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Abstract

In this paper, two supervised methods for enhancing thesifilestion accuracy of th&lon-
negative Matrix FactorizationfNMF) algorithm are presented. The idea is to extend the NMF
algorithm in order to extract features that enforce not dindyspatial locality, but also the separability
between classes in a discriminant manner. The first methquogs discriminant analysis in the
features derived from NMF. In this way, a two phase discraminfeature extraction procedure is
implemented, namely NMF plusinear Discriminant Analysi¢LDA). The second method incorpo-
rates the discriminant constraints inside the NMF decoiitipaos Thus, a decomposition of a face
to its discriminant parts is obtained and new update ruledth the weights and the basis images
are derived. The introduced methods have been applied tprtiidem of frontal face verification
using the well known XM2VTS database. Both methods greatlyaace the performance of NMF

for frontal face verification.

Index Terms

Subspace techniques, non-negative matrix factorizatimegr discriminant analysis, frontal face

verification.

. INTRODUCTION

Face recognition/verification has attracted the attentibresearchers for more than two
decades and is among the most popular research areas inltheffeomputer vision and
pattern recognition.

The two problems of face verification and recognition arecemiually different. A recog-
nition system assists a human expert in determining thetitgeof a test face. In many
cases, only the percentage of correctly identified facdsinvé number of matches is adequate
(recognition rate) for evaluating the performance of a f@m®gnition system [1]. By varying
the number of matches, the curve of the cumulative matclesamsus the number of matches
is obtained [2]. For details on some state-of-the-art fammgnition systems, the interested
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reader can refer to [1], [3], [4], [5], [6], [7], [8], [9], [10 A person verification system should
decide whether an identity claim is valid or invalid. The fpemance of face verification
systems is measured in terms of thalse Rejection RatéFRR) achieved at a fixeBalse
Acceptance RatéFAR). There is a trade-off between FAR and FRR. That is, it issibs
to reduce either of them with the risk of increasing the otbee. This trade-off between
the FAR and FRR can create a curve, where FRR is plotted as adumuft FAR. This
curve is calledReceiver Operating Characterist{ROC) curve [11], [12]. The performance
of a verification system is often quoted by a particular opegapoint of the ROC curve
where FAR=FRR. This operating point is call&gdjual Error Rate(EER). Recently, frontal
face verification competitions using the XM2VTS [13]- [15tdbase have been conducted.
The interested reader can refer to [13], [14], and to thereefes therein for the tested face
verification algorithms.

The most popular among the techniques used for frontal facegnition/verification are
the subspace methods. The subspace algorithms considentireeimage as a feature vector
and aim at finding projections (bases) that optimize a givéermon defined over the feature
vectors that correspond to different classes. Then, thlggnadi high dimensional image space
is projected into a low dimensional one. The classificat®nsually performed according to
a simple distance measure at this low dimensional space.

Various criteria have been employed in order to find the basebe low dimensional
spaces. Some of them have been defined in order to find pajscthat best express the
population without using the information about the way tlaadare separated to different
classes, e.g?rincipal Component Analysi®®CA) [16], NMF [17]). Another class of criteria
is the one that deals directly with the discrimination beiwelasses, e.g. LDA [18], [19].
Finally, statistical independence in the low dimensiordtfire space can be also used as a
criterion in order to find the linear projections elgdependent Component Analy$i€A)
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[4], [20].

One of the oldest and well studied methods for low dimensaare frepresentation using
criteria that aim at fair facial image representation is Higenfacesapproach [16]. This
representation was used in [21] for face recognition. Tlea idehind the Eigenfaces repre-
sentation is to choose a linear transformation for dimeradity reduction that maximizes
the scatter of all projected samples.

