noise realisa-
tions were repeated to experimentally estimate

the bias and the variance of each time delay
estimator and similarity indexes. Fig. 9 represents
the mean behaviour of the four functions when a
quadratic transformation is applied on the input
signal. It shows that only the transmission coef-
ficient 7(r) and the non-linear index A*(r) are
able to estimate the delay. Moreover the exami-
nation of the mean value of the maximum of the
functions is close to 1 and suggests that the
transmission channel could be non-linear (when
one compares the linear correlation coefficient)
and some causality between the two signals could
exist. For another non-linear transformation and
in the same measurement conditions (background
activity signal, Gaussian noise, number of realisa-
tions) the results are quite different (Fig. 10). In
this case, only the bispectrum is able to estimate
the delay and the other functions do not inform
about the causality, the possible non-linear link of
the transmission channel and the delay.

A summary of the results is depicted in Tables
2 and 3 for Gaussian and non-Gaussian noises,
respectively. It clearly points out that the perfor-
mances are directly related to the input signal,
the transformation and the noise, and underlines
that great care must be taken in the interpreta-
tion of real contexts.

2.4.2.2. Processing of real signals. The four
methods were tested on real signals recorded with
depth electrodes on a patient suffering from tem-
poral epilepsy. The behaviour (Fig. 11a) of three
internal structures — the corpus amygdaloideum
(A,,), the anterior cornu ammonis (B,,) and the
posterior cornu ammonis (C,,) — are depicted
and studied here. The similarity indexes have
been computed every 5 seconds and their be-
haviour is depicted in Fig. 11b. They demon-
strated that a high synchronism exists between
each channel at time 55, which corresponds to a
possible beginning of the seizure. The similarity
indexes progressively decrease and again increase
around the instant 75. Moreover, a closer exami-
nation of the index shows that the structures are
first linearly related at the beginning of the seizure
and move progressively to a non-linear relation
around time 75. The delays estimated at these
time instants are method dependent but are vary-
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Fig. 9. Mean behavior of time delay estimators after fifty noise runs. The transformation is X,(n) = X(n —5) X X,(n — 5) + b,(n).

Input sequence: background activity-S/N = 10 dB. D and MSE represent the mean value and mean standard deviation of the
estimated delay.
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Fig. 10. Mean behavior of time delay estimators after fifty noise runs. The transformation is X,(n) = sgn[X(n—-5) X
X\(n —5) + by(n). Input sequence: background activity-S /N = 10 dB. D and MSE represent the mean value and mean standard
deviation of the estimated delay.
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Table 2
Comparison of the criteria after 50 Gaussian noise runs

Non-linearity similarity index Transmission coefficient  Linear correlation index  Interbispectrum

Transformations Signals D SDD H, SDH, D SDDT SDT D SDDr* SD# D SD D
X Background -5 0 09 001 -5 0 053004 -5 0 09 000t -5 0
Discharge -5 0 09 0001 -5 0 054002 -5 0 09 001 -5 0
Impulse signal -5 0 09 001 -5 0 044 0.028 -5 0 09 001 -5 0
XXX Background -5 0 099 0.01 -5 0 0750001 19 0 018 0001 -575 2699
Discharge -5 0 098001 -5 0 081 0001 -8 0 004 0001 =635 1536
Impulse signal =5 0 092 0001 -64 2338 021 004 -8 0 0250001 -7 0
Sgn(X)sqrt Background  -0.5 22.73 0.04 0.01 —4.75 3385 004 003 -22 243 0.02 001 -5 0.3
(ABs(X)) Discharge 0.1 288 004 0.01 -9.15 2526 0.04 0.01 345 2433 0.02 0.01 -5 0
Impulse signal —8.5 2233 004 0.01 149 215 004 001 —-9.85 1595 0.02 001 -39 2588

D represents the estimated mean value; SD D represents the estimated standard deviation.
H,, T or r2, the estimated mean values of the maximum of each function, respectively; SD H,, SD T, SD r2, the estimated standard
deviations of the maximum of each function. The grey cases indicate that the estimators have a poor behavior.

