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Binary morphological shape-based

interpolation applied to 3-D tooth

reconstruction

Adrian G. Bor�s, Lefteris Kechagias and Ioannis Pitas

Abstract

In this paper we propose an interpolation algorithm using a mathematical morphology morphing approach. The

aim of this algorithm is to reconstruct the n-dimensional object from a group of (n�1)-dimensional sets representing

sections of that object. The morphing transformation modi�es pairs of consecutive sets such that they approach

in shape and size. The interpolated set is achieved when the two consecutive sets are made idempotent by the

morphing transformation. We prove the convergence of the morphological morphing. The entire object is modeled

by successively interpolating a certain number of intermediary sets between each two consecutive given sets. We

apply the interpolation algorithm for 3-D tooth reconstruction.

Keywords: Shape-based interpolation, mathematical morphology, morphing.

I. Introduction

In many tasks we have to extract object information from a group of sparse sets. Particularly, in medical

applications, parts of human body are represented by an image sequence of parallel slices. These slices can

be acquired by magnetic resonance imaging (MRI), computer tomography (CT) or by mechanical slicing

and digitization. Most often the distance between adjacent image elements within a slice is smaller than

the distance between adjacent image elements in two neighboring slices. In such situations it is necessary to
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interpolate additional slices in order to obtain an accurate description of the object for volume visualization

and processing [1]. There are two main categories of interpolation techniques for reconstructing objects from

sparse sets: grey-level and shape-based interpolation.

Grey-level interpolation methods employ nearest-neighbor, splines, linear [2], or polynomial interpolation.

Other algorithms employ feature matching [3] or homogeneity similarity [4] for determining the direction of

interpolation.

Shape-based interpolation algorithms are usually employed on binary images. These interpolation methods

consider shape features extracted from the object sets. A distance function from each pixel to the object

boundary is considered for interpolation in [5]. In [6] is introduced an interpolation-extrapolation algorithm

which has similarities with that from [5]. Other extensions of the algorithm described in [5] are proposed

in [7] and [8]. Among six di�erent algorithms, the one based on a chamfer distance and using a modi�ed

cubic spline was found to provide the best results in [7]. An interpolation algorithm which uses the elastic

matching algorithm, spline theory and surface consistency is considered in [9]. Shape-based interpolation

methods have been shown to outperform other interpolation methods in [10]. A mixed gray-level and shape-

based method is used for interpolation in [11]. Each slice is represented as a surface by a \lifting" procedure.

The intermediary slices are obtained by interpolating the resulting surfaces and converting the interpolated

surface back to an image by a \collapsing" operation.

Mathematical morphology provides a good theoretical framework for shape modeling and interpolation

[12], [13]. Erosion and dilation are basic morphologic transformation operations. In [14] each slice is eroded

until its number of pixels becomes half of the sum of its initial number of pixels and those of the next slice.

Morphing based on a distance transform is used for slice interpolation in [15]. Interpolated sets in [16] are

generated from a succession of skeletons derived from the matching of two neighboring set skeletons. The

skeleton by in
uence zones transform (SKIZ) employs dilations of the intersection and of the complementary

of the union of two neighboring sets [17].

In this paper we propose a new binary morphological morphing approach for interpolation. The morphing

transforms two neighboring sets by combinations of dilations and erosions. The transformation is iteratively

performed in such a way that the resulting sets become more similar to each other with respect to both
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shape and dimension. We de�ne a distance measure for assessing the di�erence between the original and

the morphed shape. The interpolated set corresponds to the idempotency of the two morphed sets after a

certain number of iterations. Idempotency is achieved when the di�erence of the morphed sets is zero. The

morphing transformation is applied repeatedly on the new stack of interpolated sets until an appropriate

object shape is achieved. We employ the morphological morphing approach for reconstructing 3-D teeth

from digitized slices.

This paper is organized as follows. Section II describes the morphological morphing transformation and

Section III the interpolation algorithm. In Section IV we provide some experimental results, while the

conclusions of this study are drawn in Section V.

