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Abstract

In this paper, a novel algorithm for finding discriminant person-specific facial models is proposed

and tested for frontal face verification. The most discriminant features of a person’s face are found

and a deformable model is placed in the spatial coordinates that correspond to these discriminant

features. The discriminant deformable models, for verifying the person’s identity, that are learned

through this procedure are elastic graphs that are dense in the facial areas considered discriminant

for a specific person and sparse in other less significant facial areas. The discriminant graphs are

enhanced by a discriminant feature selection method for thegraph nodes in order to find the most

discriminant jet features. The proposed approach significantly enhances the performance of elastic

graph matching in frontal face verification.

Index Terms

Elastic graph matching, expandable graphs, linear discriminant analysis, frontal face verification.

I. I NTRODUCTION

A well known technique for face recognition and verification is theelastic graph matching(EGM)

algorithm [1]. In EGM, a reference object graph is created by overlaying a rectangular elastic sparse

graph on the object image and then calculating a Gabor wavelet bank response at each graph node.

The graph matching process is implemented by a stochastic optimization of a cost function which

takes into account both jet similarities and grid deformations. A two stage coarse-to-fine optimization

procedure suffices for the minimization of such a cost function.

Since its invention, EGM for face verification and recognition has been a very active research field

[2]-[11]. In [2], it has been shown that EGM outperforms eigenfaces and autoassociation classification

neural networks for face recognition. In [3], the graph structure has been enhanced by introducing a

stack like structure, the so-calledbunch graph, and has been tested for face recognition. For every

node in the bunch graph structure, a set of jets has been measured for different instances of a face

(e.g., with opened or closed mouth, eyes opened or shut). Thisway, the bunch graph representation

could cover a variety of possible changes in the appearance of a face. In [4], the bunch graph structure
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has been used for determining facial characteristics, suchas beard or presence of glasses, or a even

a person’s sex.

In [6], EGM has been proposed and tested for frontal face verification and different choices for

the elasticity of the graph have been investigated. A variant of the standard EGM, the so-called

morphological elastic graph matching(MEGM), has been proposed for frontal face verification and

tested for various recording conditions [7]-[9]. In MEGM, the Gabor features have been replaced

by multiscale morphological features obtained through dilation-erosion of the facial image using

a structuring function [12]. In [7], [9], the standard coarse to fine approach [6] for EGM has been

replaced by a simulated annealing method that optimizes a cost function of the jet similarity measures

subject to node deformation constraints. The multiscale morphological analysis has proven to be

suitable for facial image analysis and MEGM has given better verification results than the standard

EGM approach, without having to compute the computationallyexpensive Gabor filter bank output.

Another variant of EGM has been presented in [10], where morphological signal decomposition has

been used instead of the standard Gabor analysis [6].

Discriminant techniques have been employed in order to enhance the recognition and verification

performance of the EGM. The use of linear discriminating techniques at the feature vectors for

selecting the most discriminating features has been proposed in [6], [7], [9]. Several schemes that

aim at weighting the graph nodes according to their discriminatory power have also been proposed

in [7], [9], [11], [13].

Little or no research has been conducted concerning the type of graphs that is more appropriate

for face recognition/verification. The sparse graph that has been used for face representation in the

literature is:

• either an evenly distributed graph placed over a rectangular image region [6], [7], [9], [10], [13]

• or a graph that is placed on preselected nodes that correspond to some fiducial facial points (e.g.,

nose, eyes, etc.) [3], [4].

Intuitively, one may think that graphs with nodes placed at specified fiducial points may perform better

than the rectangular graphs. However, such graphs are more difficult to be applied automatically, since

they require a detection module to find the precise coordinates of the facial features in the reference
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images or, in many cases, manual feature selection [3] is applied. On the contrary, an evenly distributed

rectangular graph is easier to handle automatically, sinceonly a face detection algorithm is needed in

order to find an initial approximation of the rectangular facial region [6], [7], [9], [10], [13]. Figure

1 shows the two different types of facial graphs used in elastic graph matching algorithms.

(a) (b)

Fig. 1. Different types of facial graphs : a) rectangular graph c) graph with nodes at fiducial points.

In [4], [6], [7], [9], [11], [13] the discriminant analysis has been used for finding either linear

discriminant transforms for feature selection at graph nodes or for discriminant weighting of the local

node similarity measures. In this paper, we extend the use ofdiscriminant analysis for finding the

most discriminant facial features of a person’s face. To do so, we introduce a discriminant analysis

that produces a graph whose nodes correspond to discriminant facial points of a person.

In order to find such graphs, we introduce a heuristic cost optimization algorithm, which has as

outcome the graph that optimizes a preselected discriminant cost. The cost is formed by calculating

the significance of each node using discriminant values like the ones proposed in [6]-[8]. We assume

that nodes with high discriminant values correspond to facial points with high discriminant capability.

Then, we try to represent, in a better way, the corresponding neighborhood by adding more nodes

around the original one. This practically means that we expand the nodes that are considered to be

discriminant. This way, graphs that are person specific and have nodes placed at discriminant facial

features, are obtained. Moreover, in order to improve the performance of the new discriminant graphs

we apply a discriminant feature extraction method at each graph node which is a variant of the

method proposed in [7], [8]. The proposed algorithm has been applied to frontal face verification

on the XM2VTS database [14] and the Color FERET database [15], [16], [17], using a modified
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morphological multiscale analysis proposed in [18].

Summarizing, the contributions of this paper are:

• The introduction of the use of person specific graphs placed on his/her discriminant facial

features. These graphs substitute the rectangular evenly distributed graphs [7], [8] and the graphs

having their nodes manually located at fiducial points [3].

• A novel heuristic cost optimization algorithm that automatically finds such graphs.

• The application of a two class (genuine versus impostor samples) linear discriminant transform

at the nodes of the new graphs for discriminant feature selection.

Moreover, we illustrate the efficiency of our approach in the frontal face verification problem.

The rest of the paper is organized as follows. In Section II, theelastic graph matching algorithm is

revisited and the problem is stated. In Section III, the algorithm that is used for learning person specific

facial models along with the discriminant analysis of feature vectors are presented. Experimental

results are depicted in Section IV. Finally, conclusions are drawn in Section V.