Table 3
Comparison of the criteria after fifty non-Gaussian noise runs

Non-linearity similarity index Transmission coefficient Linear correlation index  Interbispectrum

Transformations Signals D SDDH, SDH, D SDDT SDT D SDD r SDr? D SD D
X Background -5 0 091001 -5 0 0590022 -5 0 091 001 -5 0
Discharge -5 0 092001 -5 0 077 0024 -5 0 09200 -5 0
Impuise signal ~35 0 09 001 -5 0 07 0014 -5 0 091 001 -3 0
XxX Background -5 0o 1 0 -5 0 08 0001 18 0 019 0001 -19 0
Discharge -5 0 1 001 -5 0 076 0001 -5 0 0180001 -4 0
Impulse signal -5 0 092 0001 -604 3459 0.21 0.024 -8 0 0250001 -7 0
Sgn( X )sqrt Background  —11.25 31.56 0.28 0.01 -5 0 023005 -66 1809 0.02 0.01 115 3198
(Abs(X)) Discharge ~6.85 4.49 035 0.014 -5 0 051 0026 —4.05 1036 0.1 0.022 1.8 23.19
Impulse signal —855 33.97 0.28 001 -5 0 043 002 -—4.15 12.34 0.02 0.01 —4.55 29.45

The non-Gaussian noise is generated by passing a Gaussian noise through a non-linear filter and by subtracting the mean value.

D represents the estimated mean value; SD D represents the estimated standard deviation.

H2, T or r2, the estimated mean values of the maximum of each function, respectively; SD H2, SD T, SD r2, the estimated standard
deviations of the maximum of each function. The grey cases indicate that the estimators have a poor behavior.

ing in the same way. In other words, they clearly
show that the signal, observed on A ,, drives the
other two. The relations between C and B are
more difficult to interpret (B is first in advance
and then delayed).

2.5. Non-linear dynamics: a deterministic chaotic
approach

The non-linear behaviour of biological systems
may be also studied through the dynamic charac-

teristics of the generated signals. Under certain
hypotheses, the correspondent time series may

provide information about the complexity of the

system under investigation. The sequence of sam-
ples is studied in the space-state approach which
is able to depict periodical or non-periodical solu-
tions, stable and equilibrium points, and evalua-
tion of geometrical dimension, up to erratic be-
haviour which, in many cases, can derive from a
chaotic attractor. To discriminate between ran-
dom and chaotic behavior is a fundamental task



66

S. Cerutti et al. / Computer Methods and Programs in Biomedicine 51 (1996} 51-73

SR HE P
RUFEENWYY

0.5 WAOMUMOF FUNCTION
M Tk A
X —o—7
. —— hA
. b
40 45 50 55 60 65 70 75 80 85 90 985 100 105 110
CHANNEL A1- A2 VS CHANNEL B1-B2
0.7 1 MAXIMUM OF FUNCTION
]
& 4 |
—
N e
v_& a0
40 45 50 55 80 &5 70 75 80 85 90 85 100 105 110
CHANNEL A1-A2 VS CHANNEL C1-C2
0.6 1 MAXIMUMOF
0.5 0
. L
0.4 TR
0.3 o—1
0.2 ——— ha
0.1
[
40 45 SO S5 60 65 70 75 80 85 90 95 100 105

CHANNEL B1-B2 VS CHANNEL C1-C2

110 J

Fig. 11. (a) Example of temporal epileptic seizure; and (b) behaviour of the correlation indexes computed every 5 s between time

instant 40-105 s on the signal depicted in Fig. 3a.

for correct comprehension of the system dy-
namics. In this paper some basic methods for
obtaining the invariant characteristics of the sys-
tem attractor through the calculation of fractal
(non-integer) dimension, entropy and chaotic in-
dexes like Lyapunov exponents, are proposed.
The described application is aimed at studying
complex neural controlling mechanisms of heart
rate variability (HRV) regulation.

2.5.1. Methods

As the model of the system is unknown, we
have to reconstruct the system state, starting from
a measured time series.

2.5.1.1. State-space reconstruction. The dynamic
of a system with n state variables is completely
described by a vector v, (k) obtained from a sin-
gle measured variable through an embedding
procedure. That represents the scalar data with
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the sequence of discrete time series of the origi-
nal sampled signal x(k), where

v, (k) =[x(k), x(k+7),...,x(k+ (m—1)7)]

k=1, N—-(m-1r~

is a vector embedded in a space of dimension m
and delayed by an interval 7.