II. Morphological morphing

Let us consider that we are provided with two sets representing two shapes, denoted by P and Q, in

an n-dimensional space denoted as E. Shape morphing is a technique for constructing a sequence of sets

showing a gradual transition between the two given shapes. In the following, we describe a morphological

morphing transformation.

The simplest morphological operations are the dilation and erosion [12]. These operations correspond to

the Minkowski set addition and subtraction. The dilation of a set P by using the structuring element B is

given by :

P �B =
[

b2B

Pb (1)

where � denotes dilation and Pb represents a structuring element centered onto an element of the set P .

The erosion of a set P by using the structuring element B is given by :

P 	B =
\

b2B

Pb (2)

where 	 denotes erosion. The most commonly used structuring element is the elementary ball of dimension

n. The dilation with the elementary ball expands the given set with a uniform layer of elements while the

erosion operator takes out such a layer from the given set.

The basic mathematical morphology operations de�ned above can be used to derive complex processing

operations [12], [13]. Let p0 2 P and q 2 Q be the elements of the sets P and Q. Let w : p0 �! p be an
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allignment transform that alligns P with Q, such that we have f9(pm; qm)jpm 2 P; qm 2 Qg. The allignment

operation is done according to an (n � 1)-dimensional hyperplane (axis for 2-D sets) using matching of

corresponding features or a centering operation. We de�ne the complement (background) of the set P by

P c = E � P . After alignment, each element pm will have a corresponding element qm which may be a

member of the other set qm 2 Q, or may be part of its background qm 2 Qc. In [5] algorithms that use

distance transforms for morphing interpolated sets by adding or removing layers of elementary units have

been proposed. In [17] the skeleton by in
uence zones (SKIZ) was used for set and function interpolation.

The interpolated set in [17] is obtained by means of successive dilations of the sets P \Q and E � (P [Q),

until idempotency is achieved. However, such an approach does not correspond to a natural morphing of

one set into the other one.

The morphing transformation proposed in this paper ensures a smooth transition from one shape set to

the other one by means of several sets whose shapes change gradually. Firstly, our transformation in
uences

the elements located on the boundary of the set P :

CP = fcjc 2 P; 9c1 2 P c; c1 2 NB(c)g (3)

where NB(c) denotes the neighborhood of the element c, having the same size and shape as the structuring

element B. In our morphing operation, the elements of a boundary set CP are changed di�erently according

to their correspondences on the other given set Q [18], [19]. These changes are de�ned in terms of mathe-

matical morphology basic operations such as dilations (1) and erosions (2). We can identify three possible

correspondence cases for the elements of the two aligned sets. One situation occurs when the border region

of one set corresponds to the interior of the other set. In this case we apply the morphological operation of

dilation to the border elements :

If pm 2 CP ^ qm 2 Q� CQ

then perform pm �B1

(4)

where B1 is the structuring element applied on the set P and CQ is the boundary of set Q. A second case

occurs when the border region of one set corresponds to the background of the other set. In this situation
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we have erosions of the boundary elements :

If pm 2 CP ^ qm 2 Qc

then perform pm 	B1

(5)

No modi�cations are performed when both corresponding elements are members of their sets boundary :

If pm 2 CP ^ qm 2 CQ

then perform no change

(6)

The last situation corresponds to regions where the two sets coincide locally and no change is necessary,

while (4) and (5) correspond to morphing transformations.

By including all these local changes, we de�ne the following morphing transformation applied on the set

P depending onto the set Q and on the structuring element B1 :

f(P jQ;B1) = [(P 	B1)
[
((P
\

Q)�B1)]
\

(P
[

Q) (7)

A similar morphing operation is de�ned onto the set Q depending on the set P and on the structuring

element B2 :

f(QjP;B2) = [(Q	B2)
[
((Q
\

P )�B2)]
\
(P
[

Q) (8)

According to these transformations, the intersection of the two sets P \Q is always retained by the morphing

operations (4), (5) and (6). One set will be eroded in those regions which correspond to the background of

the other set while it will dilate in regions which correspond to the interior of the other set. The proposed

morphing operation creates a new set which is a subset of P
S
Q.

