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Abstract

In this paper, a novel algorithm for finding discriminant g@m-specific facial models is proposed
and tested for frontal face verification. The most discrimminfeatures of a person’s face are found
and a deformable model is placed in the spatial coordindtais dorrespond to these discriminant
features. The discriminant deformable models, for vemifythe person’s identity, that are learned
through this procedure are elastic graphs that are denseifatial areas considered discriminant
for a specific person and sparse in other less significanalfaceas. The discriminant graphs are
enhanced by a discriminant feature selection method fogthph nodes in order to find the most
discriminant jet features. The proposed approach signific&nhances the performance of elastic

graph matching in frontal face verification.

Index Terms

Elastic graph matching, expandable graphs, linear discant analysis, frontal face verification.

I. INTRODUCTION

A well known technique for face recognition and verificatigrtheelastic graph matchingeGM)
algorithm [1]. In EGM, a reference object graph is created vgriaying a rectangular elastic sparse
graph on the object image and then calculating a Gabor wabelg response at each graph node.
The graph matching process is implemented by a stochastimiaption of a cost function which
takes into account both jet similarities and grid defororadi A two stage coarse-to-fine optimization
procedure suffices for the minimization of such a cost fumctio

Since its invention, EGM for face verification and recognitias ibeen a very active research field
[2]-[11]. In [2], it has been shown that EGM outperforms eifgees and autoassociation classification
neural networks for face recognition. In [3], the graph stiue has been enhanced by introducing a
stack like structure, the so-calldminch graph and has been tested for face recognition. For every
node in the bunch graph structure, a set of jets has been redafu different instances of a face
(e.g., with opened or closed mouth, eyes opened or shut).Wdnys the bunch graph representation

could cover a variety of possible changes in the appeardreéage. In [4], the bunch graph structure
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has been used for determining facial characteristics, agdbeard or presence of glasses, or a even
a person’s sex.

In [6], EGM has been proposed and tested for frontal face vatific and different choices for
the elasticity of the graph have been investigated. A varanthe standard EGM, the so-called
morphological elastic graph matchindEGM), has been proposed for frontal face verification and
tested for various recording conditions [7]-[9]. In MEGM ettGabor features have been replaced
by multiscale morphological features obtained throughatitih-erosion of the facial image using
a structuring function [12]. In [7], [9], the standard caa® fine approach [6] for EGM has been
replaced by a simulated annealing method that optimizestfanction of the jet similarity measures
subject to node deformation constraints. The multiscalephapgical analysis has proven to be
suitable for facial image analysis and MEGM has given betegifigation results than the standard
EGM approach, without having to compute the computationagensive Gabor filter bank output.
Another variant of EGM has been presented in [10], where nalggjical signal decomposition has
been used instead of the standard Gabor analysis [6].

Discriminant techniques have been employed in order toreehthe recognition and verification
performance of the EGM. The use of linear discriminating tégiees at the feature vectors for
selecting the most discriminating features has been pegpos [6], [7], [9]. Several schemes that
aim at weighting the graph nodes according to their diseratary power have also been proposed
in [7], [9], [21], [13].

Little or no research has been conducted concerning the tiygeaphs that is more appropriate
for face recognition/verification. The sparse graph that heentused for face representation in the

literature is:

« either an evenly distributed graph placed over a rectanguiage region [6], [7], [9], [10], [13]
« or a graph that is placed on preselected nodes that corr@sp@ome fiducial facial points (e.g.,

nose, eyes, etc.) [3], [4].

Intuitively, one may think that graphs with nodes placedoaicified fiducial points may perform better
than the rectangular graphs. However, such graphs are rificaltito be applied automatically, since

they require a detection module to find the precise coordinateéhe facial features in the reference
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images or, in many cases, manual feature selection [3] isegp®n the contrary, an evenly distributed
rectangular graph is easier to handle automatically, soméy a face detection algorithm is needed in
order to find an initial approximation of the rectangular &agegion [6], [7], [9], [10], [13]. Figure

1 shows the two different types of facial graphs used in elagaph matching algorithms.

@) (b)

Fig. 1. Different types of facial graphs : a) rectangular graph eplgrwith nodes at fiducial points.

In [4], [6], [7], [9], [11], [13] the discriminant analysisds been used for finding either linear
discriminant transforms for feature selection at grapheasoat for discriminant weighting of the local
node similarity measures. In this paper, we extend the usdisafiminant analysis for finding the
most discriminant facial features of a person’s face. To @lowg introduce a discriminant analysis
that produces a graph whose nodes correspond to discritrfengial points of a person.

In order to find such graphs, we introduce a heuristic costopétion algorithm, which has as
outcome the graph that optimizes a preselected discrirhit@st. The cost is formed by calculating
the significance of each node using discriminant values likednes proposed in [6]-[8]. We assume
that nodes with high discriminant values correspond tcafgmbints with high discriminant capability.
Then, we try to represent, in a better way, the correspondaighborhood by adding more nodes
around the original one. This practically means that we esphe nodes that are considered to be
discriminant. This way, graphs that are person specific and hades placed at discriminant facial
features, are obtained. Moreover, in order to improve thifopeaance of the new discriminant graphs
we apply a discriminant feature extraction method at ea@plymode which is a variant of the
method proposed in [7], [8]. The proposed algorithm has bemtie to frontal face verification

on the XM2VTS database [14] and the Color FERET database [15], [18], using a modified
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morphological multiscale analysis proposed in [18].

Summarizing, the contributions of this paper are:

« The introduction of the use of person specific graphs placed istmdn discriminant facial
features. These graphs substitute the rectangular evestijbdied graphs [7], [8] and the graphs
having their nodes manually located at fiducial points [3].

« A novel heuristic cost optimization algorithm that autoiocally finds such graphs.

« The application of a two class (genuine versus impostor ssshfihear discriminant transform
at the nodes of the new graphs for discriminant feature setec

Moreover, we illustrate the efficiency of our approach in ttanfal face verification problem.