II. ELASTIC GRAPH MATCHING REVISITED

In the first step of the EGM algorithm, a sparse graph that is suitable for face representation is

selected [3], [6], [7]. The facial image region is analyzed and a set of local descriptors is extracted at

each graph node. Analysis is usually performed by building an information pyramid using scale-space

techniques. In the standard EGM, a 2D Gabor based filter bank hasbeen used for image analysis

[1]. The output of multiscale morphological dilation-erosion operations or the morphological signal

decomposition at several scales are nonlinear alternatives of the Gabor filters for multiscale analysis

and both have been successfully used for facial image analysis [7], [9], [10], [18]. At each graph

node that is located at image coordinatesx, a jet (feature vector)j(x) is formed:

j(x) = [f1(x), . . . , fM (x)]T , (1)

wherefi(x) denotes the output of a local operator applied to the imagef at thei-th scale or at the

i-th pair (scale, orientation) andM is the jet dimensionality. The next step of EGM is to translate and

deform the reference graph on the test image in order to find thecorrespondences of the reference

graph nodes on the test image. This is accomplished by minimizing a cost function that employs
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node jet similarities and, in the same time preserves, the node neighborhood relationships. Let the

subscriptst and r denote a test and a reference facial image (or graph), respectively. The L2 norm

between the feature vectors at thel-th graph node of the reference and the test graph is used as a

similarity measure between jets, i.e.:

Cf (j(xl
t), j(x

l
r)) = ||j(xl

r)− j(xl
t)||. (2)

Let V be the set of all graph vertices of a certain facial image. Forthe rectangular graphs, all nodes,

except from the boundary nodes, have exactly four connectednodes. LetH(l) be the four-connected

neighborhood of nodel. In order to quantify the node neighborhood relationships using a metric, the

local node deformation is used:

Cd(x
l
t,x

l
r) =

∑

ξ∈H(l)

||(xl
t − xl

r)− (xξ
t − xξ

r)||. (3)

The objective is to find a set of vertices{xl
t(r), l ∈ V} in the test image that minimizes the cost

function:

C({xl
t}) =

∑

l∈V

{Cf (j(xl
t), j(x

l
r)) + λCd(x

l
t,x

l
r)}. (4)

The jet of thel-th node that has been produced after the matching procedureof the graph of the

reference personr in the image of the test persont, is denoted asj(xl
t(r)). This notation is used due

to the fact that different reference graphsr result to different test jetsj(xl
t(r)). Thus, the jet of the

l-th node of the test grapht is a function of the reference graphr. The notationj(xl
r) is used only

when thel-th node is in a preselected position of a facial image.

In [7], the optimization of (4) has been interpreted as a simulated annealing with additional penalties

imposed by the graph deformations. Accordingly, (4) can be simplified to the minimization of:

Dt(r) =
∑

l∈V{Cf (j(xl
t), j(x

l
r))} subject to

xl
t = xl

r + s + δl, ||δl|| ≤ δmax,
(5)

wheres is a global translation of the graph andδl denotes a local perturbation of the graph nodes.

The choices ofλ in (4) andδmax in (5) control the rigidity/plasticity of the graph [6], [7]. After the

matching procedure, the distanceDt(r) is used as a quantitative measure for the similarity of two

faces [6], [7], [8].
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It is obvious that the standard EGM algorithm does not use any information about the facial classes

used for verification. In order to treat this problem of EGM in [7], [8] linear discriminant techniques

have been used for node feature selection or for node similarity measure weighting.

In this paper we propose a method that answers to the question”which facial points should be

taken into consideration in order to create a graph that is discriminant for a particular reference person

r?”. Then, we create a graph using these fiducial points and use itas a model when an identity claim

occurs. Moreover, we answer to the question ”which featuresof each jet are discriminant?” by solving

the optimization problem in [7], [8] using methods inspiredby [19], [20], [21] for optimizing the

Fisher’s discriminant ratio.

III. F INDING DISCRIMINANT PERSON-SPECIFICMODELS USINGEXPANDABLE GRAPHS

In Section III-A, we formally define the optimization problem which produces the discriminant

graphs. In Section III-B, we describe a heuristic algorithm that finds the person specific discriminant

graphs. In Section III-C, the discriminant analysis used forfeature selection at the graph nodes is

presented. In the following,m(X ) denotes the mean vector of a set of vectorsX andN(X ) denotes

its cardinality. WhenX is a set of scalar values their mean will be denoted asm(X ) and their variance

asσ2(X ).

A. Setting the Optimization Problem

LetF l
C(r) andF l

I(r) be the sets of the jets of thel-th node that correspond to genuine and impostor

claims related to personr, respectively. In order to define the similarity of a test jetj(xl
t(r)) with

the class of reference jets for the same node, we use the following norm [7]:

cl
t(r) = ||j(xl

t(r))−m(F l
C(r))||2. (6)

Let Ll
C(r) andLl

I(r) be the sets of local similarity valuescl
t(r) that correspond to genuine and

impostor claims, respectively. A possible measure for the discriminant power of thel-th node is the

Fisher’s discriminant ratio [22]:

pl
1(r) =

(m(Ll
C(r))−m(Ll

I(r)))
2

σ2(Ll
C(r)) + σ2(Ll

I(r))
. (7)
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In [7], [9] it has been proposed to weight the graph nodes after the elastic graph matching using the

coefficientspl
1(r) in order to form a similarity measure between graphs. Another possible measure

of the discriminant power of a graph node is the following:

pl
2(r) =

1
N(Ll

I
(r))

∑
cl

t(r)∈L
l

I
(r) cl

t(r)

1
N(Ll

C
(r))

∑
cl

t(r)∈L
l

C
(r) cl

t(r)
. (8)

The measure (8) increases when the impostor local similaritymeasures for the graph node are high

and/or the local similarity measures for the genuine class are small.

