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Abstract

In this paper a generalized framework for face verification is proposed employing discriminant techniques in all phases of elastic graph
matching. The proposed algorithm is called discriminant elastic graph matching (DEGM) algorithm. In the first step of the proposed method,
DEGM, discriminant techniques at the node feature vectors are used for feature selection. In the sequel, the two local similarity values, i.e.,
the similarity measure for the projected node feature vector and the node deformation, are combined in a discriminant manner in order to form
the new local similarity measure. Moreover, the new local similarity values at the nodes of the elastic graph are weighted by coefficients that
are derived as well from discriminant analysis in order to form a total similarity measure between faces. The proposed method exploits the
individuality of the human face and the discriminant information of elastic graph matching in order to improve the verification performance of
elastic graph matching. We have applied the proposed scheme to a modified morphological elastic graph matching algorithm. All experiments

have been conducted in the XM2VTS database resulting in very low error rates for the test sets.
© 2007 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

A well known technique for face recognition and verification
is the elastic graph matching (EGM) algorithm [1]. In EGM,
a reference object graph is created by overlaying a rectangu-
lar elastic sparse graph on the object image and calculating a
Gabor wavelet bank response at each graph node. The graph
matching process is implemented by a stochastic optimization
of a cost function which takes into account both jet similarities
and grid deformations. A two stage coarse-to-fine optimization
procedure suffices for the minimization of such a cost function.

Since its invention, EGM for face verification and recogni-
tion has been a very active research field [2-11]. In Ref. [2], it
has been shown that EGM outperforms eigenfaces and autoas-
sociation classification neural networks for face recognition. In
Ref. [3] the graph structure has been enhanced by introducing
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a stack like structure, the so-called bunch graph, and has been
tested for face recognition. In the bunch graph structure for
every node a set of jets has been measured for different instances
of a face (e.g., with mouth opened or closed, eyes opened or
closed). That way, the bunch graph representation could cover a
variety of possible changes in the appearance of a face. In Ref.
[4], the bunch graph structure has been used for determining
facial characteristics such as beard, presence of glasses or a
person’s sex.

Practical methods for increasing the robustness of EGM
against translations, deformations and changes in background
have been presented in Ref. [5]. In Ref. [6], EGM has been
proposed and tested for frontal face verification, where the
different choices for the elasticity of the graph have been inves-
tigated. A variant of the standard EGM, the so-called morpho-
logical elastic graph matching (MEGM), has been proposed
for frontal face verification and tested for various recording
conditions [7-9]. In MEGM, the Gabor features have been re-
placed by multiscale morphological features obtained through
dilation—erosion of the facial image by a structuring function
[12]. In Refs. [7,9] the standard coarse-to-fine approach [6] for
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elastic matching has been replaced by a simulated annealing
method that optimizes a cost function of the jet similarity dis-
tances subject to node deformation constraints. The multiscale
morphological analysis has been proven to be suitable for fa-
cial image analysis and MEGM has given comparable verifica-
tion results with the standard EGM approach, without having to
compute the computationally expensive Gabor filter bank out-
put. Another variant of EGM has been presented in Ref. [10],
where morphological signal decomposition has been used in-
stead of the standard Gabor analysis [6]. In Ref. [13] the use of
EGM has been extended in order to treat the problem of hand
posture recognition.

Discriminant techniques have been employed in order to en-
hance the recognition and verification performance of EGM.
The use of linear discriminating techniques at the feature vec-
tors for selecting the most discriminating features has been
proposed in Refs. [6,7,9]. Several schemes that aim at weight-
ing the graph nodes according to their discriminatory power
have been proposed [7,9,11,14]. In Ref. [11] the selection of
the weighting coefficients has been based on a nonlinear func-
tion that depends on a small set of parameters. These param-
eters have been determined on the training set by maximizing
a criterion using the simplex method. In Refs. [7,9,10] the set
of node weighting coefficient was not calculated by some crite-
rion optimization but by using the first and second order statis-
tics of the node similarity values. A Bayesian approach for
determining which nodes are more reliable has been used in
Ref. [4]. A more sophisticated scheme for weighting the nodes
of the elastic graph by constructing a modified class of support
vector machines [15] has been proposed in Ref. [14]. In Ref.
[14], it has been also shown that the verification performance
of the EGM can be highly improved by proper node weighting
strategies.

In this paper we introduce a methodology for applying dis-
criminant analysis techniques at all phases of EGM for face
verification. This methodology (abbreviated as DEGM) can be
applied to all EGM algorithms like Refs. [6,7]. More precisely,
in the DEGM, each node is considered as a local expert and
discriminant feature selection techniques are employed for en-
hancing its verification performance. The deformation of each
node is considered as a second local similarity metric that can
quantify the relationships between its neighboring nodes. The
new local similarity value at each node is produced by discrim-
inant weighting of both the feature vector similarity measure
and the node deformation. Finally, a discriminant node weight-
ing step is used in order to form the similarity measure between
face graphs. In the proposed method the individuality of human
faces is harnessed for improving the verification performance
of the EGM algorithm. The motivations of this work are also
supported by the fact that in many methods it has been shown
that the verification performance is increased by exploiting the
individuality of human features [16,17].