The rest of the paper is organized as follows. In Section Il glastic graph matching algorithm is
revisited and the problem is stated. In Section Ill, the atgor that is used for learning person specific
facial models along with the discriminant analysis of featwectors are presented. Experimental

results are depicted in Section IV. Finally, conclusions aewvad in Section V.

[I. ELASTIC GRAPH MATCHING REVISITED

In the first step of the EGM algorithm, a sparse graph that isaBlgitfor face representation is
selected [3], [6], [7]. The facial image region is analyzed anset of local descriptors is extracted at
each graph node. Analysis is usually performed by buildimgnformation pyramid using scale-space
techniques. In the standard EGM, a 2D Gabor based filter banlbéas used for image analysis
[1]. The output of multiscale morphological dilation-emsioperations or the morphological signal
decomposition at several scales are nonlinear altersatif'¢he Gabor filters for multiscale analysis
and both have been successfully used for facial image dsdlyk [9], [10], [18]. At each graph

node that is located at image coordinakesa jet (feature vectorj(x) is formed:

jx) = [A(x), ..., fu(x)], 1)

where f;(x) denotes the output of a local operator applied to the image thei-th scale or at the
i-th pair (scale, orientation) ant{ is the jet dimensionality. The next step of EGM is to translate a
deform the reference graph on the test image in order to findcdhespondences of the reference

graph nodes on the test image. This is accomplished by mimigia cost function that employs
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node jet similarities and, in the same time preserves, tlikee meighborhood relationships. Let the
subscriptst andr denote a test and a reference facial image (or graph), resggcThe L, norm
between the feature vectors at thth graph node of the reference and the test graph is used as a

similarity measure between jets, i.e.:
Cr(i(x),d(x1)) = [li(x) = iGDII- )

Let V be the set of all graph vertices of a certain facial image tRerectangular graphs, all nodes,
except from the boundary nodes, have exactly four connewteds. LetH(l) be the four-connected
neighborhood of nodé In order to quantify the node neighborhood relationshigiagia metric, the
local node deformation is used:

a(xpxp) = Y |l —x1) = (x; = x5)]. ®3)
ceH(l)

The objective is to find a set of verticd!(r),l € V} in the test image that minimizes the cost

function:

C{xt}) =) {CrG(x1),3(x})) + ACa(x}, x1)}. (4)

ley

The jet of thel-th node that has been produced after the matching proceduiee graph of the
reference person in the image of the test persanis denoted ag(x!(r)). This notation is used due
to the fact that different reference graphsesult to different test jet§(x}(r)). Thus, the jet of the
I-th node of the test graphis a function of the reference graph The notationj(x.) is used only
when thel-th node is in a preselected position of a facial image.

In [7], the optimization of (4) has been interpreted as a &ted annealing with additional penalties

imposed by the graph deformations. Accordingly, (4) canib®wkfied to the minimization of:

Di(r) = 321 {C¢(3(x}),3(x}))} subject to

x; = +s+3;, [|61]] < dmax,

()

wheres is a global translation of the graph aéd denotes a local perturbation of the graph nodes.
The choices of\ in (4) anddmax in (5) control the rigidity/plasticity of the graph [6], [7After the
matching procedure, the distanég(r) is used as a quantitative measure for the similarity of two

faces [6], [7], [8].
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It is obvious that the standard EGM algorithm does not use @fioyrnation about the facial classes
used for verification. In order to treat this problem of EGM i, [[B] linear discriminant techniques
have been used for node feature selection or for node sitpilmeasure weighting.

In this paper we propose a method that answers to the quéstinioh facial points should be
taken into consideration in order to create a graph thasisrininant for a particular reference person
r?". Then, we create a graph using these fiducial points and aseatmodel when an identity claim
occurs. Moreover, we answer to the question "which featafesch jet are discriminant?” by solving
the optimization problem in [7], [8] using methods inspirey [19], [20], [21] for optimizing the

Fisher’'s discriminant ratio.

Il1. FINDING DISCRIMINANT PERSONSPECIFICMODELS USINGEXPANDABLE GRAPHS

In Section IlI-A, we formally define the optimization problemhigh produces the discriminant
graphs. In Section IlI-B, we describe a heuristic algorithvat tfinds the person specific discriminant
graphs. In Section 1lI-C, the discriminant analysis usedfé@ture selection at the graph nodes is
presented. In the followingn(X’) denotes the mean vector of a set of vectdrand N (X) denotes
its cardinality. When¥ is a set of scalar values their mean will be denotech&8’) and their variance

aso?(X).

A. Setting the Optimization Problem

Let 7 (r) andF}(r) be the sets of the jets of tiieh node that correspond to genuine and impostor
claims related to person, respectively. In order to define the similarity of a testjet(r)) with

the class of reference jets for the same node, we use thevioganorm [7]:

cr(r) = |li(xi(r) = m(Fe ()| (6)

Let £L(r) and £4(r) be the sets of local similarity value$(r) that correspond to genuine and
impostor claims, respectively. A possible measure for tiserominant power of thé-th node is the

Fisher's discriminant ratio [22]:

oy — (LG = m(L(r))?
TR L) + (L)

()
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In [7], [9] it has been proposed to weight the graph nodeg #fie elastic graph matching using the
coefficientsp} (r) in order to form a similarity measure between graphs. Anoffessible measure

of the discriminant power of a graph node is the following:

1 l
l( R A0)) Zci(r)eﬁlj(r) c(r) 8
p2 T) - 1 Z Cl(’]”)‘ ( )
N(LL(r)) 4=ci(r)eLe(r)

The measure (8) increases when the impostor local similexégsures for the graph node are high
and/or the local similarity measures for the genuine classseall.