By summing the discriminant coefficients for a certain graph setupg we have:

Eg(r) =
1

L

L∑

l=1

pl(r) (9)

where L is the total number of nodes. This is the mean of all the discriminant ratios and is a

characteristic measure for a particular graph setup of somereference personr. The scalarpl(r) could

be any discriminant measure like the ones defined in (7) and (8)and is estimated using a training set

of impostor and genuine claims. The measure defined in (9) creates an ordering relationship between

graphs. That is, for two graphsg1 and g2 and for some reference personr if Eg1
(r) < Eg2

(r) the

graphg2 is considered more discriminant than the graphg1. Practically, the nodes of the graphg2

are placed in more discriminant facial points than the nodesof g1. Figure 2 shows two different

graph setupsg1 andg2 with different Eg(r) values. Both graphs have 64 nodes. The graph depicted

in Figure 2b is found experimentally to be more discriminant than the rectangular graph depicted in

Figure 2a sinceEg1
(r) < Eg2

(r).

(a) (b)

Fig. 2. a) A rectangular sparse graph; b) a graph that is more discriminant than the rectangular graph.
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The previous analysis leads to an optimization procedure in order to find the graphg that has

maximumEg(r). The desired properties (constraints) of the graphg apart from having maximum

Eg(r) are:

• The graph should have a relatively small number of nodes so that the elastic graph matching

procedure has low computational cost.

• The nodes should not be very close to each other in order to avoid redundant use of the same

discriminant information.

Formally, the above optimization problem can be written as:

ǵ = arg maxg Eg(r) subject to

||xl
r − x

j
r|| ≥ ∆,∀ l, j nodes withl 6= j

L = constant

(10)

where∆ is a preselected threshold that controls the density of the graph.

B. A Heuristic Optimization Approach

In order to solve the maximization problem (10), someone hasto follow a heuristic optimization

approach, since exhaustive search is not feasible. The idealsolution is a subgraph of a rectangular

N ×M graph that obeys the constraints (10), whereN is the width andM is the height of the

facial area (in pixels), respectively. The overall maximum of (10) can be found by measuring the

discriminant power of each node (one node is placed at each pixel) and keeping a subset of nodes of

the rectangularN×M graph that maximizes the constraint optimization problem (10). The previously

described procedure guarantees that it will find one of the optimal solutions of (10) (since there is

no guarantee that there is a unique solution) but has a prohibitive computational cost in the training

phase, since the number of the nodes of the graphs that shouldbe matched to impostor and to genuine

images in order to calculate the discriminant power of everynode is extremely high (the size of the

graphs for a facial area of100× 150 pixels is 15.000 nodes).

In order to avoid such a computationally infeasible procedure, a sampling of the solution space

should be performed prior to optimization. Thus, we should search for a sub-optimal solution of the

constraint optimization problem (10) by assuming that the desired graph is a subgraph of a more
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sparse graph than the rectangularN ×M one. One possible solution is to assume that the solution

is a subgraph of the graph of∆-equilateral triangles with inter-node distance equal to∆ pixels (∆

is the threshold that controls the sparsity of the graph in (10)). Another option is the most dense

∆-rectangular graph (i.e., an evenly distributed graph withnodes placed every∆ pixels). Figure 3a

shows the graph with∆-equilateral triangles, having a total of 768 nodes. Figure 3b shows the most

dense∆-rectangular graph with nodes placed every 9 pixels apart, having a total of 700 nodes. Figure

3c shows a discriminant subset of the∆-rectangular dense graph that has only 64 nodes.

(a) (b) (c)

Fig. 3. b) The dense graph of9-equilateral triangles; b) a9-rectangular dense graph; c) a discriminant subset of the

rectangular dense graph.

In this work we have used rectangular graphs, even though they are not the densest possible graphs

(e.g. for∆ = 9 the graphs with9-equilateral triangles are more dense that the most dense9-rectangular

graph having about10% more nodes). We have followed this solution in order to have compliance

with the majority of the proposed approaches for elastic graph matching that use rectangular graphs as

well [1], [6], [7], [9], [10]. Also, the rectangular graphs have less computational complexity than other

graph structures that may require more nodes to be matched. We have experimented using graphs

of various types and we have observed that the type of the dense graph, for which the sub-optimal

solution will be a subgraph, is not significant. Nevertheless, the proposed algorithm can be easily

extended in order to support other graphs types (like the graphs of∆-equilateral triangles).

Moreover, it is also very computationally expensive to compute the discriminant measures of

the nodes of the most dense∆-rectangular graph. Thus, a second sampling step is required. In

the second sampling step, a sparse subgraph of the most dense∆-rectangular graph is selected as
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the starting point of the optimization procedure. A possible solution for the initial sampling of the

most dense rectangular graph is the evenly distributed rectangular graph with a total ofL nodes. A

solution for selecting the initial position of the sparse graph could be a selection based on a face

detection/localization algorithm. These sampling steps are inevitable in order to have a computationally

feasible solution of the constrained optimization problem(10).

After sampling the solution space, an iterative algorithm that uses expandable graphs is proposed

in order to find the discriminant graph. We assume that the nodes that have high discriminant values

should be placed in facial regions that are indeed discriminant for the specific person. These facial

regions should be better represented. This can be achieved byexpanding certain nodes that possess

the highest discriminant power.

In the following, the steps of the proposed algorithm are described in more detail. This procedure

should be repeated for every reference personr in the database. Before starting the optimization

procedure, the reference graphs for the personr should be created. The reference graphs are created

by overlaying a rectangular sparse graph on the facial imageregion in the positions indicated by a

face localization algorithm. Figure 4 shows the reference facial images with the corresponding graphs

for a person in the XM2VTS database. The procedure is person specific and is executed once for

every person. That is, there is no need to rerun the procedure for the other already trained persons

when a new person arrives.

Fig. 4. The reference facial images with the reference graphs.

Let the initial graph containL vertices at the first iterationi ← 1. Let Bi be the set of graph

vertices at thei-th iteration. The algorithm has the following steps:

Step 1 . Take the reference graphs and match them in all genuineand impostor images.
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Step 2 . For each nodel, calculate the measurepl(r).

Step 3 . Select a subset of the nodes with the higher discriminant value that have not been already

expanded and expand them. The nodes that lie in the perimeter of the graph can be expanded

only inside the facial region. Figure 5 describes pictorially this step for the rectangular

graphs. For other types of graphs other expanding steps should be followed, i.e. for the

graph of∆-equilateral triangles, six nodes should be inserted in thegraph at this step.

Fig. 5. Expanding the rectangular graph.