The novelty of the proposed approach is the exploitation of
the discriminant information in every phase of EGM. Other
approaches like Ref. [7] consider discriminant analysis only
for feature selection in the node jets or only for weighting the
local similarity measures. The combined use of discriminant

analysis for the feature selection and afterwards for the node
deformation along with the node weighting has not been pro-
posed in the literature. Indeed, in Ref. [7], the node weight-
ing strategies have been considered as alternative schemes to
linear discriminant analysis of feature vectors and they have
never been combined in a more powerful discriminant scheme.
The DEGM algorithm employs a node weighting step not as
an alternative but in order to enhance the discriminant power
of the new local similarity measures and form a single distance
between two face graphs. Moreover, a novel morphological
analysis is proposed in order to robustify the morphological
analysis against illumination changes. All the discriminant steps
in DEGM have a physical meaning in the verification proce-
dure which will be analyzed in detail in Section 2.

The outline of this paper is as follows. The problem is stated
in Section 2. The steps of the DEGM are described in Section 3.
The modified multiscale morphological analysis that has been
used in our experiments is discussed in Section 4. Experimental
results are depicted in Section 5. Finally, conclusions are drawn
in Section 6.

2. EGM revisited

In the first step of the EGM algorithm a sparse graph suit-
able for face representation is selected [3,6,7]. The facial image
region is analyzed and a set of local descriptors is extracted
at each graph node. Analysis is usually performed by build-
ing an information pyramid using scale-space techniques. In
the standard EGM, a two-dimensional Gabor based filter bank
has been used for image analysis [1]. The output of multiscale
morphological dilation—erosion operations or the morphologi-
cal signal decomposition at several scales are nonlinear alterna-
tives of the Gabor filters for multiscale analysis and both have
been successfully used for facial image analysis [7,9,10,18]. At
each graph node  that is located at image coordinates X, a jet
(feature vector) j(x) is formed:

i =1AGD, ..., feHIT, (1)

where f;(x') denotes the output of a local operator applied to
the image f at the ith scale or at the ith pair (scale, orientation)
and M is the dimensionality of the jet. The next step of the EGM
is to translate and deform the reference graph on the test image
in order to find the correspondences of the reference graph
nodes on the test image. This is accomplished by minimizing a
cost function that employs node jet similarities and, in the same
time preserves, the node neighborhood relationships. Let the
superscripts 7 and r denote a test and a reference facial image (or
graph), respectively. The L, norm between the feature vectors
at the /th graph node of the reference and the test graph is used
as a similarity measure between jets, i.e.,

CrGexhy, jxby) = i) — jxh]. )

Let 7~ be the set of all graph vertices' of a certain facial im-
age. The graphs considered in this work are rectangular graphs

! The vertices of the graphs will be referred to as nodes throughout the
paper.
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which are topologically equivalent to a rectangular subset of
72 (Z 1is the set of integers). Thus, all nodes, except from
the boundary nodes, have exactly four-connected nodes. Fig. 1
shows a typical reference rectangular graph used in this work.
Let () be the four-connected neighborhood of node /. In
order to quantify the node neighborhood relationships using a
metric, the local node deformation is used:

Caxl.xy= Y —xl) — (x7 —xH)]. 3)
SeA ()

The objective is to find a set of vertices {xﬁ (r),l € ¥} in the
test image that minimizes the cost function:

Cxh) = Y {Cr (), §(x)) + ACa(xq, X))} )
leV”

The jet of the /th node that has been produced after the matching
procedure of the graph of the reference person r in the image of
the test person ¢ is denoted as j(xﬁ (r)). This notation is used due

to the fact that different reference graphs r result to different
test jets j(xﬁ (r)). Thus, the jet of the /th node of the test graph
t is a function of the reference graph r. The notation j(xﬁ) is
used only when the /th node is in a preselected position of a
facial image.

The optimization of Eq. (4) has been interpreted as a simu-
lated annealing with additional penalties imposed by the graph
deformations, in Ref. [7]. Accordingly, Eq. (4) can be simpli-
fied to minimization of

D,(r) =Y (Cr(i(x).j(x))} subject to
let”
X =X, +5+8, [/ <max, )
where s is a global translation of the graph and d; denotes
a local perturbation of the graph nodes. The choices of A in
Eq. (4) and of dmax in Eq. (5) control the rigidity/plasticity of
the graph [6,7]. Obviously, both functions (4) and (5) define
a similarity measure between two faces. After the matching
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procedure the distance Dy (r) is used as a quantitative measure
for the similarity of two faces [6-8].

By examining carefully the EGM procedure from a pattern
recognition perspective, the following questions arise: Do all
the dimensions of the jet possess discriminant information?
Does the node deformation posses any discriminant informa-
tion? Are all the graph nodes equally significant for verifying
the identity of a facial image?