By summing the discriminant coefficients for a certain graptugg we have:

1

L
Byr) =+ 3 0(r) ©)
=1

=~

where L is the total number of nodes. This is the mean of all the disoamt ratios and is a
characteristic measure for a particular graph setup of sefieeence person. The scalap’(r) could

be any discriminant measure like the ones defined in (7) andn@)is estimated using a training set
of impostor and genuine claims. The measure defined in (9)egeat ordering relationship between
graphs. That is, for two graphs and g, and for some reference persornif Eg, (r) < E4,(r) the
graphgs is considered more discriminant than the graph Practically, the nodes of the gragh

are placed in more discriminant facial points than the naaofeg;. Figure 2 shows two different
graph setupg: and g, with different E,(r) values. Both graphs have 64 nodes. The graph depicted
in Figure 2b is found experimentally to be more discrimindratrt the rectangular graph depicted in

Figure 2a sincey,, (1) < Eg,(r).

(a) (b)
Fig. 2. a) A rectangular sparse graph; b) a graph that is more disenitnithan the rectangular graph.
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The previous analysis leads to an optimization procedurerdieroto find the graply that has
maximum £, (r). The desired properties (constraints) of the grgpapart from having maximum
Ey(r) are:

« The graph should have a relatively small number of nodes dothleaelastic graph matching

procedure has low computational cost.

« The nodes should not be very close to each other in order tal aedundant use of the same

discriminant information.

Formally, the above optimization problem can be written as:

g = arg maxy F,(r) subject to
||Ixt — x7|| > A,V 1, j nodes withl # j (10)
L = constant

where A is a preselected threshold that controls the density of thphg

B. A Heuristic Optimization Approach

In order to solve the maximization problem (10), someonetba®sllow a heuristic optimization
approach, since exhaustive search is not feasible. The sddation is a subgraph of a rectangular
N x M graph that obeys the constraints (10), whéreis the width and)M is the height of the
facial area (in pixels), respectively. The overall maximufm(10) can be found by measuring the
discriminant power of each node (one node is placed at eael) gind keeping a subset of nodes of
the rectangula®v x M graph that maximizes the constraint optimization probl&@).(The previously
described procedure guarantees that it will find one of themgptsolutions of (10) (since there is
no guarantee that there is a unigue solution) but has a ptighicomputational cost in the training
phase, since the number of the nodes of the graphs that sheuldtched to impostor and to genuine
images in order to calculate the discriminant power of evegle is extremely high (the size of the
graphs for a facial area df00 x 150 pixels is 15.000 nodes).

In order to avoid such a computationally infeasible proceda sampling of the solution space
should be performed prior to optimization. Thus, we shoulrae for a sub-optimal solution of the

constraint optimization problem (10) by assuming that tlesird graph is a subgraph of a more
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sparse graph than the rectangulr< M one. One possible solution is to assume that the solution
is a subgraph of the graph df-equilateral triangles with inter-node distance equalAi@ixels (A

is the threshold that controls the sparsity of the graph B))(1Another option is the most dense
A-rectangular graph (i.e., an evenly distributed graph wibdes placed ever\ pixels). Figure 3a
shows the graph witk\-equilateral triangles, having a total of 768 nodes. Figuresi3ows the most
denseA-rectangular graph with nodes placed every 9 pixels apaving a total of 700 nodes. Figure

3c shows a discriminant subset of therectangular dense graph that has only 64 nodes.

(@) (b) (€)

Fig. 3. b) The dense graph ®&fequilateral triangles; b) @-rectangular dense graph; c) a discriminant subset of the

rectangular dense graph.

In this work we have used rectangular graphs, even thoughatteenot the densest possible graphs
(e.g. forA = 9 the graphs witl9-equilateral triangles are more dense that the most densetangular
graph having about0% more nodes). We have followed this solution in order to hawemliance
with the majority of the proposed approaches for elastiplgraatching that use rectangular graphs as
well [1], [6], [7], [9], [10]. Also, the rectangular graphsbe less computational complexity than other
graph structures that may require more nodes to be matchedhawe experimented using graphs
of various types and we have observed that the type of theedgraph, for which the sub-optimal
solution will be a subgraph, is not significant. Nevertheléee proposed algorithm can be easily
extended in order to support other graphs types (like thphgraf A-equilateral triangles).

Moreover, it is also very computationally expensive to caiepthe discriminant measures of
the nodes of the most dengk-rectangular graph. Thus, a second sampling step is requined

the second sampling step, a sparse subgraph of the most dersgangular graph is selected as
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the starting point of the optimization procedure. A possibblution for the initial sampling of the
most dense rectangular graph is the evenly distribute@mgafar graph with a total of nodes. A
solution for selecting the initial position of the sparsamr could be a selection based on a face
detection/localization algorithm. These sampling stepsravitable in order to have a computationally
feasible solution of the constrained optimization problg).

After sampling the solution space, an iterative algorithvattuses expandable graphs is proposed
in order to find the discriminant graph. We assume that the s\tdus have high discriminant values
should be placed in facial regions that are indeed disceamntirfior the specific person. These facial
regions should be better represented. This can be achieveddanding certain nodes that possess
the highest discriminant power.

In the following, the steps of the proposed algorithm arecdbesed in more detail. This procedure
should be repeated for every reference persdn the database. Before starting the optimization
procedure, the reference graphs for the persshould be created. The reference graphs are created
by overlaying a rectangular sparse graph on the facial inmag®n in the positions indicated by a
face localization algorithm. Figure 4 shows the referenc@afamages with the corresponding graphs
for a person in the XM2VTS database. The procedure is persaifispand is executed once for
every person. That is, there is no need to rerun the procedurind other already trained persons

when a new person arrives.

Fig. 4. The reference facial images with the reference graphs.

Let the initial graph contain. vertices at the first iteratiom < 1. Let B; be the set of graph
vertices at the-th iteration. The algorithm has the following steps:

Step 1. Take the reference graphs and match them in all geanoshémpostor images.
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Step 2. For each nodg calculate the measupé(r).