Step 4 . Verify that the inserted nodes do not violate the graphsparseness criterion. That is, erase

the new nodes that violate the criterion||xl
r − x

j
r|| < ∆, ∀ l, j (for the rectangular graphs

used in this work, this is equivalent with checking if some ofthe inserted nodes have already

been examined). The set of the final inserted nodes in thei-th iteration is denoted asAi.

Step 5 . Match locally the nodes ofAi in all the genuine and impostor facial images. Letk ∈ Ai

be an inserted node and̃xk
t be the initial coordinate vector for the nodek in a test image

t. The local matching procedure is the outcome of the local search:

x̀k
t (r) = arg minxk

t
Cf (j(xk

t ), j(x
k
r )) subject to

||xk
t − x̃k

t || ≤ δmax

(11)

x̀k
t (r) is the final coordinate vector that gives the jetj(x̀k

t (r)).

Step 6 . For each nodek ∈ Ai, calculate its discriminant valuepk(r).
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Step 7 . LetCi = Ai∪Bi. Order the nodes inCi according to their discriminant power and obtain a

graphgi+1 by keeping only theL nodes with the highest discriminant power. The setBi+1

contains the nodes ofgi+1.

Step 8 . If |Egi+1
(r)− Egi

(r)| > τ then i← i + 1 and goto Step 4 else stop.

The procedure described is a ”greedy”, hill climbing algorithm for finding the graphg with maximum

Eg(r). It always follows the direction of the best solution and, thus, it may get stuck at local maxima.

An alternative way is to interpret this optimization procedure as a simulated annealing procedure [23]

havingEg(r) as the energy function. Moreover, in Step 4 we could expand notonly some nodes that

have high discriminant value but also some randomly selected ones. In this way, we may prevent

the loss of some discriminant regions that have been captured neither by the initial graph nor by the

expanding procedure.

Figure 6 shows the steps of the above algorithm for the first person in the training set of the

XM2VTS database [14]. The algorithm starts from the rectangular 8 × 8 graph which is shown in

the top left image of Figure 6. The second image from the top raw shows the first expanded instance

of the rectangular graph. The third image shows the graph after the first node erasing step. The

images that follow in a row-wise manner show a sequence of expanding/erasing steps. The algorithm

converges after a total of seven expanding steps. The connections between nodes in all images have

been created for visualization purposes. As can be seen in Figure 6 (lower right hand image), the

discriminant graph nodes are concentrated in the areas between his cheeks and nose. This region is

indeed characteristic for this particular person of the XM2VTS database.

Using as reference the facial images and graphs depicted in Figure 7, we demonstrate, the dis-

criminant graph that is derived from the proposed procedure. As can be seen, the discriminant graph

depicted at Figure 7d, is comprised of nodes around the mouth and in the lower forehead. This happens

due to the fact that in some reference facial images (shown inFigure 7a,b,c), the facial region is

partially occluded by hair while, in some other ones the hairdoes not overlap with the rectangular

graph. This is of particular importance, since the proposed representation can handle the cases of

people who tend to change hairstyle (or facial style in general e.g. eyeglasses, beard) frequently. In

such cases, the graph nodes tend to concentrate in the interior facial region that is not affected at
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Fig. 6. The sequence of the steps for learning the graph that is comprised by expanding and erasing steps.

all by the hair style. Similarly, the proposed method will discard nodes lying in the chin area, if the

person sometimes has beard and some times not. On the contrary, if a person always has a beard

and, particularly, if he is the only one having a beard in the entire database, then the beard nodes

will be expanded and will be considered as highly significant.Unfortunately, this procedure some

times may cause overfitting (i.e., the discriminant graph maycatch some facial points that are not
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truly discriminant but have been accidentally upon the facial area during the training procedure). This

issue will be discussed in more detail in Section IV-B.1.

(a) (b) (c) (d)

Fig. 7. The reference facial images with the reference graphs and thecorresponding discriminant graph.

The plots of the measureEg(r) versus the number of iterations until convergence are illustrated

in Figure 8a,b for the two persons in Figures 6 and 7, respectively. As can be seen for both

persons, the algorithm converges after a total of seven iterations. In the eighth iteration no new

node has been inserted and the algorithm converges. The elastic graph matching procedure of the

0 1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

number of iterations

E
g(r

)

0 1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

18

20

22

number of iterations

E
g(r

)

(a) (b)

Fig. 8. The plot ofEg(r) versus the number of iterations (a) for the person in Figure 6; (b) for the person in Figure 7

new graphs is performed using the minimization procedure indicated in the optimization problem (5).

The optimization problem (5) uses global translation of the graph. That is, the components cannot

be translated independently but only as part of the entire graph. In the second step, every node can

be locally matched (deformed) independently as it imposed by the optimization problem (5).
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C. Discriminant Feature Selection

We can improve the performance of the new graph by imposing discriminant analysis in the feature

vectors of the graphs as in [7], [9]. Therefore, we should try to find a discriminant dimensionality

reduction transform matrixΨl(r) for every nodel of the graph of the reference personr. In the

reduced space we use the following metric in order to define thesimilarity of test matched jets as:

ĉl
t(r) = ||Ψl(r)

T
(j(xl

t(r))−m(F l
C(r)))||2. (12)

The discriminant criterion used is similar to the one given in(8) and can be expanded as:

J(Ψl(r)) =

1
N(Ll

I
(r))

∑
cl

t(r)∈L
l

I
(r) ĉl

t(r)

1
N(Ll

C
(r))

∑
cl

t(r)∈L
l

C
(r) ĉl

t(r)
=

tr[Ψl(r)
T
Wl(r)Ψl(r)]

tr[Ψl(r)
T
Bl(r)Ψl(r)]

(13)

where the matricesWl(r) andBl(r) are given by:

Wl(r) =
1

N(Ll
I(r))

∑

ĵ(xl

t(r))∈F
l

I
(r)

(̂j(xl
t(r))−m(F l

C(r)))(̂j(xl
t(r))−m(F l

C(r)))T (14)

and

Bl(r) =
1

N(Ll
C(r))

∑

ĵ(xl

t(r))∈F
l

C
(r)

(̂j(xl
t(r))−m(F l

C(r)))(̂j(xl
t(r))−m(F l

C(r)))T . (15)

The maximum ofJ , in cases thatBl(r) is invertible, is obtained whenΨ is a matrix having

columns the generalized eigenvectors ofBl(r)
−1

Wl(r). In order to satisfy the invertibility ofBl(r),

the training set should contain at least as many samples fromthe genuine class as the feature

dimensionality. Thus, in many cases, it is difficult to satisfythe invertibility of Bl(r) (refer to Section

IV for more details). In [7], [9]Principal Component Analysis(PCA) has been initially used in order

to satisfy the invertibility ofBl(r).