In the proposed morphing algorithm, a particular situation occurs when the erosion of the �rst set includes

the dilation of the second set :

(P 	B1) � (Q�B2) (9)

We can easily observe that, in this case, (7) and (8) simplify to :

f(P jQ;B1) = P 	B1 (10)

f(QjP;B2) = Q�B2 (11)
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This situation is illustrated for 2-D sets in Figure 1a. On the other hand we have the case when both P and

Q contain subsets which are not included in the other set, i.e., P �Q 6= � ^ Q� P 6= �. In this case, the

operations de�ned by (7) and (8) are illustrated in Figure 1b.

The result of the morphing operation applied on either set is a new set. These morphed sets are closer to

each other in shape structure and size. In order to measure their similarity we de�ne a shape distance. Let

us consider a structuring element B(R) as a ball of radius R. Such a structuring element can be obtained

from an elementary ball (ball of unit radius) after R successive dilations using the elementary ball as the

structuring element. Let us de�ne a shape distance between the original set and the morphed set as given

by the size of the structuring element R. We conventionally assume a positive and a negative direction of

morphing. After morphing the sets P and Q with the same structuring element B(R), the distance of the

morphed sets to their originating sets is :

d(f(P jQ;B(R)); P ) = �d(f(QjP;B(R)); Q) = R (12)

where the negative distance has been conventionally assigned. In the general case this shape distance is not

symmetrical :

d(P;Q) 6= d(Q;P ) (13)

For isotropic interpolation we use identical structuring elements, B1 = B2 = B, when morphing the two

sets. In this case each morphed set is equi-distant to its original set. The distance de�ned in (12) does not

depend on the number of elements (pixels in a discretized 2D space) eroded or added, but on the structural

di�erences between the two shapes that are morphed and on the structuring element size. In the case

when the elementary ball is used as structuring element, the shape distance between the original set and its

morphing is 1.

III. Geometrically constrained Interpolation

The morphing operation de�ned by (7) and (8) is applied iteratively onto the sets resulted from the previous

morphings. The succession of morphing operations creates new sets derived from the two initial extremes.

With each iteration these sets are closer in shape and size to each other. 3-D natural exempli�cations of this

morphological morphing approach can be found in tree rings and in crystal layer structures. By employing
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an allignment operation w we can ensure that P
T
Q 6= �. The morphing interpolation is based on the

following theorem :

Theorem 1: Always we can generate an intermediary set between two sets P and Q, satisfying P
T
Q 6= �,

by iterating the set transformations de�ned in (7) and (8) onto their previous iteration output sets, until

idempotency.

Proof: In order to prove the morphing interpolation convergence to idempotency let us consider a set Y ,

representing the XOR operation for the two given sets :

Y (Q;P ) = XOR(Q;P ) = (Q
[

P )� (Q
\

P ) (14)

We assume that the local morphing termination condition (6) does not occur at the next morphing iteration,

which implies that :

[(Q
[

P )	B] � [(Q
\

P )�B] (15)

In this case we observe that by considering (7) and (8) and by grouping the resulting set components we

obtain :

Y (f(P jQ); f(QjP )) = [f(P jQ)
S
f(QjP )]� [f(P jQ)

T
f(QjP )]

= [((Q
S
P )	B)� ((Q

T
P )�B)]

T
(Q
S
P )

= Y (Q;P )	B

(16)

where for the sake of simpli�cation we dropped out the dependency on the elementary structuring element

from the expression of the morphing transformation. The morphing rules outlined in (4), (5) and (6) are

employed in the successive morphing operations. We can observe that erosion applies everywhere on the

set Y , excepting for the points which ful�ll the condition (6). Such points are not eroded. There is a clear

interdependence between the set Y de�ned in (14) and the morphological shape distance de�ned in (12).