Step 3. Select a subset of the nodes with the higher discrimiuzdime that have not been already
expanded and expand them. The nodes that lie in the perinfetee graph can be expanded
only inside the facial region. Figure 5 describes pictoyidhis step for the rectangular
graphs. For other types of graphs other expanding stepddsheufollowed, i.e. for the

graph of A-equilateral triangles, six nodes should be inserted ingtlagh at this step.

New node

Fig. 5. Expanding the rectangular graph.

Step 4. Verify that the inserted nodes do not violate the gsggarseness criterion. That is, erase
the new nodes that violate the criterigx’. — xZQH < A, V1, j (for the rectangular graphs
used in this work, this is equivalent with checking if sometaf inserted nodes have already
been examined). The set of the final inserted nodes in-thdteration is denoted ad;.

Step 5. Match locally the nodes of; in all the genuine and impostor facial images. ket A;
be an inserted node ard be the initial coordinate vector for the nodein a test image

t. The local matching procedure is the outcome of the localcbear

XF(r) = arg minyx Cr(j(xF),j(x¥)) subject to 1)
|Ixf — x| < dmax
xF(r) is the final coordinate vector that gives the j&¥(r)).

Step 6. For each nodec A;, calculate its discriminant valug®(r).
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Step 7. LetC; = A; UB;. Order the nodes ifl; according to their discriminant power and obtain a
graphg;+1 by keeping only thel. nodes with the highest discriminant power. The Bgt;
contains the nodes af, ;.

Step 8. If|Ey, ., (r) — E4(r)| > 7 theni — ¢ + 1 and goto Step 4 else stop.

The procedure described is a "greedy”, hill climbing aldgamitfor finding the graply with maximum
E,4(r). It always follows the direction of the best solution andjghit may get stuck at local maxima.
An alternative way is to interpret this optimization proueglas a simulated annealing procedure [23]
having E,(r) as the energy function. Moreover, in Step 4 we could expan@nigtsome nodes that
have high discriminant value but also some randomly sedeotees. In this way, we may prevent
the loss of some discriminant regions that have been captegiher by the initial graph nor by the

expanding procedure.

Figure 6 shows the steps of the above algorithm for the firstopeis the training set of the
XM2VTS database [14]. The algorithm starts from the rectaag8lx 8 graph which is shown in
the top left image of Figure 6. The second image from the top faws the first expanded instance
of the rectangular graph. The third image shows the graph #ite first node erasing step. The
images that follow in a row-wise manner show a sequence adrekipg/erasing steps. The algorithm
converges after a total of seven expanding steps. The coongdtetween nodes in all images have
been created for visualization purposes. As can be seen ure~&§ (lower right hand image), the
discriminant graph nodes are concentrated in the areasebathis cheeks and nose. This region is

indeed characteristic for this particular person of the XM3 database.

Using as reference the facial images and graphs depictedgime=i7, we demonstrate, the dis-
criminant graph that is derived from the proposed procediisecan be seen, the discriminant graph
depicted at Figure 7d, is comprised of nodes around the maowtimahe lower forehead. This happens
due to the fact that in some reference facial images (showkigare 7a,b,c), the facial region is
partially occluded by hair while, in some other ones the klaes not overlap with the rectangular
graph. This is of particular importance, since the proposgmasentation can handle the cases of
people who tend to change hairstyle (or facial style in gahely. eyeglasses, beard) frequently. In

such cases, the graph nodes tend to concentrate in theointacial region that is not affected at
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Fig. 6. The sequence of the steps for learning the graph that is conhfmysexpanding and erasing steps.

all by the hair style. Similarly, the proposed method willadied nodes lying in the chin area, if the
person sometimes has beard and some times not. On the gpiitrarperson always has a beard
and, particularly, if he is the only one having a beard in thére database, then the beard nodes
will be expanded and will be considered as highly significiitfortunately, this procedure some

times may cause overfitting (i.e., the discriminant graph matgh some facial points that are not
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truly discriminant but have been accidentally upon thedbaiea during the training procedure). This

issue will be discussed in more detail in Section IV-B.1.

@) (b) () (d)

Fig. 7. The reference facial images with the reference graphs antbthesponding discriminant graph.

The plots of the measur,(r) versus the number of iterations until convergence aretititesd
in Figure 8a,b for the two persons in Figures 6 and 7, respégties can be seen for both
persons, the algorithm converges after a total of seveatiters. In the eighth iteration no new

node has been inserted and the algorithm converges. Thécalagph matching procedure of the

£,

Fig. 8. The plot ofE,(r) versus the number of iterations (a) for the person in Figure 6; (b) op#rson in Figure 7

new graphs is performed using the minimization proceduleaied in the optimization problem (5).
The optimization problem (5) uses global translation of thapf. That is, the components cannot
be translated independently but only as part of the entiaplgrin the second step, every node can

be locally matched (deformed) independently as it imposethb optimization problem (5).
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C. Discriminant Feature Selection

We can improve the performance of the new graph by imposisgridiinant analysis in the feature
vectors of the graphs as in [7], [9]. Therefore, we should tryfind a discriminant dimensionality
reduction transform matrix@!(r) for every nodel of the graph of the reference persenin the

reduced space we use the following metric in order to definesiindarity of test matched jets as:

ehir) = 121" (x4 (1) — m(FE())| 2 (12)

The discriminant criterion used is similar to the one giver{8hand can be expanded as:

N ey o) 4T () W) B ()]

J(®'(r)) = = 13
e NELGY) 2chrech() & (r) @) B (r) TL(r)] )

where the matrice3V'!(r) and B(r) are given by:

l’l" :71 /:XZT —m l?" /:XZT —m l?" T
Wi(r) N(Elf(r))j(xw§f}<r>0( 1(r)) = m(Fe(r)))((x;(r)) — m(Fe(r))) (14)
and
1 ~ -

B'(r) = NS0 ((xi(r)) = m(FE(r) ((x4(r) — m(Fe(r))". (15)

J(xi(r)eFo(r)

The maximum ofJ, in cases thaBl(r) is invertible, is obtained whed is a matrix having
columns the generalized eigenvectorsB¥fr) W' (r). In order to satisfy the invertibility oB!(r),
the training set should contain at least as many samples frmmgenuine class as the feature
dimensionality. Thus, in many cases, it is difficult to satitfg invertibility of B!(r) (refer to Section
IV for more details). In [7], [9]Principal Component Analysi®®CA) has been initially used in order
to satisfy the invertibility ofB!(r).