Recently,Direct Linear Discriminant Analysis(D-LDA) algorithms for discriminant feature ex-

traction have been proposed [24]-[26] in order to prevent the loss of discriminatory information that

occurs when a PCA step is applied prior to LDA [27]. In D-LDA the search of discriminant directions

is applied in the null space (i.e., formed by the eigenvectors that correspond to null eigenvalues) of

the between scatter matrix. Moreover, in [19], [20] it has been shown that two different discriminant

transforms can be derived from the Fisher’s LDA optimization problem, the so-called regular and

irregular discriminant transforms. The novelty of the proposed approach is that it exploits all the
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available information of the discriminant criterion (13),in contrast to the methods proposed in [7],

[9], that discard useful information using an initial PCA step.

We apply the theory developed in [19], [20] in order to find the regular and the irregular discriminant

information for the discriminant criterion (13). First, we have to deal with the null space ofBl(r).

The vectors contained in the null space of the matrixBl(r) maximize the criterion (13). That is,

all the projectionsψl
i(r) that satisfy bothBl(r)ψl

i(r) = 0 and Wl(r)ψl
i(r) 6= 0 (or equivalently

ψl
i(r)

T
Bl(r)ψl

i(r) = 0 andψl
i(r)

T
Wl(r)ψl

i(r) > 0 ) maximize the criterion (13). For these vectors

we define the following criterion:

Jb(Ψ
l(r)) = tr[Ψl(r)

T
Wl(r)Ψl(r)],Ψl(r) = [ψl

1(r) . . .ψl
n(r)] , ||ψl

i(r)|| = 1. (16)

Using the criteria (13) and (16), two different discriminant feature extraction transforms can be

derived that correspond to regular and irregular discriminant information, respectively. The first step

of the discriminant dimensionality reduction is to find the orthonormal eigenvectors that correspond to

non-null and null eigenvalues ofBl(r). Let Ξl
1(r) andΞl

2(r) be the matrices having as columns the

orthonormal eigenvectors ofBl(r) that correspond to non-null and to null eigenvectors, respectively.

The eigenanalysis ofBl(r) is an easy task, since, in most cases, the graph jets do not have more

than 20 features [6], [7], [9], [10].

1) Regular Discriminant Transform:Let B̂l(r) = Ξl
1(r)

T
Bl(r)Ξl

1(r) and

Ŵl(r) = Ξl
1(r)

T
Wl(r)Ξl

1(r) be theBl(r) andWl(r) matrices projected in the space spanned by

the vectors inΞl
1(r). In this space,̂Bl(r) is invertible. Thus, the discriminant transform in this space

can be given by the matrixΘl
1(r) that has as columns the generalized eigenvectors ofB̂l(r)

−1
Ŵl(r).

The regular discriminant features are given by:

Γl
1(r) = Ξl

1(r)Θ
l
1(r). (17)

This step gives the regular discriminant feature vectorsj1(x
l
t(r)) = Γl

1(r)
T
j(xl

t(r)), j1(x
l
t(r)) ∈ ℜm

with m ≤ min(M, N(Ll
C(r))− 1).

2) Irregular Discriminant Transform:The irregular discriminant transform can be found by pro-

jecting Wl(r) in the space spanned byΞl
2(r), only if Bl(r) is singular. This happens when the

number of training genuine feature vectors is smaller than the dimensionality of the feature vector.
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Let W̃l(r) = Ξl
2(r)

T
Wl(r)Ξl

2(r) be the projected matrixWl(r) in the null space ofBl(r). The

discriminant transform in this space is given byΘ2 that has as columns the orthonormal eigenvectors

of W̃l(r). The irregular transform matrix is given by:

Γl
2(r) = Ξl

2(r)Θ
l
2(r). (18)

The irregular discriminant transform gives the vectorsj2(x
l
t(r)) = Γl

2(r)
T
j(xl

t(r)) andj2(x
l
t(r)) ∈ ℜn

with n ≤M −N(Ll
C(r)) + 1. It is easy to prove that the irregular discriminant transform performs

perfect classification in the training set. That is, every genuine training jet falls in the same point in

the projected space [28].

For a test jetj(xl
t(r)), two kind of discriminant feature vectors are available using the regular and

the irregular discriminant transform, i.e.,j1(x
l
t(r)) andj2(x

l
t(r)), respectively. The similarity of these

two feature vectors with the reference facial classr can be estimated using two distances:

ċl
t(r) = ||Γl

1(r)
T
(j(xl

t(r))−m(F l
C(r)))|| and c̈l

t(r) = ||Γl
2(r)

T
(j(xl

t(r))−m(F l
C(r)))||.

The final distance is a fusion of the two measuresċl
t(r) and c̈l

t(r). The total normalized distance at

the l-th node between the referencer and the test persont is:

c̃l
t(r) =

ċl
t(r)∑

i∈U ċl
i(r)

+
c̈l
t(r)∑

i∈U c̈l
i(r)

(19)

whereU is the training facial image database. The new distance between faces, after discriminant

analysis, is given by:

D̃t(r) =
∑

l∈V

c̃l
t(r). (20)

IV. EXPERIMENTAL RESULTS

A. Databases and Evaluation Protocols

The experiments were conducted in the XM2VTS database using the protocols described in [14]

and in the Color FERET database using the face verification evaluation methodology presented in

[15]. The description of the XM2VTS database is available at [29]. There have been many versions of

FERET database released from time to time, the current version being released is the Color FERET

database [30].
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1) The XM2VTS database and Testing Protocol:The XM2VTS database contains 295 subjects, 4

recording sessions and two shots (repetitions) per recording session. The XM2VTS database provides

two experimental setups namely, Configuration I and Configuration II [14]. Each configuration is

divided in three different sets: the training set, the evaluation set and the test set. The training set is

used to create genuine and impostor models for each person. The evaluation set is used for learning

the verification decision thresholds. In case of multimodal systems, the evaluation set can be also

used for training the fusion manager. For both configurationsthe training set has 200 clients, 25

evaluation impostors and 70 test impostors. The two configurations differ in the distribution of the

client training and the client evaluation data. For additional details concerning XM2VTS database the

interested reader can refer to [14]. Recently, frontal faceverification competitions using the XM2VTS

[31], [32] have been conducted. The interested reader can refer to [31], [32] and to the references

therein for the tested face verification algorithms.