This is established by Takens’ theorem. He
demonstrates that the attractor reconstructed
through this procedure is definitely different from
the original but it the same qualitative features,
thus preserving geometrical invariant as fractal
dimension and Lyapunov exponents, if m >
2n +1[31]

2.5.1.2. Choice of m and 1 values. This is a
fundamental step in order to fulfill a correct
analysis of attractor properties starting from a
discrete series. The components of the recon-
structed state vector will be too uncorrelated if
the time delay is too high. On the other hand, too
small time delays could bring the system attractor
dynamics on the bisector of the m-dimensional
space. Then it would be impossible to fully inves-
tigate the complex structure of the system attrac-
tor. The existence of underlying structures with
different degrees of complexity can be properly
revealed depending on the choice of the recon-
struction step. Two different criteria have been
used to choose the optimum 7 step value:

(i) assuming the first zero of the autocorrela-
tion function; and

(i) measuring the first local minimum of the
mutual information criterion [32]. It evalu-
ates the joint probability density P between
p and g where [ p,ql = [x(7), x(¢z + 7)].

These criteria provide very different estima-
tions of 7 interval: in this way more than one
value exists for the time delay choices which have
to be evaluated, for example, by using them in the
estimation of attractor fractal dimension, as more
fully explained below.

Embedding dimension m can be determined by
an a posteriori method which estimates the sys-
tem complexity and identifies the optimum value

as m = 2D + 1. The method we propose in this
paper is the test on false nearest neighbors (FNN),
based on the evaluation of the distance between
couples of points in the state-space, for growing
values of m, until self crossings of trajectory,
which are generated by a projection in a low-
dimensional space, can be excluded [33].

After the reconstruction procedure, the quanti-
tative analysis of the attractor properties allows
determination of the fractal dimension of system
attractor and the Lyapunov exponents. The flow
charts depicted in Figs. 12 and 13 summarize the
conceptual procedure for assessing the two invari-
ant parameters.

2.5.1.3. Fractal dimension D. The geometric di-
mension of the system attractor is described by
the fractal dimension parameter whose non-in-
teger values are imposed by the fractal structure
of the attractor in the state-space.

The estimation of the fractal dimension for
experimental data sets can be performed using

Very complex system: a large number n of variables contribute in the generation of dynamics

the dimension 4 of the system
attractor is unknown

the embedding space m is
measured by the proposed

criteria d + incr.
recalculation

this step implies the choice ATTRACTOR of

of the T interval by the test on RECONSTRUCTION

the Autocorrelation Function or
by the Mutual Information Content
(see text)

estimation of fractal dimension d
by using the correlation dimension
algorithm [see text]

CALCULATION OF D,
(ESTIMATION OF d)

the estimated value does not satisfy
the expected value

the estimiated dimension is correct
for the attractor

[ FRACTAL IHMENSION ESTIMATION

Fig. 12. Flow chart of the procedure for the estimation of
fractal dimension of the system attractor when the model of
the system is unknown. The illustrated procedure summarizes
the conceptual steps as presented in the method section.
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number of system variables is always unknown

Attractor dimension d has the value e

estimated in Fig. 12
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i increase of
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choice of the time-delay ©
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Fig. 13. Flow chart of the estimation of Lyapunov exponents
spectrum starting from a trajectory reconstructed from a time
series and taking as reference value the estimation D, of the
fractal dimension. The operative rule, for the choice of the
correct exponent number, based on the comparison between
D, and Dy value, is illustrated.

the correlation dimension parameter (D,). D,
provides an inferior bound for the fractal dimen-
sion D of the system attractor as it was demon-
strated that D, < D [34]. Its value will reach the
true dimension value if the whole attractor is
investigated: this means that a long enough series
of data have to be considered. D, could also
represent an index of system complexity in terms
of number of state variables which contribute to
generate dynamics in the state-space. The algo-
rithm evaluates the spatial correlation between
attractor points calculating a correlation integral
for each different m dimension:

Cole) = lim N(N

- 5 B

- (e — | v (k) - vm(kj)l)

when N is the number points, v, (k) the state
vector reconstructed in the m-dimensional space,
€ the correlation length and 6 the Heaviside
distance.