Recently,Direct Linear Discriminant AnalysigD-LDA) algorithms for discriminant feature ex-
traction have been proposed [24]-[26] in order to preveatltiss of discriminatory information that
occurs when a PCA step is applied prior to LDA [27]. In D-LDA theszh of discriminant directions
is applied in the null space (i.e., formed by the eigenvectbat correspond to null eigenvalues) of
the between scatter matrix. Moreover, in [19], [20] it hastbehown that two different discriminant
transforms can be derived from the Fisher's LDA optimizationbtem, the so-called regular and

irregular discriminant transforms. The novelty of the pregd approach is that it exploits all the
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available information of the discriminant criterion (13), contrast to the methods proposed in [7],
[9], that discard useful information using an initial PCAste

We apply the theory developed in [19], [20] in order to find thgular and the irregular discriminant
information for the discriminant criterion (13). First, wawre to deal with the null space &!(r).
The vectors contained in the null space of the maliXr) maximize the criterion (13). That is,
all the projectionsy!(r) that satisfy bothB!(r)yl(r) = 0 and W'(r)yl(r) # 0 (or equivalently
() Bl (r)wl(r) = 0 andel(r) Wi ()l (r) > 0) maximize the criterion (13). For these vectors

we define the following criterion:
(@ (r)) = t[@! (1) W ()@ ()], @ () = [ (r) .. 4, ()] [l ()| = 1. (16)

Using the criteria (13) and (16), two different discrimindaature extraction transforms can be
derived that correspond to regular and irregular discrémirinformation, respectively. The first step
of the discriminant dimensionality reduction is to find théhonormal eigenvectors that correspond to
non-null and null eigenvalues @!(r). Let Z (r) andZ,(r) be the matrices having as columns the
orthonormal eigenvectors @!(r) that correspond to non-null and to null eigenvectors, retydy.
The eigenanalysis aB!(r) is an easy task, since, in most cases, the graph jets do netrhaxe
than 20 features [6], [7], [9], [10].

1) Regular Discriminant Transformtet B!(r) = Et ()" B!(r)E} (r) and
Wi(r) = 8L (r)" W!(r)ZL(r) be theB!(r) and W!(r) matrices projected in the space spanned by
the vectors irE! (r). In this spaceB!(r) is invertible. Thus, the discriminant transform in this spac

can be given by the matri®’ (r) that has as columns the generalized eigenvectofsl(of)*lwl(r).

The regular discriminant features are given by:
Iy (r) = E1(r)©4(r). 17)
This step gives the regular discriminant feature vecjofs! (1)) = T4 (r) " j(xL(r)), j1(x4(r)) € R™
with m < min(M, N(LL(r)) — 1).
2) Irregular Discriminant Transform:The irregular discriminant transform can be found by pro-

jecting W'(r) in the space spanned I (r), only if B!(r) is singular. This happens when the

number of training genuine feature vectors is smaller thendimensionality of the feature vector.
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Let W(r) = E4(r)" W!(r)EL(r) be the projected matrifV!(r) in the null space oB!(r). The
discriminant transform in this space is given &g that has as columns the orthonormal eigenvectors

of Wl(r). The irregular transform matrix is given by:
I(r) = E5(r)©5(r). (18)

The irregular discriminant transform gives the vectiprs! () = Th(r)" j(xL(r)) andja(xk(r)) € R™
with n < M — N(LL(r)) + 1. It is easy to prove that the irregular discriminant transfgerforms
perfect classification in the training set. That is, every gemdraining jet falls in the same point in
the projected space [28].

For a test jefi(x!(r)), two kind of discriminant feature vectors are availablengshe regular and
the irregular discriminant transform, i.g.,(x.(r)) andj2(x}(r)), respectively. The similarity of these

two feature vectors with the reference facial classan be estimated using two distances:

T T

¢ (r) = T3 ()" (G(xp(r) = m(Fe ()| andé(r) = ||IT5(r)” ((xi(r)) — m(Fg ()

The final distance is a fusion of the two measuig$) and ¢ (r). The total normalized distance at

the [-th node between the referenceand the test personis:
~l ¢ (r) ¢ (r)
a(r) = T+ ” (19)
! Zieu Cé (T) Zz’eu Cé (T)

wherel{ is the training facial image database. The new distance leetvieces, after discriminant

analysis, is given by:

Di(r) =" &(r). (20)

leV
IV. EXPERIMENTAL RESULTS
A. Databases and Evaluation Protocols

The experiments were conducted in the XM2VTS database use@ritocols described in [14]
and in the Color FERET database using the face verification ei@umethodology presented in
[15]. The description of the XM2VTS database is available 8t.[Zhere have been many versions of
FERET database released from time to time, the current versimg lbeleased is the Color FERET

database [30].

November 8, 2006 DRAFT



20

1) The XM2VTS database and Testing Protocbite XM2VTS database contains 295 subjects, 4
recording sessions and two shots (repetitions) per reogrskssion. The XM2VTS database provides
two experimental setups namely, Configuration | and Configanali [14]. Each configuration is
divided in three different sets: the training set, the exabn set and the test set. The training set is
used to create genuine and impostor models for each persenevitiuation set is used for learning
the verification decision thresholds. In case of multimodaiteams, the evaluation set can be also
used for training the fusion manager. For both configuratibrestraining set has 200 clients, 25
evaluation impostors and 70 test impostors. The two configuratdiffer in the distribution of the
client training and the client evaluation data. For add#ilodetails concerning XM2VTS database the
interested reader can refer to [14]. Recently, frontal faergfication competitions using the XM2VTS
[31], [32] have been conducted. The interested reader can t@f[31], [32] and to the references

therein for the tested face verification algorithms.