The performance of face verification systems is measured in terms of theFalse Rejection Rate

(FRR) achieved at a fixedFalse Acceptance Rate(FAR). There is a trade-off between FAR and FRR,

producing the so-calledReceiver Operating Characteristic(ROC) curve [8], [13]. The performance

of a verification system is often quoted by a particular operating point of the ROC curve where

FAR=FRR. This operating point is calledEqual Error Rate(EER).

When a verification technique is to be evaluated for a real application then the decision thresholds

should be set a priori. The evaluation set is used for setting the thresholds. The same thresholds will

then be used on the test set. Let FAE and FRE be the correspondingFalse Acceptance Rate(FAR) and

False Rejection Rate(FRR) obtained from the evaluation set. Since application requirements might

constrain the FAR or FRR to be within certain limits, the system is evaluated for three different vectors

of decision thresholds that correspond to the operating points where FAE=0, FRE=0 or FAE=FRE.

For each given threshold, theTotal Error Rate(TER) can be obtained as the sum of FAR and FRR.

2) The FERET database and Testing Protocol:The Color FERET that has been used in our

experiments contains 994 persons [30]. The evaluation methodology of the FERET database is not as

strict as the XM2VTS protocol (i.e., it does not define who wouldbe the clients or the impostors). It

only requires that the training should be performed using the FA set (also referred to as gallery set)
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that contains one frontal view per person. The testing sets (also referred to as probe sets) include the

[15]:

• FB images: the second frontal image taken from the same set as the gallery image (FA set).

Usually, the person has a different expression from the one posed in FA. The FB set contains

992 individuals.

• Duplicate images 1 (Dup1): This probe set is used for analyzing the effect of aging on the

verification performance. The images are taken in a different session (different date) or taken

under special circumstances (such as the subject was wearing glasses, different hair length, etc).

The Dup1 probe set contains 736 images of 249 individuals.

• Duplicate images 2 (Dup2): The Dup2 probe set is a subset of theDup1 probe set consisting

of frontal images captured at least 540 days after the capture of the subject gallery image (FA

set). The Dup2 probe set size is 228 images of 75 individuals.

B. Experiments in the XM2VTS database

For initializing the algorithm, described in Section III, a rectangular8×8 graph setup has been used

[6], [7]. The multiscale analysis used for filling the jets is the one proposed in [18] (i.e.,Normalized

Morphological Elastic Graph Matching(NMEGM)) and the jet dimension has been set to19. The

structuring element used in all experiments was cylindrical [7], preferred for computational reasons.

Only the luminance information at a resolution of720×576 has been considered in our experiments.

We have used the value∆ = 9 for the parameter that controls the sparsity of the graph.

Unlike most of the subspace techniques [33]-[35] that require a perfect manual alignment in order

to perform well, the proposed algorithm has been combined with a fully automatic alignment method

according to the eyes position of each facial image using theeye coordinates that have been derived

from the method reported in [36]. The impact of inaccurate facial feature localization upon face

recognition is pointed in [37], [38].

1) Learning the Discriminant Person Specific Graphs:The training set of the Configuration I

contains 200 persons with 3 images per person. The evaluationset contains3 images per client for

genuine claims and25 evaluation impostors with8 images per impostor. Thus, evaluation set gives
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a total of 3 × 200 = 600 genuine claims and25 × 8 × 200 = 40.000 impostor claims. The test

set has2 images per client and70 impostors with8 images per impostor and gives2 × 200 = 400

genuine claims and70 × 8 × 200 = 112.000 impostor claims. The training set is used for learning

the discriminant graph for each reference person, according to the algorithm presented in Section

III. For initializing the algorithm, the face localizationprocedure proposed in [8] has been used. We

have used the discriminant measure defined in (8) for learningthe discriminant graphs. We have

seen that similar discriminant graphs have been acquired using the measure defined in (7). We have

also seen that the proposed procedure for finding discriminant graphs is quite fast, since the inserted

nodes are only matched locally and in all cases the algorithmhas converged using no more than

seven expanding steps for the training persons in the XM2VTS database. Figure 9 shows some of

the graphs that have been learned during the training procedure.

Fig. 9. Some examples of discriminant graphs learning during the trainingprocedure in the XM2VTS database.

One possible drawback of the proposed approach is overfitting, which may occur in any discriminant

technique. In our case, overfitting can occur when the discriminant graph is placed in facial points

that are not truly discriminant but have accidentally appeared in the facial area during the training

procedure. For example, when all the training facial imagesof a person contain glasses, cosmetics

or tattoos, it is highly possible that the nodes of the discriminant graph are placed in the spatial

coordinates that contain a visual instance of these artifacts. This fact is exemplified in Figure 10. In

the training phase, only facial images with eye glasses withblack thick skeleton have been present.

Thus, many nodes of the discriminant graph have been placed inthe spatial coordinates that correspond

to eye glasses. If the test facial images contain no eyeglasses, we may have false rejections. In order

to solve these problems eyeglass removing algorithms, likethe ones proposed in [39], [40] and/or the
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enhancement of the training set with virtual facial image samples, can be applied. There are many

methods for enriching the training set with virtual samples[41]-[44].

(a) (b) (c) (d)

Fig. 10. (a)-(b) Some of the training samples; (c) the corresponding discriminant graph; (d) test image.