In order to answer to all these questions, a general frame-
work that enhances the verification performance of the EGM
algorithm in a supervised manner is proposed. In more detail,
discriminant techniques are used for selecting the most dis-
criminant features of every facial image class. The jet simi-
larity measure is combined in a discriminant manner with the
node deformation in order to form a local discriminant similar-
ity measure between nodes. The use of deformation in a dis-
criminant manner can be explained intuitively as follows. The
face graph has nodes that may correspond to landmarks (the
landmarks correspond to facial points) whose deformation can
be considered either as rigid or elastic for a particular face.
For example, nodes corresponding to a person’s face scars that
are in some rigid region like forehead or nose cannot be eas-
ily moved, whereas some nodes corresponding to landmarks in
lips can be moved much more freely.

If we had available the information about the elastic-
ity/rigidity of each facial region a priori, we could have in-
corporated it in the grid matching procedure. However, this
information is person specific and thus it should be retrieved
using a training procedure and taken it into account when
forming the local similarity measure between nodes. The last
step of DEGM is to learn which nodes contain significant dis-
criminant information and thus, to use proper weights when
forming the similarity measure between faces. This step is
motivated by the fact that certain facial features (e.g., beauty
spots) are more discriminant than others.

3. Discriminant Elastic Graph Matching

Unlike the other proposed approaches [6,7,14] where dis-
criminant analysis is used only in one step we propose a com-
bined discriminant architecture. The steps of this architecture
(DEGM) are the following:

e Use of discriminant techniques for feature selection at every
node. This issue will be treated in Section 3.1.

e Combination of both the node jet similarity measure and
the node deformation in a manner that exploits discriminant
information to form the new local similarity measure at each
node. This problem will be discussed in Section 3.2.

e Weighting the new similarity values at the nodes of the elastic
graphs by coefficients that are also derived from discriminant
analysis. This step is explained in detail in Section 3.3.

A brief conversation concerning the effect of the choice of
discriminant functions in the various steps will be given in
Section 5.2. In the following m(%’) denotes the mean vector of
a set of vectors 2 and N (Z') denotes the cardinality of a set %"

3.1. Feature vector discriminant analysis

The first step of the DEGM is to learn a face and node specific
discriminant function gﬁ, for the /th node of the reference face
r, that transforms the jets j(xﬁ (r)):

I ) = gL G (). (6)

The transform glr can be any linear or nonlinear discriminant
feature transform, like the ones used for face recognition and
verification [7,19-22]. We will use linear techniques in the
remaining of the section. Alternatively, nonlinear techniques
could also be used.

Before calculating the linear projections, we normalize all
the jets that have been produced during the matching of the
graphs of the reference person r to all other facial images in the
trammg set in order to have zero mean and unit magmtude jets.
Let J(X (r)) be the normalized jet at /th node. Let # C(r) and
F l, (r) be the sets of the normalized jets of the /th node that
correspond to genuine and impostor claims related to person
r, respectively. In the Fisher’s Linear Discriminant Analysis
(FLDA), the within-class and between-class scatter matrices are
used to formulate criteria of class separability [23]. For a two
class problem the within-class scatter for the vectors J(X r)
is defined as

1
N(f’ (r))

x 2

J& e

Fy(r) =

G& () —m(FL )G )

-m(ZL(r) +
x )

i eyeF @)
AGNE (7
whereas the between-class scatter is
PcPi(m(F(r)) — m(FL(n) m(F} (1))

—~m(ZLr)T, ®)

N(7,< r)
G&) —m(FL N GE ()

—m(F
Fly(r) =

where ﬁc and 13\, are the a priori probability estimates for the
genuine and impostor class, respectively.

The most common criterion used for transforming linearly
the feature vectors is the one that projects the feature vectors
in the direction of ¥/ (r) so that the Fisher’s discriminant ratio:

v () FL )

J !
WO = TR o)

(€))

is maximized [23]. The optimal projection lﬁl (r) is given by
(23]

[ —1 gl _ gl
¥ 2 SO T3 0) ~mF o) (10,
IFy ()~ (7 () = m(F ()l



2802 S. Zafeiriou et al. / Pattern Recognition 40 (2007) 27982810

It is assumed that FZW (r) is invertible, which is true in most
implementations of EGM [6,7,9,10] where the feature vector
has not more than 20 dimensions and most databases provide a
relative large number of impostor claims. Eq. (10) indicates that,
for the face verification problem, the original multidimensional
feature space is projected to a one-dimensional feature space.

The jet,/j\(xﬁ (7)), is projected to one dimension by

&) = T ). (11)

It is obvious that the one-dimensional feature space derived
by Eq. (11) is only a very limited solution to the problem
of discovering discriminant projections in a multidimensional
feature space. Recently, it was shown [24] that alternative LDA
schemes that give more than one discriminative dimensions, in
a two class problem, have better classification performance. In
the proposed method, we use the same criterion as Refs. [6,7]
that can also give more than one discriminant directions. Let
W!(r) and B!(r) be the matrices:

W= ¥
& eneF i)

—m(ZLr)T (12)

G () —mFL ()G ()

and
Boy= ),
I r)eZ e

—m(ZLr)T, (13)

G ) —mF L)) G )

the trace of the matrix W!(r) denotes the dispersion of the
impostor jets from the center of the genuine class while the
trace of the matrix B!(r) denotes the dispersion of the jets of
the genuine class from the center of the genuine class. The
optimal discriminant directions are the columns of the matrix
! (r) which is given by the maximization of the criterion:

[ () TW! ()WL ()]

JWP () = ,
) = W T ¥ (]

(14)

where tr[R] is the trace of the matrix R. This criterion is well
suited for the face verification problem due to the fact that it tries
to find the feature projections that maximize the distance of the
impostor jets from the genuine class center, while minimizing
the distance of the genuine jets from the genuine class center. If
B!(r) is not singular, then (14) is maximized when the column
vectors of the projection matrix, ! (r), are the eigenvectors of
B (r)"'W!(r).