The performance of face verification systems is measured instef theFalse Rejection Rate
(FRR) achieved at a fixeHalse Acceptance Ra{EAR). There is a trade-off between FAR and FRR,
producing the so-calle®eceiver Operating Characterist{ROC) curve [8], [13]. The performance
of a verification system is often quoted by a particular opegapoint of the ROC curve where

FAR=FRR. This operating point is calldgiqual Error Rate(EER).

When a verification technique is to be evaluated for a realiegpn then the decision thresholds
should be set a priori. The evaluation set is used for settinghresholds. The same thresholds will
then be used on the test set. Let FAE and FRE be the correspdralsggAcceptance Ra{EAR) and
False Rejection RatéFRR) obtained from the evaluation set. Since applicatiomirements might
constrain the FAR or FRR to be within certain limits, the syste evaluated for three different vectors
of decision thresholds that correspond to the operatingtpaivhere FAE=0, FRE=0 or FAE=FRE.

For each given threshold, thital Error Rate(TER) can be obtained as the sum of FAR and FRR.

2) The FERET database and Testing Protocdhe Color FERET that has been used in our
experiments contains 994 persons [30]. The evaluation rdetbgy of the FERET database is not as
strict as the XM2VTS protocol (i.e., it does not define who wolddthe clients or the impostors). It

only requires that the training should be performed usirgRA set (also referred to as gallery set)
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that contains one frontal view per person. The testing séte (aferred to as probe sets) include the
[15]:

o FB images: the second frontal image taken from the same sdteagallery image (FA set).
Usually, the person has a different expression from the amseg in FA. The FB set contains
992 individuals.

« Duplicate images 1 (Dupl): This probe set is used for analy#ive effect of aging on the
verification performance. The images are taken in a differeasisn (different date) or taken
under special circumstances (such as the subject was Wweagasses, different hair length, etc).
The Dupl probe set contains 736 images of 249 individuals.

o Duplicate images 2 (Dup2): The Dup2 probe set is a subset obDthEl probe set consisting
of frontal images captured at least 540 days after the captfithe subject gallery image (FA

set). The Dup2 probe set size is 228 images of 75 individuals.

B. Experiments in the XM2VTS database

For initializing the algorithm, described in Section Ill,ectangulag x 8 graph setup has been used
[6], [7]. The multiscale analysis used for filling the jets i€ thne proposed in [18] (i.eNormalized
Morphological Elastic Graph MatchingNMEGM)) and the jet dimension has been setifo The
structuring element used in all experiments was cylindifich preferred for computational reasons.
Only the luminance information at a resolution®0 x 576 has been considered in our experiments.
We have used the valué = 9 for the parameter that controls the sparsity of the graph.

Unlike most of the subspace techniques [33]-[35] that negaiperfect manual alignment in order
to perform well, the proposed algorithm has been combingld svfully automatic alignment method
according to the eyes position of each facial image usingeilgecoordinates that have been derived
from the method reported in [36]. The impact of inaccuratdalafeature localization upon face
recognition is pointed in [37], [38].

1) Learning the Discriminant Person Specific GraphBhe training set of the Configuration |
contains 200 persons with 3 images per person. The evalusgiboontainsg3 images per client for

genuine claims an@5 evaluation impostors witl3 images per impostor. Thus, evaluation set gives

November 8, 2006 DRAFT



22

a total of 3 x 200 = 600 genuine claims an@5 x 8 x 200 = 40.000 impostor claims. The test
set has2 images per client an@d0 impostors with8 images per impostor and giv@sx 200 = 400
genuine claims an@0 x 8 x 200 = 112.000 impostor claims. The training set is used for learning
the discriminant graph for each reference person, acapridinthe algorithm presented in Section
lll. For initializing the algorithm, the face localizatigorocedure proposed in [8] has been used. We
have used the discriminant measure defined in (8) for learthiegdiscriminant graphs. We have
seen that similar discriminant graphs have been acquired) tise measure defined in (7). We have
also seen that the proposed procedure for finding discrimhigi@phs is quite fast, since the inserted
nodes are only matched locally and in all cases the algoritas converged using no more than
seven expanding steps for the training persons in the XM2Vvatakédse. Figure 9 shows some of

the graphs that have been learned during the training puoeed

Fig. 9. Some examples of discriminant graphs learning during the traprimgedure in the XM2VTS database.

One possible drawback of the proposed approach is overfittinigh may occur in any discriminant
technique. In our case, overfitting can occur when the diseéant graph is placed in facial points
that are not truly discriminant but have accidentally appédn the facial area during the training
procedure. For example, when all the training facial imagfea person contain glasses, cosmetics
or tattoos, it is highly possible that the nodes of the disarant graph are placed in the spatial
coordinates that contain a visual instance of these adifatis fact is exemplified in Figure 10. In
the training phase, only facial images with eye glasses blilek thick skeleton have been present.
Thus, many nodes of the discriminant graph have been pladbd spatial coordinates that correspond
to eye glasses. If the test facial images contain no eyatgasse may have false rejections. In order

to solve these problems eyeglass removing algorithmsthigeones proposed in [39], [40] and/or the
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enhancement of the training set with virtual facial imagmpgles, can be applied. There are many

methods for enriching the training set with virtual samydies]-[44].

) (b) () (d)

Fig. 10. (a)-(b) Some of the training samples; (c) the correspondswgichinant graph; (d) test image.