While with each iteration the set Y is eroded as it is shown by equation (16), the distance between the

resulting sets, morphed from P and Q, decreases correspondingly :

d(f(P jQ); f(QjP )) = d(P;Q)� d(f(P jQ); P ) + d(f(QjP ); Q) = d(P;Q) � 2 (17)

where we have considered an elementary structuring element. Let us denote the morphing at iteration t,

initiated from the sets P and Q, by ft(P jQ) and ft(QjP ), respectively. As we have seen above, the morphing
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transformation corresponds to the conditional erosion of the set Y . According to the relationship (17) at

each iteration the distance between the morphed sets decreases. The equation (6) represents a local stopping

condition which is likely to extend with each iteration to a larger amount of elements from the boundary of

the morphed sets. We can observe that this happens simultaneously with the shrinkage of the set Y which

eventually becomes a closed contour. The interpolation termination condition corresponds to the case when

we ful�ll the morphing termination condition of (6) for all the boundary points of the two morphed sets. In

this situation the two morphed sets become idempotent. Let us assume that this happens after t1 iterations.

Idempotency after t1 iterations is shown by a zero distance between the resulting morphed sets :

d(ft1(P jQ); ft1(QjP )) = 0 (18)

Let us denote by M̂ the set obtained at the idempotency of the morphing transformation :

M̂ = ft1(P jQ) = ft1(QjP ) (19)

This set has similarities to both initial sets P and Q. The set M̂ is equidistant, according to the distance

measure de�ned in (12) to the original sets :

d(P; M̂ ) = �d(Q; M̂) (20)

The existence of a set which is equidistant to the initial sets and which corresponds to the case when the set

Y becomes a contour proves the convergence of the morphing Theorem 1.

These results can be easily extended to discrete sets. Elements in such sets consists of hypervoxels in an

n-dimensional space (pixels for 2-D sets). In order to exemplify this result we consider the 2-D sets from

Figures 2a and 2b. The initial di�erence set Y (P;Q) is shown in Figure 2c. After �ve iterations (t1 = 5)

using the structuring element from Figure 3 we get the interpolated set M̂ , displayed in Figure 2d. In this

case, the distance between the interpolated set and the original sets is:

d(P; M̂ ) = �d(Q; M̂) = 5 (21)

which is equal to the number of morphing transformations performed by each of these sets until idempotency.

The morphing in this example required mostly rectangular to circular shape transformations. We can observe
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that, despite certain discretization errors, the morphing transformations resulted in a good interpolation

result. The interpolated set has similarities to both initial sets, shown in Figures 2a and 2b.

All the above assumptions and derivations rely on the fact that we have identical structuring elements for

morphing both sets P and Q. In this case the resulting interpolated set is at equal distance to the given

two sets according to (20). However, in certain situations, we may want to interpolate a set, which is at

smaller distance to one or another of the given two sets, by using a priori knowledge. We can either use a

larger structuring element for eroding/dilating the set which should be less similar to the interpolated set,

or repeat the morphing for an additional number of times on that set using the same structuring element.

In the case when considering discrete sets, these two approaches can provide slightly di�erent results due to

the discretization and approximation of the spherical structuring element on a discrete grid. Let us assume

that we would like an interpolated set whose shape distance ratio to the initial sets is given by :

jd(P; M̂ ;B1)j

jd(Q; M̂;B2)j
=
k1
k2

(22)

where we assume a structuring element B1 for morphing P and B2 for morphing Q. The ratio between the

radii RB1 and RB2 of two hyper-spherical structuring elements, is given by :

RB1

RB2

=
k2
k1
: (23)

Let us consider an ordered group of sets P0; P1; : : : ; PN�1, representing cross-sections of a certain object,

where N represents the total number of sets. The morphing procedure presented above interpolates a new

group of sets between each two consecutive sets. In the general case, each new set is equi-distant to the

original neighboring sets. The initial and the interpolated sets will form a new group of sets which can

be used for a better visualization of the given 3-D object. We repeat the same procedure on the new

pairs of consecutive sets for modeling the entire object to a �ner detail. After K repetitions, the number of

interpolated sets generated between two initial sets is 2K�1. Evidently, there is an upper limit in the number

of distinctly interpolated sets generated between two given consecutive sets. For N initial sets we obtain

(N � 1)(2K � 1) interpolated sets. The number of sets to be inserted depends on the relationship between

the slice spacing and set element size. In the case of unequally spaced cross-section sets, a di�erent number

of sets must be interpolated between each two consecutive slices. Another way to deal with unequally spaced
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interpolation would be to generate all the possible intermediary sets and to choose certain sets, according to

their desired intra-set distance. In this case the number of interpolated sets is smaller than (N � 1)(2K � 1).