In order to proceed to feature dimensionality reduction in
P < M dimensions the matrix ¥/ (r) should be comprised by
the eigenvectors of B/ (r)"'W!(r) that correspond to the P
greatest eigenvalues. It is obvious that B'(r) is not always
invertible since the training sets usually provide less samples
than required. Numerous methods have been proposed in order
to solve such optimization problems, like the maximization of
Eq. (14), when the matrix in the denominator is singular

[25-27]. The feature vector after discriminant dimensionality
reduction is

&) =g o) =¥ )T o). (15)

The similarity measure of the new feature vectors can be given
by a simple distance metric. We have used the L, norm for
forming the new feature vector similarity measure in the final
multidimensional space. Other choices for the distance metric
are the L norm, the normalized correlation or the Mahalanobis
distance. Another alternative distance metric that has been re-
cently introduced for LDA subspaces is the gradient direction
metric along the most discriminant direction [28].

3.2. Local similarity measure discriminant weighting

The second step of the DEGM is to combine the feature vec-
tor similarity measure and the node deformation in a discrimi-
nant manner in order to form the new local similarity measure.
In all approaches proposed so far [1,6,7], the node deformation
was only employed implicitly in the EGM stage by imposing
additional rigidity/plasticity penalties.

The node feature similarity measure between the ref-
erence person r and the test person ¢ for the /th node is
Cy (.](xi (r)), j,(xi)) and the node deformation is Cy (xﬁ (r), xl,).
Let dﬁ (r) € R be a column vector that is comprised by the
two similarity measures for the node / between the test person
t and the reference person r, i.e.,

d () =[CrGE), jxb))  Caxr),x)1T. (16)

According to the standard EGM [1,6] the node similarity value
after the matching procedure can be given by

cry=Cror)), j&by) + iCaxl(r), xby =11 A1d(r)
=pld (), (17)

where / is the constant that controls the rigidity/plasticity of
the graph [6]. In some cases / is set equal to zero [6,7] when
forming the local similarity measure. In this approach we pro-
pose to substitute the vector p, which in general contains no
discriminant information, with a discriminant transform. The
two similarity measures C s (j(x/(r)), j(x/)) and Cq(x}(r), xL)
could be considered as similarity scores that occurred from
different sensors for the same modality. Thus, its values may
range in different intervals and for robust fusion of these scores
normal}i\zation techniques can be used as Ref. [29].

Let df (r) be the vector with the normalized scores. When
performing discriminant local similarity measure weighting, we
use a discriminant function ,ulr that is a person and node specific
combination of the measure of similarity between jets and the
measure of local deformation. Its usefulness is to assign proper
weights to each of the measures. For instance, for an extremely
large interocular distance the deformation component should
be emphasized while for a scar the jet similarity should receive
a higher weight. The new local similarity measure is

clry = k@ r). (18)
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Such transforms can be constructed by using linear or nonlinear
methods for building discriminant function [30]. We have used
LDA in order to find the discriminant transform ..

Let $ZC (r) and .,%II (r) be the sets of normalized local sim-
ilarity vectors Hﬁ (r) that correspond to genuine and impostor
claims, respectively. In order to form the optimization crite-
rion, the between-class scatter matrix and the Within—clglss scat-
ter matrix of the normalized local similarity vectors dﬁ (r) are
employed. Let DlW (r) and DZB (r) be the within scatter and the
between scatter matrices, of the vectors ﬁﬁ (r), respectively. The
DIW (r) and ’]\)lB (r) can be calculated using Eqs. (7) and (8) for
the vectors dg (r), respectively. N

When using the criterion (9) for the vectors dﬁ (r) the optimal
weighting coefficients are given by Ref. [23]

Dy ()~ m(Z () — m(LL(r))
DY ()~ m( L () — m(LL )l

q = (19)

The new similarity value between the /th node of the reference
graph and the same node of the test graph is now:

iy =@ @) =4 ). (20)

Fig. 1 depicts the sequence of steps that should be followed in
order to form the new local similarity measure, defined in Eq.
(20), for the Ith node between the reference person r and the
test person 1.