2) Learning the Discriminant Node Transforms:After learning a discriminant graph for each

person, the training set is used for calculating the discriminant transforms for feature selection for

each reference personr and for each nodel. In the training set, 3 reference graphs per person are

created. The3× 2 = 6 graphs that comprise the genuine class are created by applying elastic graph

matching having one image as reference (i.e., in order to create the graph) and the other 2 images

are used as test images. The impostor class contains3× 3× 199 = 1797 graphs. The jet dimension

is 19. Thus, for a reference personr and a nodel the matrixBl(r) has5 non-null dimensions and

14 null dimensions. For every node jet, two discriminant transforms can be found as described in

Section III-C. The regular discriminant transform can give discriminant feature vectors with up to 5

dimensions. The feature vectors derived through the irregular discriminant transform can give feature

vectors with up to 14 feature dimensions.

3) Thresholds on Similarity Measure:With or without feature vector discriminant transforms, a

similarity measure between faces either by usingDt(r) or D̃t(r) can be found. In order to reject

or accept an identity claim, a threshold should be used on this similarity measure. For choosing the

thresholds, the method proposed in [7] has been used. In detail, the similarity measures for every

person are calculated in the training set and form the distance vectoro(r). The elements of the vector

o(r) are sorted in ascending order and are used for the person specific thresholds on the distance

measure. LetTQ(r) denote theQ-th order statistic of the vector of distances,o(r). The threshold of
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the personr is chosen to be equal toTQ(r). Let r1, r2 andr3 be the 3 instances of the personr in

the training set. A claim of a persont is considered valid ifminj{D̂t(rj)} < TQ(r) whereD̂t(rj)

is the distance between the graph of test persont and the reference graphrj (the similarity measure

D̂t(rj) could be eitherDt(r) or D̃t(r)). Obviously when varyingQ, different pairs of FAR and FRR

can be created to produce the ROC curve.

4) Experimental results in Configuration I:In order to illustrate the contribution of finding dis-

criminant person specific graphs, we have conducted the following experiments:

• NMEGM using rectangular8× 8 evenly distributed graphs without any discriminant analysis.

• NMEGM using the procedure for finding discriminant person specific graphs, described in

Section III-B, without feature vector discriminant analysis (abbreviated as E-NMEGM).

• NMEGM using rectangular8× 8 evenly distributed graphs and using the discriminant analysis

described in Section III-C (abbreviated as NMEGM-FD).

• NMEGM using the procedure for finding discriminant person specific graphs and using the

proposed feature vector discriminant analysis (abbreviated as E-NMEGM-FD).

Since all the tested approaches are fully automatic, we have not conducted experiments using graphs

placed at fiducial facial points [3] as they require manually localization of these points in all reference

facial images. The error rates according to the XM2VTS Configuration I protocol are illustrated in

Table I. The NMEGM without any discriminant step has given a TER=12.9% at FAE=FRE in the

test set of Configuration I. When replacing the rectangular evenly distributed graphs with the person

specific discriminant graphs proposed in this paper, the TER hasbeen reduced to6.05%. That is, an

increase in performance more that50% in terms of TER is achieved when using the proposed graphs.

When using the proposed discriminant analysis in the rectangular graphs, a TER=5.1% at FAE=FRE

has been achieved (NMEGM-FD). We have kept the number of dimensions that have given the best

EER in the evaluation set. It has been experimentally found that the best EER has been achieved when

keeping the first 3 dimensions of the regular discriminant transform and the first 3 of the irregular

transform. The best results have been achieved when using feature vector discriminant analysis in

the proposed discriminant graphs keeping, as well, 3 regular and 3 irregular dimensions. This setup

has given a TER= 2.9% at FAE=FRE (E-NMEGM-FD). Thus, an increase in performance of about
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50% has been verified in the case that we use feature vector discriminant analysis in the discriminant

graphs. For comparisons we have implemented a Fisherfaces (PCA+LDA) approach [27]. For the

Fisherfaces a TER10% has been measured at FAE=FRE using the same sets of images.

The ROC curves are depicted in Figure 11 where the EER and the operating point using the

thresholds of the operating point that corresponds to EER in the evaluation set are also shown

(abbreviated as EER-E in Figure 11). The operating points that corresponds to the thresholds of

the EER measured in the evaluation set are shown in columns 5 and6 of Table I.
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Fig. 11. ROC curves for the different discriminant variants of NMEGM intest set of the Configuration I experimental

protocol of the XM2VTS database.

It has been also verified that the proposed discriminant graphs using feature vector discriminant

analysis have very good performance compared with other state-of-the-art face verification algorithms.

Table II shows a comparison of E-NMEGM-FD (which gave the best results) with other methods

that use fully automatic alignment. The results have been acquired by the competition in XM2VTS

database [32]. Obviously, E-NMEGM-FD outperforms all the approaches tested in [32] using fully

automatic alignment. In [45] there has been another competition using the XM2VTS database in

order to explore the effects of severe illumination changesin face verification algorithms. Only one

algorithm has been tested using fully automatic alignment and has achieved a TER= 2.14%.

November 8, 2006 DRAFT



26

TABLE I

ERRORRATES ACCORDING TOXM2VTS PROTOCOL FORCONFIGURATION I

Algorithm

Configuration I

Evaluation set Test set

FAE=FRE FAE(FRE=0) FRE(FAE=0)
FAE=FRE FRE=0 FAE=0 Total Error Rate(TER)

FA FR FA FR FA FR FAE=FRE FRE=0 FAE=0

NMEGM 9.2 98.2 65.0 7.9 5.0 98.8 0.0 0.0 61.0 12.9 98.8 61.0

E-NMEGM 3.4 34.5 55.5 3.3 2.75 22.7 0.0 0.0 44.7 6.05 22.7 44.7

NMEGM-FD 2.2 26.5 52.3 2.1 3.0 11.0 0.5 0.2 13.2 5.1 11.5 13.4

E-NMEGM-FD 1.2 14.2 24.5 1.93 1.0 11.0 0.0 0.0 10.7 2.93 11.0 10.7

TABLE II

A COMPARISON OFTER FOR CONFIGURATION I USING FULLY AUTOMATIC REGISTRATION.