2) Learning the Discriminant Node Transformgifter learning a discriminant graph for each
person, the training set is used for calculating the diso@amt transforms for feature selection for
each reference personand for each nodé. In the training set, 3 reference graphs per person are
created. The3 x 2 = 6 graphs that comprise the genuine class are created by agmiastic graph
matching having one image as reference (i.e., in order taterthe graph) and the other 2 images
are used as test images. The impostor class contain8 x 199 = 1797 graphs. The jet dimension
is 19. Thus, for a reference personand a nodd the matrixB'(r) has5 non-null dimensions and
14 null dimensions. For every node jet, two discriminant tfarmss can be found as described in
Section IlI-C. The regular discriminant transform can givecdiminant feature vectors with up to 5
dimensions. The feature vectors derived through the ireggliscriminant transform can give feature
vectors with up to 14 feature dimensions.

3) Thresholds on Similarity Measuralith or without feature vector discriminant transforms, a
similarity measure between faces either by usidgr) or D;(r) can be found. In order to reject
or accept an identity claim, a threshold should be used andihmilarity measure. For choosing the
thresholds, the method proposed in [7] has been used. lil,db& similarity measures for every
person are calculated in the training set and form the distaactoro(r). The elements of the vector
o(r) are sorted in ascending order and are used for the persoifisglesholds on the distance

measure. Lefp(r) denote thel)-th order statistic of the vector of distancegs). The threshold of
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the person- is chosen to be equal (). Let r, 7o andr3 be the 3 instances of the perspoiin
the training set. A claim of a persanis considered valid ifnin;{D;(r;)} < To(r) where Dy(r;)
is the distance between the graph of test pettsand the reference graph) (the similarity measure
Dy(r;) could be eithetD,(r) or D;(r)). Obviously when varying, different pairs of FAR and FRR
can be created to produce the ROC curve.

4) Experimental results in Configuration In order to illustrate the contribution of finding dis-

criminant person specific graphs, we have conducted thewfimigpexperiments:

« NMEGM using rectangulaB x 8 evenly distributed graphs without any discriminant anialys

« NMEGM using the procedure for finding discriminant person #megraphs, described in
Section IlI-B, without feature vector discriminant anaf/¢abbreviated as E-NMEGM).

« NMEGM using rectangula8 x 8 evenly distributed graphs and using the discriminant aisly
described in Section 11I-C (abbreviated as NMEGM-FD).

« NMEGM using the procedure for finding discriminant person #gegraphs and using the

proposed feature vector discriminant analysis (abbreglials E-NMEGM-FD).

Since all the tested approaches are fully automatic, we haveamducted experiments using graphs
placed at fiducial facial points [3] as they require manuailsalization of these points in all reference
facial images. The error rates according to the XM2VTS Configuma protocol are illustrated in
Table I. The NMEGM without any discriminant step has given a TER8% at FAE=FRE in the
test set of Configuration I. When replacing the rectangulanbvdistributed graphs with the person
specific discriminant graphs proposed in this paper, the TERbhan reduced t6.05%. That is, an
increase in performance more t5&0 in terms of TER is achieved when using the proposed graphs.
When using the proposed discriminant analysis in the regcian graphs, a TER%1% at FAE=FRE
has been achieved (NMEGM-FD). We have kept the number of dimesnshat have given the best
EER in the evaluation set. It has been experimentally founithigabest EER has been achieved when
keeping the first 3 dimensions of the regular discriminamdfarm and the first 3 of the irregular
transform. The best results have been achieved when usitgrdegector discriminant analysis in
the proposed discriminant graphs keeping, as well, 3 reguid 3 irregular dimensions. This setup

has given a TER 2.9% at FAE=FRE (E-NMEGM-FD). Thus, an increase in performance of about
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50% has been verified in the case that we use feature vector dianinanalysis in the discriminant
graphs. For comparisons we have implemented a Fisherfaces+{H¥2) approach [27]. For the
Fisherfaces a TER0% has been measured at FAE=FRE using the same sets of images.

The ROC curves are depicted in Figure 11 where the EER and thetiogepint using the
thresholds of the operating point that corresponds to EER énetvaluation set are also shown

(abbreviated as EER-E in Figure 11). The operating points thaesmonds to the thresholds of

the EER measured in the evaluation set are shown in columns B ahdable I.

0.15 TR T T T
fow - - NMEGM
01417 w -+ PCA+LDA
013} «o E-NMEGM |
D" == NMEGM
0121 &y — NMEGM-FD ||
0.11}1% %  EER H
1 -
e » EER-E
0.09* = 1
3 -
o 0.08{{1 .
14 \
L 0.07H; 1
0.061 " 1
1
0.05t| & ]
0.04F\ " e N
0.03F - i
e I
0.02F g
0.01F

Fig. 11. ROC curves for the different discriminant variants of NMEGMsst set of the Configuration | experimental

protocol of the XM2VTS database.

It has been also verified that the proposed discriminant grajsing feature vector discriminant
analysis have very good performance compared with othex-efathe-art face verification algorithms.
Table 1l shows a comparison of E-NMEGM-FD (which gave the bestlts) with other methods
that use fully automatic alignment. The results have beenied by the competition in XM2VTS
database [32]. Obviously, E-NMEGM-FD outperforms all the apphes tested in [32] using fully
automatic alignment. In [45] there has been another commpetusing the XM2VTS database in
order to explore the effects of severe illumination chanigeface verification algorithms. Only one

algorithm has been tested using fully automatic alignmeuwl lzas achieved a TER2.14%.
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TABLE |

ERRORRATES ACCORDING TOXM2VTS PROTOCOL FORCONFIGURATION |

Configuration |
Evaluation set Test set
Algorithm
FAE=FRE FRE=0 FAE=0 Total Error Rate(TER)
FAE=FRE | FAE(FRE=0) | FRE(FAE=0)
FA FR | FA | FR| FA | FR | FAE=FRE | FRE=0 | FAE=0
NMEGM 9.2 98.2 65.0 79 | 50 |98.8| 0.0| 0.0 61.0 12.9 98.8 61.0
E-NMEGM 3.4 34.5 55.5 33| 275|227|0.0| 0.0 447 6.05 22.7 447
NMEGM-FD 2.2 26.5 52.3 21| 30 |11.0| 05| 0.2 13.2 5.1 11.5 13.4
E-NMEGM-FD 1.2 14.2 24.5 193| 10 | 11.0| 0.0| 0.0 | 10.7 2.93 11.0 10.7

TABLE I

A COMPARISON OFTER FOR CONFIGURATION | USING FULLY AUTOMATIC REGISTRATION.