3.3. Discriminant node weighting

The final step of the DEGM algorithm is to find a person
specific discriminant function f, of the new local similarity val-
ues and create the total similarity measure between a reference
face r and a test face 7. The idea here is to weight the similar-
ity measures of nodes that correspond to different landmarks
with weights that correspond to their discriminant power. The
weights should be person specific due to the fact that different
persons have different discriminant landmarks. Let ¢;(r) € RL
be a column vector comprised by the new local similarity val-
ues at every node:

e (r)=1[c}(r) ) - T, @1

where L is the number of graph nodes. The vector ¢;(r) is the
total similarity vector between the reference face r and a test
face . The standard EGM algorithm [1,6] treats uniformly all
the similarity values cf (r). That is, the total similarity measure
between a reference person r and a test person ¢ is simply the
sum of all node similarity measures:

L
Di(r) =Y ci(r) =1"¢,(r), (22)

i=1

where 1 is an L x 1 vector of ones. The proposed algorithm
should learn a discriminant function f, that is person specific
and form the total similarity measure between faces:

Dy (r) = B, (c; (r)). (23)

The transform f3. could be just a weighting vector or a more
complicated nonlinear support vector machine. We will use
LDA to create a total similarity measure between the reference
person r and a test person ¢. A modified LDA algorithm that can
cope with the small sample size problem and can be applied
in this step is the one presented in Ref. [31]. Let J ¢(r) and
7 1(r) be the sets of the total similarity vectors for the genuine
and impostor claims of the reference person r, respectively.
Let Vi (r) and V% (r) be the within scatter and the between
scatter matrices, of the vectors cﬁ (r), respectively. The Vy (r)
and Vp(r) can be calculated using Egs. (7) and (8) for the
vectors cf (r), respectively. The optimal weighting coefficients,
that are derived from the maximization of criterion (9), are the
elements of the vector w(r) [23]:

Vw ()~ m(Z 1(r) —m(Z ()
IVw ()~ m(7 () = m(T c())]
The similarity measure between the reference person r and the

test person t, after all the successively discriminant steps, is
given by

W(r)=

(24)

Dy (r) = B, (e (r) = w(r) e, (r). (25)

4. Normalized morphological facial analysis

In this section, we briefly outline the new multiscale mor-
phological analysis that is proposed in this paper for feature
extraction. The interested reader can refer to Refs. [7,9] for
motivations and details concerning the MEGM.

As was already mentioned, the first step of all EGM algo-
rithms is to build an information pyramid in the reference fa-
cial image. In the morphological EGM this information pyra-
mid is built using multiscale morphological dilation—erosions
[12]. Given an image f(x) : 2 € 22 — R and a structuring
function g(x) : 4 C & 2 > R, the dilation of the image f(x)
by g(x) is denoted by (f @ g)(x). Its complementary opera-
tion, the erosion, is denoted by (f ©g)(x) [7]. The multiscale
dilation—erosion pyramid of the image f(x) by gs(x) is de-
fined in Ref. [12], where ¢ denotes the scale parameter of the
structuring function. In Ref. [7] it was shown that the choice
of structuring function does not lead to statistically significant
changes in the verification performance. However, it affects the
computational complexity of feature calculation.

Such morphological operations can highlight and capture im-
portant information for key facial features such as eyebrows,
eyes, nose tip, nostrils, lips, face contour, etc. but can be af-
fected by different illumination conditions and noise [7]. To
compensate for these conditions, the normalized multiscale
dilation—erosion is proposed for facial image analysis. It is well
known that the different illumination conditions affect the fa-
cial region in a nonuniform manner. However, it can safely
be assumed that the illumination changes are locally uniform
inside the area of the structuring element used for multiscale
analysis. The proposed morphological features are calculated
by subtracting the mean value of the intensity of the image f
inside the area of structuring element from the corresponding
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maximum (dilation) or minimum (erosion) of the area. For-
mally, the normalized multiscale morphological analysis is
given by

(f @ ga)(x) - ’n—(f9 X, GO’)
f(x)
(fO81e)X)—m4(f, X, Gg)

if >0,
if =0, (26)
if 6 <O,

(f *gs)(X)=

where m_(f, X, %4) and my(f, X, %) are the mean values of
the image f(x —z),x—z € Y and f(x+12),X+z2 € I

inside the support area of the structuring element 4, = {z €
% : ||z|| < g}, respectively. Another implementation for the op-
erators m4 (f, X, 95) and m_(f, X, %,) would be the median
of the values of the image inside the support area of the struc-
turing element. The output of these morphological operations
forms the jet j(x'), at the graph node / that is located in image
coordinates x':

D = ((f*go )X, .o, (f % 8o (X)), F(XD,
(fxge DX, o, (f % g6 ).
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where A is the number of different scales used. Fig. 2 depicts the
output of normalized dilation—erosion for various scales used.
The upper left image is the original image extracted from the
XM2VTS database. The first nine images starting from the left
corner, apart from the upper left one, are the normalized dilated
images and the remaining nine are the normalized eroded im-
ages. The Normalized Morphological Elastic Graph Matching
(NMEGM) will be used in experiments that will be presented
in the experimental results section. When applying the DEGM
using the normalized morphological multiscale analysis we will
use the abbreviation DNMEGM.