For small € values, it can be demonstrated that
C(e) = €”:. Consequently, D, value is obtained
as the slope of the linear zone in the plot of C(e)
versus € in log-log scale. The slope of the curve is
an increasing function of the embedding value m
until a saturation is noticed, providing the D,
value. This corresponds, in the flow chart of Fig.
12, to change the hypothesis about the dimension
D which is unknown and, in the same time, to
increase the m value. The procedure stops when
the calculated and the supposed value of D do
not change for any increase of parameters. Satu-
ration should not happen for non-deterministic
series but spurious saturation could be found if
the signal is a stochastic colored noise. For this
reason, it is necessary to perform a determinism
test on time series by destroying the Fourier
phases and substituting them with a sequence of
random numbers [35]. If the saturation of D,
parameter is due to a stochastic colored noise it is
likely that it does not change after randomization:
on the contrary, deterministic signals do not show
saturation anymore after randomization.

2.5.1.4. Lyapunov exponents. Chaotic systems,
in particular, show marked dependence from ini-
tial conditions. That means that small differences
at the starting time will be relevant after few time
intervals of system evolution, as trajectory of
chaotic system attractor exponentially diverges.
Lyapunov exponents (L) represent a quantitative
measurement of this phenomenon: a positive L;
means chaos. The larger the exponent, the more
chaotic the system.

In the trajectory evolution, after a time ¢, an
infinitesimal hypersphere of radius r centered in
a point that belongs to the attractor in the F
dimension hyperspace, will become an ellipsoid.
Between its principal axis r(¢) and the initial
radius r,, a correspondence is then established

r(t) =rpet

where L, is the i-th Lyapunov exponent (mea-
sured in bit/s).
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Each principal direction of the ellipsoid under-
goes a deformation which is univocally described
by one Lyapunov exponent. Stretching and fold-
ing process originates a divergence and then al-
ways in chaotic systems, almost one L; is positive.
Negative values of exponents indicate a conver-
gent trajectory instead. For a periodic signal, due
to the superimposition of all trajectories, L, is
equal to 0 and no convergence or divergence is
noticed. Completely casual signals are character-
ized by equal value exponents as they have the
same number of convergent and divergent trajec-
tories. The number of L, equals the number of
system dimension and the entire set of L, is
called spectrum of exponents. Each L, identifies
a direction in the state-space. The method we
present here is from Eckmann et al. [36]). If the
system evolution law is known, as in the classical
attractors (i.e., of Lorenz, Rossler, Henon and so
on), the estimation of L, from trajectory is cor-
rect. In biological time series a large amount of
data is required in order to enhance the dynamics
of trajectory evolution in the whole attractor, thus
assuring a more consistent statistical analysis with
regard to the attractor properties. Furthermore,
as the state-space dimension of the system attrac-
tor is unknown, the algorithm calculates a spec-
trum of exponents whose number equals the m
dimension (m is a parameter of the algorithm).
Thus if m is too large the so-called ‘spurious
exponents’ are introduced by the algorithm,
changing the spectrum in an erroneous way. Fig.
13 illustrates the estimation procedure of LE, by
providing an operative criterion for the choice of
the correct dimension of the state-space recon-
struction and then for the correct LE spectrum
estimation.

Kaplan and Yorke conjectured that from the
LE spectrum one could also obtain information
about the fractal dimension of the attractor. Lya-
punov or Kaplan-Yorke (D, or Dy, ) dimension
is defined as follows:

L+L,+...+L,
|Lj+ll

Dyy=j+

J is the progressive number of exponents obtained
when adding the exponents themselves one at a

time (in decreasing value) until the sum remains
positive. The j + 1 exponent changes the sign of
the sum (from positive to negative) [37]. The idea
is that only the positive dynamical contributions,
coming from the stretching of trajectories, are
involved in the generation of the fractal structure
of the attractor.

The conjecture provides a link between dy-
namic and geometric properties of the system
attractor. In the block diagram the value of D, is
compared with the D, value previously estimated
and the correct dimension m of the spectrum is
obtained when the two estimations of fractal di-
mension provide similar values.

This approach also allows estimation of the
entropy value K. It is defined as the sum of
positive exponent values, supposing that the
stretching behavior generates fractal structure of
the attractor.

2.5.2. Results: non-linear dynamics in heart rate
variability (HRV) signal analysis

The methods previously introduced have been
applied to HRYV signal which contains informa-
tion about the regulation, of the cardiovascular
system, by the autonomic nervous system (ANS)
through the action of its sympathetic and
parasympathetic branches. The coupling between
these two physiological oscillators generates the
variety of behaviour one can identify in the HRV
signal.