The intermediate sets, denoted by P̂i+l=2K for l = 1; : : : ; 2K � 1 , represent an interpolation between the

two initial sets Pi and Pi+1. Greylevel interpolation can be performed together with the shape interpolation

[18]. The procedure of interpolation by successive morphing is exempli�ed in Figure 4.

IV. Simulation results

We have used the proposed morphological morphing interpolation algorithm for reconstructing the external

and internal 3-D morphology of several teeth. Such an application is of interest in endodontology for

representing tooth morphological structure [20]. The examples used in the experiments described in this

paper represent normal tooth shapes that are reported in the dental literature. We reconstructed several

tooth shapes using the proposed interpolation algorithm. Three examples are presented in this paper :

an incisor (single root tooth), a premolar (two-root tooth) and a molar (three-root tooth). These teeth

have been mechanically sliced and digitized. A set of incisor slices in resin is displayed in Figure 5. The

tooth borders as well as the root canal in each slice are segmented and the resulting slices are aligned using

a semi-automatic procedure. Aligned slices are displayed in Figures 6a, for the incisor, in Figure 6b, for

the premolar and in Figure 6c for the molar, respectively. We have used the morphological interpolation

algorithm described in Sections II and III in order to reconstruct the teeth from the given initial set of

slices. In the case of the incisor the morphing algorithm is applied iteratively four times. Thus we eventually

produce 21 � (24 � 1) + 22 = 337 slices from only 22 original slices. A set of interpolated frames from the

incisor sequence is displayed in Figure 7. We can observe from this �gure that both canal and outer tooth

surface are being smoothly changed from one slice to the next one. A greylevel interpolation algorithm

[18] was used together with the proposed shape-based interpolation algorithm. This result shows a smooth

transition even between slices having large geometrical variations in shape. 3-D reconstructions from two

di�erent viewing angles are shown in Figures 8a, 8b, for the incisor, in Figures 8c, 8d for the premolar,

and in Figures 8e, 8f for the molar, respectively. These volumes are reconstructed from the initial slices

shown in Figure 6. In all these �gures we can observe that the 3-D volumes are well reconstructed. The

interpolation of the premolar and of the molar image sequences show the capability of morphing between
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slices with disconnected sets and those having compact sets. The morphology of the reconstructed teeth is

quite accurate despite the fact that a large number of slices has been interpolated.

We have compared the mathematical morphological interpolation algorithm with a linear interpolation al-

gorithm. The linear interpolation algorithm calculates line segments between pixels on object contours of the

two slices, in both horizontal and vertical directions. The midpoints of these segments are considered as the

interpolated slice contour by this algorithm. We have applied the linear interpolation algorithm on the incisor

sequence displayed in Figure 6a. We employ a measure for assessing the performance provided by various

interpolation algorithms in the following way. Let Pi, Pi+1 and Pi+2 be three original tooth slices and P̂i+1

be the result of interpolating Pi and Pi+2. Let jP j denote set cardinality. The ratio jY (P̂i+1; Pi+1)j=jPi+1j

representing the percentage of wrongly estimated pixels can be used as a performance measure. In Table I

we provide the results for reconstructing three di�erent slices from the incisor group of sets as well as the

average result for reconstructing any intermediary slice Pi+1 from the given pair of sets Pi, Pi+2 for any

i 2 f1; N � 2g, where N is the number of initial sets. In order to assess the di�erence between original slices

we provide the normalized slice di�erence between the two slices used for interpolation. The case when using

the 10th and the 12th slices for estimating the 11th slice is displayed in Figure 9. The three consecutive slices

are shown in Figures 9a, 9b and 9c, respectively. The interpolated slice by morphological morphing approach

is displayed in Figure 9d, while in Figure 9f we show the result provided by the linear interpolation approach.