5. Experimental results
5.1. Database and protocol

The experiments were conducted in the XM2VTS database
using the protocol described in Ref. [32]. There is another pop-
ular database for face recognition tasks, the so-called FERET
database, and is accompanied with an evaluation methodol-
ogy [33-35]. Unfortunately, in the standard FERET evaluation
protocol only one facial image is allowed for training. Thus,
discriminant techniques can be difficultly used in the FERET
evaluation protocol unless virtual samples are created in the
training set (the use of synthetic samples arises many imple-
mentation issues). As can be seen in many recent published face
recognition methods that are based on the exploitation of dis-
criminant information, the researchers do not follow the FERET
evaluation methodology and they choose a subset of FERET
(in many cases the subset contains no more than 200 persons)
to apply their own protocol [36-39]. Thus, their results can-
not be compared in a straightforward manner. Moreover, the
FERET evaluation methodology do not define strictly the size
of the train and test sets and the set of people that should be
considered as clients and impostors.

On the other hand XM2VTS offers a strict verification pro-
tocol with more than one sample per person. Thus, XM2VTS
database is chosen in more cases instead of FERET database
for testing face verification technologies. We have verified this
fact by reviewing the recent bibliography of face verification
algorithms and we have seen that the XM2VTS database is pre-
ferred more than the FERET database [40—46]. This is also ver-
ified by the fact that many competitions have been conducted
in the XM2VTS database [47,48] over the past few years.

For the experiments a typical graph setup has been used
[6,7]. More precisely, the graph was selected to be a 8 x 8
sparse graph and for the multiscale analysis A was set to 9.
Thus, the jet dimension has been set to 19. The structuring ele-
ment used in all experiments was cylindrical for computational
reasons [7]. Only the luminance information at a resolution of
720 x 576 has been considered in our experiments. The appro-
priateness of the proposed normalized morphological features
used in our experiments has been verified in Ref. [18] where
it has been shown that they outperform the morphological fea-
tures proposed in Ref. [7].

Unlike the most of subspace techniques that require a perfect
manual alignment in order to perform well [18], DNMEGM

has been combined with a fully automatic alignment method
according to the eyes position of each facial image using the
eye coordinates that have been derived from the method re-
ported in Ref. [49]. No other image preprocessing technique
has been used. In order to simplify the approach, graphs of
the same size were considered for all persons. As an alterna-
tive, the face normalization technique reported in Ref. [8] could
be used in order to find the width and the height of the face
and create person specific graphs. The way the choice of the
graph affects the verification procedure is out of the scope of
this work.

The XM2VTS database contains 295 subjects, four recording
sessions and two shots (repetitions) per recording session. The
XM2VTS database provides two experimental setups namely,
Configuration I and Configuration II [32]. Each configuration is
divided in three different sets the training set, the evaluation set
and the test set. The training set is used to create genuine and
impostor models for each person. The evaluation set is used to
learn the verification decision thresholds. In case of multimodal
systems, the evaluation set is also used for training the fusion
manager. In our case, due to the lack of sufficient data, we have
used the evaluation sets in order to train the weights of the
local similarity vector, the weighting coefficients of the total
similarity vector and to find the person specific thresholds. This
strategy has been followed in other cases as well, like Ref. [41],
where the evaluation set has been used for fusing the scores of
different face classifiers for frontal face verification.

For both configurations the training set has 200 clients, 25
evaluation impostors and 70 test impostors. The two configura-
tions differ in the distribution of client training and client evalu-
ation data. For additional details concerning XM2VTS database
the interested reader can refer to Ref. [32]. Recently, frontal
face verification competitions using the XM2VTS [47,48] have
been conducted. The interested reader can refer to Refs. [47,48]
and to the references within for the tested face verification al-
gorithms.

The performance of face verification systems is measured in
terms of the false rejection rate (FRR) achieved at a fixed false
acceptance rate (FAR). There is a trade-off between FAR and
FRR. That is, it is possible to reduce either of them with the
risk of increasing the other one. This trade-off between the FAR
and FRR can create a curve where FRR is plotted as a function
of FAR. This curve is called receiver operating characteristic
(ROC) curve [8,14]. The performance of a verification system
is often quoted by a particular operating point of the ROC curve
where FAR = FRR. This operating point is called equal error
rate (EER). When a verification technique is to be evaluated
for a real application then the thresholds should be set a priori.
The evaluation set is used for setting the thresholds. The same
thresholds will then be used on the test set. Let FAE and FRE
be the corresponding FAR and FRR obtained on the evaluation
set. Since application requirements might constrain the FAR
or FRR to stay within certain limits, the system is evaluated
for three different vectors of thresholds that correspond to the
operating points where FAE =0, FRE =0 and FAE =FRE. For
each given threshold, the fotal error rate (TER) can be obtained
as the sum of FAR and FRR.
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5.2. Experimental results in Configuration I