Algorithm TER

IDIAP-Cardinaux[32] 4.7

UPV[32] 3.98

UNIS-NC[32] 3.86

E-NMEGM-FD 2.93

CAS[45] 2.14

C. Experiments in the FERET database

In many applications and experimental protocols, like the experimental protocol of the FERET

database, there is only one genuine facial image available in the training set. In this case, the measures

defined in (7) and (8) cannot be used for measuring the discriminant power of a graph node. Hence, in

order to apply the proposed algorithm to the FERET database using the FERET evaluation protocol

[15], [16], [17] we have modified the algorithm so that it can befunctional having one sample

available for training. For that case, we use an alternativemeasure based only on the numerator of

(8):

pl
3(r) =

1

N(Ll
I(r))

∑

cl

t(r)∈L
l

I
(r)

||j(xl
t(r))− j(xl

r)||
2, (21)
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wherej(xl
r) is the jet of thel-th node in the only reference image of the personr. This measure is

based on the impostor class and on the one genuine sample and emphasizes the client facial features

that are far from the facial features of the impostors in terms of (21). Since we have only one sample

available for training, it is not possible to use the methodsin Section III-C for discriminant feature

selection. Thus, we have used only PCA for feature selection inthe nodes of the elastic graphs. For

PCA feature selection the number of dimensions has been chosen to be 5. Some discriminant graphs

from the FERET database are shown in Figure 12. In the FERET database,NMEGM algorithm

has been combined with a fully automatic alignment method according to the eyes position of each

facial image using the eye coordinates that have been derived from the method reported in [46]. For

comparisons we have also implemented a PCA approach [47], theso-called Eigenfaces, and we have

applied it to the same set of images. Finally, we have trained an LDA approach using the XM2VTS

database and tested it in the FERET database but, unfortunatelythe results have been very poor even

in comparison with PCA. This is partially attributed to the different environmental conditions between

the two databases.

Fig. 12. Some examples of discriminant graphs learning during the training procedure in the FERET database.

The FERET evaluation methodology requires testing to three setsof images namely FB, Dup1 and

Dup2. For performing the experiments in the FB set, the FA set has been randomly partitioned to

clients and impostors having50% (i.e., 497 individuals) as clients and50% as impostors. In other

words, the gallery consists of 497 individuals. The FB contains one image per person. Thus we have

a total of 497 genuine claims. The remaining 495 images of the FBset have been used for impostor

claims leading to a total of495× 497 = 246015 impostor claims. We have repeated the experiments

four times, using different partitions for clients and impostors, and the average ROC curve has been

November 8, 2006 DRAFT



28

estimated. In the FERET evaluation protocol the ROC curves, theProbability of correct verification

(PCV) versus the FA is used [15]. PCV is equal to 1-FR. The tested approaches have been the raw

NMEGM (without any discriminant analysis), the E-NMEGM and twoapproaches NMEGM-PCA

and E-NMEGM-PCA using PCA feature selection in the nodes of the rectangular graphs, in NMEGM,

and in the nodes of the discriminant graphs of the E-NMEGM approach. The ROC curves for the FB

set are shown in Figure 13a. As can be seen, the E-NMEGM-PCA approach outperforms all other

approaches.

The Dup1 set consists of 736 images of 249 individuals. Thus, a subset of FA has been used for

experiments consisting of 249 individuals (the same ones that participate in the Dup1 set). The subset

of FA set has been randomly partitioned to clients and impostors having50% (i.e., 125 individuals) as

clients and the remaining 124 individuals as impostors. We have repeated the experiments four times

and the average ROC curves has been estimated for all the tested approaches. In Dup1 the number

of images per individual are not the same for each person. The mean number of genuine claims have

been 367 and the mean number of impostor claims has been367× 125 = 45875. The final test set is

the Dup2 set that consists of 228 images of 75 individuals. Asin the experiments in Dup1, a subset

of FA has been used for experiments in Dup2 consisting of 75 individuals. Accordingly, the subset

of FA has been randomly partitioned to clients and impostorshaving 50% (i.e., 38 individuals) as

clients and remaining 37 individuals as impostors. We have repeated the experiments four times and

the average ROC curve has been estimated. In Dup2 the number of images per individuals are not the

same for each person. The mean number of genuine claims has been 112 and the mean number of

impostor claims has been36× 116 = 4408. The ROC curves for the Dup1 and Dup2 set are shown

in Figures 13b and c, respectively. The tests in Dup1 and Dup2 have been shown that the proposed

discriminant graphs outperform all other tested approaches, even in very different conditions to the

conditions that the training has been performed.

The experiments in the Color FERET database verified the results from the XM2VTS database,

i.e. that the selection of nodes that consist the facial graph is important and can significantly increase

the performance of elastic graph matching for frontal face verification even when only one sample

is available in the training set.
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Fig. 13. (a) ROC curves for the FB probe set; (b) ROC curves for the Dup1 probe set; (c) ROC curves for the Dup2

probe set.
V. CONCLUSION

In this paper, a novel method for learning person specific facial models has been proposed. The

method is comprised of two steps. In the first step, a graph having its nodes at discriminant facial

points is found. In the second step, a novel discriminant feature extraction method is used in order

to select the most discriminant features for the graph nodes. The discriminant models are used along

with morphological elastic graph matching and tested for frontal face verification where state of the

art verification performance has been achieved.
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[5] R. P. Würtz, “Object recognition robust under translations, deformations, and changes in background,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 769–775, July 1997.

[6] B. Duc, S. Fischer, and J. Bigün, “Face authentication with Gabor information on deformable graphs,”IEEE

Transactions on Image Processing, vol. 8, no. 4, pp. 504–516, Apr. 1999.

[7] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal face authentication using discriminating grids with morphological

feature vectors,”IEEE Transactions on Multimedia, vol. 2, no. 1, pp. 14–26, Mar. 2000.

[8] C. Kotropoulos, A. Tefas, and I. Pitas, “Morphological elastic graph matching applied to frontal face authentication

under well-controlled and real conditions,”Pattern Recognition, vol. 33, no. 12, pp. 31–43, Oct. 2000.

[9] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal face authentication using morphological elastic graph matching,”IEEE

Transactions on Image Processing, vol. 9, no. 4, pp. 555–560, Apr. 2000.

[10] A. Tefas, C. Kotropoulos, and I. Pitas, “Face verification using elastic graph matching based on morphological signal

decomposition,”Signal Processing, vol. 82, no. 6, pp. 833–851, 2002.
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