The di�erence between the interpolated and the original set are shown in Figure 9e for the morphological

morphing interpolation and in Figure 9g for the linear interpolation. We can observe that the interpolated

slice by morphing is more similar to the original slice than that interpolated by linear interpolation. The 3-D

molar reconstructed by linear interpolation is displayed in Figure 10a, while in Figure 10b we show the same

molar reconstructed by morphological morphing as described in this paper. For comparison purposes both

these volumes are visualized from the same view angle. We can observe that the shape of the molar is better

reconstructed by the morphological morphing algorithm than by linear interpolation. These graphical results

together with numerical results from Table I show that the proposed morphological morphing interpolation

algorithm provides good experimental results in the case of 3-D tooth reconstruction from digitized slices.
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V. Conclusions

In this paper we propose a morphological morphing algorithm. We consider a group of sets representing

sampled object cross sections at various depths. The proposed interpolation algorithm relies on a morphing

transformation of each of two sets into the other one. The interpolated set is obtained for the idempotency

of the morphed sets from neighboring slices under the proposed morphological transformation. This set has

similarities in shape and size with both initial neighboring slices sets. The algorithm is iteratively repeated,

by considering new pairs of neighboring slices, until generating an appropriate number of interpolated sets.

After describing the algorithm we provide experimental results of its application for reconstructing the shape

of various teeth from slices. The purpose of this algorithm is to create a database of various types of teeth.

Such tooth volumes can be used for a virtual tooth drilling simulator in pre-clinical dentistry student training.
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TABLE I

Objective comparison measure between morphological morphing and linear interpolation when reconstructing

an incisor.

Frame Morphological Linear

Frames Di�erence (%) Morphing (%) Interpolation (%)

i,i+1,i+2 jY (Pi+2;Pi)j
jPij

jY (P̂i+1;Pi+1)j
jPi+1j

jY (P̂i+1;Pi+1)j
jPi+1j

4,5,6 62.9 5.9 11.925

10,11,12 26.8 6.84 9.46

18,19,20 27.2 7.5 14.28

Average results on

the entire volume 51.5 9.25 11.46
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Q

P

QP

(a) (b)

Fig. 1. Exempli�cation of mathematical morphology morphing. The result produced by equation (8) is represented with

dashed lines while the result produced by equation (7) is represented with dot-dashed lines. Arrows denote dilation and

erosion directions; (a) (P 	 B1) � (Q� B2); (b) P �Q 6= � and Q� P 6= �.
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(a) (b)

(c) (d)

Fig. 2. Shape based interpolation of 2-D sets; (a), (b) Original sets; (c) Original di�erence set Y (Q;P ); (d) Resulting

interpolated set.

Fig. 3. Elementary ball structuring element.
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Fig. 4. Diagram describing the interpolation algorithm using morphing of consecutive set pairs.

Fig. 5. Set of tooth slices in resin.
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(a)

(b)

(c)

Fig. 6. Segmented and aligned tooth slice sets. (a) incisor ; (b) premolar (two roots); (c) molar (three roots).
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Fig. 7. Set of interpolated slices for an incisor.
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(a) (c) (e)

(b) (d) (f)

Fig. 8. 3-D views of di�erent reconstructed teeth. (a), (b) incisor; (c), (d) premolar; (e), (f) molar.
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(a) 10th slice (b) 11th slice (c) 12th slice

(d) Morphological morphing (e) Di�erence set

interpolation

(f) Linear interpolation (g) Di�erence set

Fig. 9. Slices interpolated by morphological morphing and by linear interpolation from the 10th and 12th slices of the incisor

sequence compared with the real 11th slice.
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(a) Linear interpolation (b) Morphological morphing interpolation

Fig. 10. Reconstruction of a 3-D molar by linear interpolation and morphological morphing.