The training set of the Configuration I contains 200 persons
with three images per person. The evaluation set contains three
images per client for genuine claims and 25 evaluation impos-
tors with eight images per impostor. Thus, evaluation set gives a
total of 3 x200=600 client claims and 25 x 8 x 200=40.000 im-
postor claims. The test set has two images per client and 70 im-
postors with eight images per impostor and gives 2 x 200=400
genuine claims and 70 x 8 x 200 = 112.000 impostor claims.
The training set is used for calculating for each reference per-
son r and for each node / a matrix for feature selection. In the
training set three reference graphs per person are created. The
3 x 2 = 6 graphs that comprise the genuine class are created
by applying EGM having one image as reference (i.e., in or-
der to create the graph) and the other two images are used as
test images. The impostor class contains 3 x 3 x 199 = 1797
graphs. The jet dimension is 19 and thus, for a reference person
r and a node [ the matrix B!(r), defined in Eq. (13), is singu-
lar. We have used principal component analysis [21] in order
to satisfy the invertibility of the matrix B'(r). The evaluation
set is used for learning the discriminant vector for weighting
the local similarity vector and the vector that weights the to-
tal similarity vector of the graph nodes. The invertibility of the
within-class scatter matrix DIW (r) of the local similarity vector
in Section 3.2 is satisfied due to the fact that the local simi-
larity vectors contain only two dimensions. The invertibility of
Vw (r) is also satisfied since we have used sparse graphs with
64 nodes.

In the proposed approach linear techniques have been used
for training the different discriminant steps. The selection of
linear techniques has been done due to the fact that the risk
of overtraining in comparison with the nonlinear discriminant
transforms is smaller and that they are less computational com-
plex than the nonlinear. The problem of overtraining is of much
greater intensity when nonlinear techniques are applied in train-
ing sets containing small and nonrepresentative data and, there-
fore in many cases very poor generalization is observed [30].
We have experienced great difficulties when applying nonlin-
ear techniques in the various discriminant steps using publicly
available databases used for testing face verification technolo-
gies like M2VTS [50] and XM2VTS [32] since they provide
very few samples for the genuine class of each person (three
or four images per person).

A possible solution in order to avoid overtraining is to in-
sert virtual samples or noisy observations in the training set as
proposed in Ref. [14]. However, in these cases many practical
issues, like the number of the virtual samples to be included or
the amount of noise to be inserted, cannot be easily assessed.
Another implementation issue concerning the nonlinear meth-
ods is the choice of the appropriate nonlinear function (or ker-
nel) that would represent the data, which in many cases are
difficult to define [14,30].

For threshold calculation we have used the method proposed
in Ref. [7]. That is, the similarity measures for every person
calculated in the training set form the distance vector o(r).
The elements of the vector o(r) are sorted in ascending order

Table 1
The tested elastic graph matching approaches

Algorithm Abbreviation
Normalized morphological elastic graph matching NMEGM
NMEGM applying only node discriminant feature selection NMEGM-FD
NMEGM applying only local discriminant weighting NMEGM-LD
NMEGM applying only discriminant node weighting NMEGM-ND
NMEGM applying all the proposed discriminant steps DNMEGM

and are used for the person specific thresholds on the distance
measure. Let T (r) denote the Qth order statistic of the vector
of distances, o(r). The threshold of the person r is chosen to
be equal to Tp(r). Let r1, rp and r3 be the three instances
of the person r in the training set. A claim of a person ¢ is
considered valid if min;{D; (r;)} < To(r) where D;(r;) is the
distance between the graph of test person ¢ and the reference
graph r;.

In order to illustrate the contribution of each discriminant
step and also show the performance of the combined discrimi-
nant approach, we have conducted the following experiments:

e NMEGM without discriminant analysis.

e NMEGM applying only discriminant feature selection, as
described in Section 3.1 (abbreviated as NMEGM-FD).

e NMEGM applying only local discriminant weighting us-
ing LDA, as described in Section 3.2, without using feature
vector discriminant analysis or discriminant node weighting
(abbreviated as NMEGM-LD).

e NMEGM applying only discriminant node weighting using
LDA, as described in Section 3.3, without any other discrim-
inant step (abbreviated as NMEGM-ND).

The abbreviations of the tested approaches are summarized in
Table 1.

The NMEGM without any discriminant step has given a
TER = 12.9% in the test set of Configuration I. For NMEGM-
FD the best TER has been achieved by keeping the first three
discriminant projections of the solution of the maximization of
criterion (14) and has been estimated about 5.7%. The eval-
uation set has been used in order to estimate how many dis-
criminant dimensions we should keep. We have, as well, tested
feature vector discriminant analysis using the Fisher’s criterion
(9) and we have seen that the projection to the one-dimensional
space using Eq. (11) has not lead to so significant improvement
in the performance, giving an TER =10%, as has been achieved
by using criterion (14). The NMEGM-LD gave a TER =9.2%.
The TER that has been obtained with node weighting using
LDA has been estimated about 10.7% (NMEGM-ND). The best
TER achieved was 2.8% using successively all the discriminant
steps described in this paper. As can be seen the feature vector
discriminant analysis step is very important since it reduces the
TER from 12.9% to 5.7% (that is a 50% reduction in terms of
TER). But the other two steps are very significant, as well, and
reduce the TER from 5.7% to 2.8% (another 50% reduction in
terms of TER).
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Table 2
Error rates according to XM2VTS protocol for Configuration I
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Algorithm Configuration I
Evaluation set Test set
FAE=FRE FAE(FRE=0) FRE(FAE=0) FAE=FRE FRE =0 FAE=0 Total error rate (TER)
FA FR FA FR FA FR FAE=FRE FRE=0 FAE=0
NMEGM 9.2 98.2 65.0 79 50 98.8 0.0 0.0 61.0 12.9 98.8 61.0
NMEGM-ND 6.3 62.8 56.3 6.7 42 63.8 0.0 0.0 61.0 10.7 63.8 61.0
NMEGM-LD 52 45.5 20.0 52 40 45.0 0.5 00 17.0 9.2 45.5 17.0
NMEGM-FD 2.5 29.9 55.3 25 32 112 02 02 147 5.7 11.4 14.9
DNMEGM 0.2 0.7 6.5 1.6 12 102 0.0 00 13.1 2.8 10.2 13.1
Table 3 The ROC curves are depicted in Fig. 3 where the EER and
A comparison of TER for Configuration I using fully automatic registration the operating point using the thresholds of the operating point
Algorithm TER that corresponds to EER in the evaluation set are also shown
) (abbreviated as EER-E in Fig. 3). The operating points that
IDIAP-Cardinaux [47] 4.7 .
UPV [47] 3.08 corresponds to the thresholds of the EER measured in the eval-
UNIS-NC [47] 3.86 uation set are shown in columns 5 and 6 of Table 2.
DNMEGM 2.8