Algorithm TER

IDIAP-Cardinaux[32] | 4.7

UPV[32] 3.98

UNIS-NC[32] 3.86

E-NMEGM-FD 2.93

CAS[45] 2.14

C. Experiments in the FERET database

In many applications and experimental protocols, like tkpeeimental protocol of the FERET
database, there is only one genuine facial image availaliteeitraining set. In this case, the measures
defined in (7) and (8) cannot be used for measuring the distaimipower of a graph node. Hence, in
order to apply the proposed algorithm to the FERET databasg tisnFERET evaluation protocol
[15], [16], [17] we have modified the algorithm so that it can foectional having one sample

available for training. For that case, we use an alternatieasure based only on the numerator of
(8):

lr:—l j(x(r) = j(xD)| 12
ps(r) N(ﬁll(r))cg(r;g(r)m( ¢(r) =1, (21)
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wherej(x.) is the jet of thel-th node in the only reference image of the persoiThis measure is
based on the impostor class and on the one genuine samplergihsizes the client facial features
that are far from the facial features of the impostors in teoh(21). Since we have only one sample
available for training, it is not possible to use the methaodSection 1lI-C for discriminant feature
selection. Thus, we have used only PCA for feature selectidhamodes of the elastic graphs. For
PCA feature selection the number of dimensions has beenchod®e 5. Some discriminant graphs
from the FERET database are shown in Figure 12. In the FERET datab#eGM algorithm
has been combined with a fully automatic alignment methasbitng to the eyes position of each
facial image using the eye coordinates that have been defiigen the method reported in [46]. For
comparisons we have also implemented a PCA approach [47$otvalled Eigenfaces, and we have
applied it to the same set of images. Finally, we have traimetd2A approach using the XM2VTS
database and tested it in the FERET database but, unfortutia¢efgsults have been very poor even
in comparison with PCA. This is partially attributed to thefelient environmental conditions between

the two databases.

Fig. 12. Some examples of discriminant graphs learning during the tgapriocedure in the FERET database.

The FERET evaluation methodology requires testing to threeo$étsages namely FB, Dupl and
Dup2. For performing the experiments in the FB set, the FA sstlteen randomly partitioned to
clients and impostors having0% (i.e., 497 individuals) as clients arid?% as impostors. In other
words, the gallery consists of 497 individuals. The FB corgtaine image per person. Thus we have
a total of 497 genuine claims. The remaining 495 images of thaediBhave been used for impostor
claims leading to a total 0f95 x 497 = 246015 impostor claims. We have repeated the experiments

four times, using different partitions for clients and inspars, and the average ROC curve has been
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estimated. In the FERET evaluation protocol the ROC curvesPtbeability of correct verification
(PCV) versus the FA is used [15]. PCV is equal to 1-FR. The testpdoaphes have been the raw
NMEGM (without any discriminant analysis), the E-NMEGM and tapproaches NMEGM-PCA
and E-NMEGM-PCA using PCA feature selection in the nodes of tbngular graphs, in NMEGM,
and in the nodes of the discriminant graphs of the E-NMEGM aggroThe ROC curves for the FB
set are shown in Figure 13a. As can be seen, the E-NMEGM-PCA appmaperforms all other

approaches.

The Dupl set consists of 736 images of 249 individuals. Thusibaet of FA has been used for
experiments consisting of 249 individuals (the same onatsparticipate in the Dupl set). The subset
of FA set has been randomly partitioned to clients and impesiaving50% (i.e., 125 individuals) as
clients and the remaining 124 individuals as impostors. Alelrepeated the experiments four times
and the average ROC curves has been estimated for all theel tegproaches. In Dupl the number
of images per individual are not the same for each person. anmumber of genuine claims have
been 367 and the mean number of impostor claims has 3&enr 125 = 45875. The final test set is
the Dup?2 set that consists of 228 images of 75 individualsinAtie experiments in Dupl, a subset
of FA has been used for experiments in Dup2 consisting of @vithuals. Accordingly, the subset
of FA has been randomly partitioned to clients and impostaging 50% (i.e., 38 individuals) as
clients and remaining 37 individuals as impostors. We hapeated the experiments four times and
the average ROC curve has been estimated. In Dup2 the nurimeages per individuals are not the
same for each person. The mean number of genuine claims haslb2eand the mean number of
impostor claims has bee36 x 116 = 4408. The ROC curves for the Dupl and Dup2 set are shown
in Figures 13b and c, respectively. The tests in Dupl and Dup2 haen shown that the proposed
discriminant graphs outperform all other tested approsicheen in very different conditions to the

conditions that the training has been performed.

The experiments in the Color FERET database verified the resoits fihe XM2VTS database,
i.e. that the selection of nodes that consist the faciallgispmportant and can significantly increase
the performance of elastic graph matching for frontal faedfication even when only one sample

is available in the training set.
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V. CONCLUSION

(a) ROC curves for the FB probe set; (b) ROC curves for thplDprobe set; (c) ROC curves for the Dup2

In this paper, a novel method for learning person specificafatiodels has been proposed. The

method is comprised of two steps. In the first step, a grapmbats nodes at discriminant facial

points is found. In the second step, a novel discriminantufeaextraction method is used in order

to select the most discriminant features for the graph nofles discriminant models are used along

with morphological elastic graph matching and tested fonfal face verification where state of the

art verification performance has been achieved.
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