The series of R-R intervals in the 24 h was
collected from ECG Holter recordings through
the automatic recognition of QRS maxima [38].
Nine normal subjects (N) and patients with car-
diovascular diseases and nine with severe heart
failure (HF) and 7 with orthotopic transplants (T)
were studied to assess if non-linear mechanisms
were identifiable in cardiovascular regulating dy-
namics. Series of approximately 20000 or more
points were selected in the 24 h, separating day
and night epochs. The entire amount of the series
is approximately 100000 or more samples.

Correlation dimension and entropy show a de-
crease passing from normal to pathological sub-
jects. D, = 6.8 + 1.41 for N, 5.2 + 1.8 for HF and
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4.5 + 1.5 for T patients. HRV signal in pathologi-
cal subjects seems more predictable and then
depleted of information in respect of the normal
ones. The number of state variables involved in
the normal HRV regulation is high and the
state-space representations of trajectories also
confirms it. It is difficult to identify orbits or
structures in N subjects by using the 2-dimension
maps; for pathological and less complex patients
instead interesting pseudo-regular orbits are
recognisable.

Finally, the positivity of the Lyapunov expo-
nents, when the entire spectrum is calculated, is a
good confirmation of the chaotic dynamics in the
HRYV signal. For really noisy data the overall
spectrum of A; also provides the estimation of
entropy (sum of positive exponents) and Dy, .
This confirms an information (or complexity) loss
in pathological subjects. First A, value decreases
passing from healthy to diseased subjects and
from the day to the night epoch.

3. Conclusion

The methods introduced in the present paper,
as well as the reported results, confirm the hy-
pothesis that non-linear algorithms of signal pro-
cessing are capable of enhancing important infor-
mation from both the physiological and clinical
points of view. In many instances they present a
better performance in respect to the linear ones.
On the other hand, it is important to stress the
fact that many of them are still at the develop-
ment phase and need further evaluation and vali-
dation. From a review of the presented methods
of signal processing it is possible to establish the
following conclusive remarks.

Burst Suppression (BS) pattern appears in EEG
signal after ischaemic brain damage or in deep
anaesthesia. In clinical work the pattern can occa-
sionally be seen during clinical operations. The
more important, in the case of treatment of in-
tractable epilepsy by means of deep anaesthesia,
BS EEG is often monitored for days and comput-
erised analysis of the data is needed. In this paper
we showed that due to the non-linearities in the
BS pattern, median type algorithms can have an
advantage over linear methods in processing and

detection of the pattern. Successful detection of
the DC-shift during bursts enables the distin-
guishing of BS pattern from similar patterns dur-
ing normal sleep. It has been pointed out recently
that epileptic discharges can occur during BS and
they are often difficult to discriminate from bursts
[39). Using the Tsay’s non-linearity test, Loula et
al. [40] found the respiration signal was essentially
of non-linear characteristics. We suggest that al-
gorithms based on non-linear median type opera-
tion can be useful in processing this kind of
signal.

The disadvantage of using median type filters
has been the lack of theoretical tools describing
the performance of the filters. However, the op-
timisation algorithms significantly reduce the risk
of getting unwanted results. Much work is cur-
rently being done to further extend the theoreti-
cal basis of median type filtering. In the case of
long filter windows, which usually occurs in pro-
cessing physiological signals, the sorting operation
is time consuming. However, this disadvantage
can be overcome by choosing a filter structure
which reduces the number of inputs to the WOS
operation by a suitable combination of FIR sub-
filters. For a certain application, a sufficiently
good initial weight vector, common to all cases,
can usually be found and fast adaptation algo-
rithm of Eq. 2.1.12 can be used. Median type
filters have been successfully applied to trend
detection problem in physiological signal process-
ing. The recent development in the theoretical
background of median type filtering broadens the
area of applications of these filters significantly.
These applications include, e.g. pattern recogni-
tion, adaptive segmentation, data compression,
prediction, and data modelling. The performance
of median type methods should be compared with
that of conventional methods and in those appli-
cations where the enhancement in performance
outweighs the increased computational complex-
ity, the new methods should be used.

One of the major drawbacks of the conventio-
nal evoked potential technique in clinical applica-
tions is the relatively long data acquisition period
necessary to obtain sufficient averages for reach-
ing an acceptable signal to noise ratio. Using the
technique presented here, this disadvantage is
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significantly decreased. A paper currently under
preparation (van de Velde et al) shows that in
auditory evoked potential monitoring a decrease
in necessary data acquisition time is required to
obtain a satisfactory signal to noise ratio of up to
60%.