The error rates according to the XM2VTS protocol are illus-
trated in Table 2. Table 3 shows a comparison of DNMEGM
with other methods that use fully automatic alignment. The
results have been acquired by the most recent competition in
XM2VTS database [48]. Obviously, our method outperforms
all the approaches tested in Ref. [48] using fully automatic
alignment.

5.3. Experimental results in Configuration Il

The Configuration II differs from the Configuration I in the
distribution of client training and client evaluation data. The
training set of the Configuration II contains 200 persons with
four images per person. The evaluation set contains two images
per client for genuine claims. Thus, evaluation set gives a total
of 2 x 200 = 400 genuine claims. The training set contains
four references images for each client. The same approach as
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— DNMEGM
0.12 %  EER -
» EER-E
0.11 B
0.1 f i
0.09 H g
w 008 B
o
% 007 i
0.06 g
0.05 | S = 7
0.04 P
0.03 i
0.02 l"/I//-|\‘|-|\‘\|-|‘\\-/I-I-‘\|-\-\ 1
0.01 4
0 1 1 1 1 1 1 1 1 1 1\ L 1 1 |
0 001 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 0.1 0.11 012 0.13 0.14 0.15

FAR

Fig. 3.
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Table 4

S. Zafeiriou et al. / Pattern Recognition 40 (2007) 27982810

Error rates according to XM2VTS protocol for Configuration 11

Algorithm Configuration II
Evaluation set Test set
FAE=FRE FAE(FRE=0) FRE(FAE=0) FAE=FRE FRE =0 FAE =0 Total error rate (TER)
FA FR FA FR FA FR FAE=FRE FRE=0 FAE=0
NMEGM 6.0 75.0 65.5 52 40 76.9 0.0 0.0 432 9.2 76.9 432
NMEGM-ND 5.2 46.5 69.5 49 42 712 0.0 0.1 381 9.1 71.2 38.2
NMEGM-LD 4.9 44.5 68.3 42 27 572 0.0 0.1 342 6.9 57.2 343
NMEGM-FD 24 28.5 51.0 28 2.7 269 0.0 0.1 18.7 5.5 26.9 18.8
DNMEGM 0.1 0.3 5.5 1.0 0.7 9.7 0.0 0.0 122 1.7 9.7 12.2
0.15 F T T T T T T T T T T T T T A
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Fig. 4.
Table 5 The corresponding ROC curves are depicted in Fig. 4. Table 5

A comparison of TER for Configuration II using fully automatic registration

Algorithm TER
IDIAP-Cardinaux [47] 2.1
UPV [47] 2.3
UNIS-NC [47] 33
DNMEGM 1.7

in Configuration I has been used for training, for accepting a
claim as valid and for threshold calculation. In Table 4 the error
rates according to the XM2VTS Configuration II protocol are
illustrated for the tested approaches. As can be seen the DN-
MEGM achieves a very low TER = 1.7% in this configuration.

shows a comparison of DNMEGM with other methods that use
fully automatic alignment in Configuration II. Obviously, our
method outperforms as well all the approaches tested in Ref.
[48] using fully automatic alignment in Configuration II.

6. Conclusion

A general method for enhancing the performance of the EGM
algorithm by employing discriminant analysis techniques in
all phases of EGM has been proposed. The first step of the
proposed method is to use discriminant techniques at the node
feature vectors for feature selection. Afterwards, the two local
similarity values, i.e., the similarity measure for the projected
node feature vector and the node deformation, are combined in
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a discriminant manner in order to form the new local similar-
ity measure. Moreover, the new local similarity values at the
nodes of the elastic graph are weighted by coefficients that
are also derived from discriminant analysis in order to form
a total similarity measure between objects. The methodology
has been successfully applied to a modified MEGM algorithm
in the frontal face verification problem. Further research on
the topic includes the exploration of other pattern recognition
algorithms, like support vector machines or relevance vector
machines, in the various discriminant steps of the proposed
algorithm in order to boost further the verification performance
of DEGM.
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