The possibilities of obtaining information about
the non-linear properties of sensory pathways us-
ing this technique seem to be limited to the
characterisation of second order effects. The small
number of averages available for the determina-
tion of higher order terms is insufficient to obtain
a reasonable signal to noise ratio. Until now, we
did not investigate the second order effects in a
quantitative manner and therefore few state-
ments can be made or conclusions drawn about
the practical meaning of these data.

The Wiener-Volterra technique described here
has been applied in various clinical studies, mainly
during anaesthesia. The main advantage is that
the first order kernel, A (7) can be used as a
substitute for the conventional evoked response
providing a better signal to noise ratio in a smaller
data acquisition period. The usefulness of the
second-order effects in clinical practice remains
unclear. It must be emphasized that the data
presented here are acquired under optimal
laboratory conditions and it will be difficult to
further improve the signal to noise ratio. Never-
theless this technique allows the investigation of
non-linear properties without using parametric
models and as such it provides a powerful tool for
basic neurophysiological brain research.

The use of multivariate estimators of location
that are based on data ordering gives the pro-
posed LVQ variations robustness against erro-
neous choices of the winner vector, a feature that
can be very important when overlapping clusters
exist. Furthermore, outlying observations, i.e.
observations that do not belong to any of the
clusters, have little effect on the weight vectors.
These properties result in an enhanced perfor-
mance of the proposed algorithms. Moreover, the
performance of both MMLVQ and VMLVQ does
not depend on the choice of any parameters,
unlike the linear LVQ whose performance de-
pends on the choice of an appropriate adaptation
step sequence a(t). Finally, when the input data

are integer-valued the learning procedure of
MMLVQ does not involve any floating point
arithmetic. If this feature is used in conjunction
with the running median calculation algorithm, a
very computationally efficient realisation of MM-
LVQ can result.

The clustering ability of the proposed algo-
rithms can be of great importance in many
biomedical applications where multivariate data
are involved, e.g. in cases where simultaneous
recording and interpretation of a number of phys-
iological variables is required. In such cases the
new algorithms can be used to segment in an
unsupervised and robust way the input space into
a number of meaningful entities, thus revealing
the inherent structure of the input data as well as
the relations between the recorded variables.

Results on simulated and experimental signals
may lead to estimate causality among EEG sig-
nals. This study, based on a quantitative compar-
ison, has shown that the interpretation of real
data is not an easy task due to the sensitivity of
the methods with respect to the nature of the
signal and the non-linear transformation. This
study raises others fundamental questions about
(i) the delay, (ii) the measurement of the causal-
ity, (iii) the estimation of the non-linearity. A
major problem is to estimate objectively the per-
formance of methods on real data. For example,
what does the delay means when an observed
sequence is built from a mixture of signals with
different delays? How could one take into ac-
count the dynamic behaviour of the transmission
channel as suggested by the example here de-
scribed? At a methodological level, we are now
developing dependency tests based upon the
statistics of the coherence function [27] and the
cross-bicoherence [30] that could help in solving
the measurement of the causality.

The failure of non-parametric methods for
some non-linear transformations calls for the
evaluation of linear and non-linear models (such
as Volterra series).

The calculation of various and different
parameters in the long-term (24-h) ECG record-
ings suggests that non-linear dynamics are in-
volved in the generation mechanism of HRYV sig-
nal. In particular, geometric invariants such as D,
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(correlation dimension) and K (entropy) show
that the signals involved are characterised, in the
normal cases, by a high value of complexity, which
decreases when considering the pathological sub-
jects. Further, the fact that a positive Lyapunov
exponent is always found in the normals, brings
us to the conclusion that a possible chaotic mech-
anism might be considered in the complex physio-
logical model underneath. Such a positivity sig-
nificantly decreases when passing to the patholog-
ical subjects. The plotting of the samples in the
state-space diagram presents various orbits and
trajectories which may be considered as a realisa-
tion of a strange attractor phenomenon: in partic-
ular, systems with lower complexity (generally less
than 3.0, such as in transplanted heart patients)
show such a behaviour directly in a two-dimen-
sional plot. The interpretation of results seems
consistent with a complex cardiovascular physi-
ology which presents characteristics of multidi-
mensionality, redundancy and shows, in the long-
term regulation, chaotic properties as well as
fractal geometrical structures.
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