Another subspace method that aims at finding a face repeggenby using basis images
without using class information is NMF [17]. The NMF apprbawas motivated by the
biological aspect that the firing rates of neurons are ngyatie. The NMF algorithm, like
PCA, represents a facial image as a linear combination ofshasages. The difference
with PCA is that it does not allow negative elements eitherhi@ basis vectors or in the
representation weights used in the linear combination eflthsis images. This constraint
results to radically different bases than PCA. On one hand, lthses of PCA are the
Eigenfaces, some of which resemble distorted versionseottittire face. On the other hand
the bases of NMF are localized features that correspondritetthe intuitive notion of face
parts [17]. NMF variants for object recognition have beeapmsed in [22], [23]. Various
distance metrics suitable for the NMF representation spgese been proposed in [24].
Methods for initializing the weights and the bases of the NN#e€omposition have been
proposed in [25]. Theoretical aspects regarding when NMEsa unique decomposition of
an object into its parts are provided in [26].

In [27], a technique for imposing additional constraintsite NMF minimization algorithm
has been proposed. This technique, the so-cdlezhl Non-negative Matrix Factorization
(LNMF), is an extension of NMF and gives even more localizedds. It has been shown
that LNMF leads to better classification performance in cangon to NMF and PCA [27].
In [28] the LNMF decomposition has been proposed for facea®n. LNMF has also
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been found to give higher facial expression recognitioe than NMF [29]. To enhance
the sparsity of NMF decomposition another approach has peagposed in [30] that is a
combination of sparse coding and NMF.

In this paper, we develop a series of techniques for exptpitiscriminant information
in NMF. The first class of techniques use the NMF basis imagesder to discover a low
dimensional space and search for discriminant projectiortis space. This is similar to
Fisherfaces [18], [19], where an initial PCA based dimenslibn reduction step is used,
before applying LDA in this new space for finding discrimibhgsrojections. Of course
the motivations of Fisherfaces and the proposed NMF plus Ub#thod are different. In
Fisherfaces, first PCA is used in order to satisfy the inviditiitof the within scatter matrix
and afterwards LDA is used in this new space. In the propogdé Nlus LDA method, LDA
is used along with NMF in order to investigate whether therany discriminant information
in part-based decompositions, like NMF.

The second class of techniques is motivated by LNMF wherétiaddl spatial-locality
constraints have been considered in the minimization ofcthe function of NMF. Instead
of spatial locality constraints, we incorporate discriamh constraints inside the NMF de-
composition. Here we propose two such techniques, bothvatet by the fact that we want
a part based decomposition with enhanced discriminant povire first method gives basis
images that are the same for all the different facial clgssbsge the latter results to a class
specific decomposition that is unique for each facial (pgrstass. The intuitive motivation
behind the class-specific methods is to find for every facaguerdecomposition into its own
discriminant parts. A similar technique has been used i Bhere discriminant constraints
have been incorporated in the LNMF cost function. The apgraa [31] has given better
recognition accuracy than NMF and LNMF, when applied to dhexpression recognition.
These approaches are consistent with the image reprasanparadigms of neuroscience
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which involve sparseness, non-negative constraints,maiion of redundant information
and enhanced discriminant power. All the introduced athors are applied to the frontal
face verification problem.

The outline of this paper is as follows. The problem of frérfizce verification and
how subspace methods can be applied to this problem is disdus Section Il. The
NMF decomposition is revisited in Section Ill. The NMF pluPA method is described
in Section IV. Methods for incorporating discriminant ctamts inside NMF cost and the
corresponding decompositions are introduced in SectioBXperimental results are depicted

in Section VI. Finally, conclusions are drawn in Section.VII

Il. FRONTAL FACE VERIFICATION AND SUBSPACETECHNIQUES

In this Section, we will briefly outline the problem of frohtace verification and the

framework under which a subspace method can be used in ardeivte this problem.

Let &/ be a facial image database. Each facial imagel{ is supposed to belong to one
of the K facial (person) classef4,Us, ..., Uk} with U = Ufilui. For a face verification
system that uses the datab@sea genuine (or client) claim is performed when a person
provides its facial image, claims thatx € U, andt = r. When a person provides its facial
imagex and claims thak < U,, with ¢t # r, an impostor claim occurs. The scope of a face
verification system is to handle properly these claims byeptiog the genuine claims and
rejecting the impostor ones.

Let the facial image databadé be comprised byL facial imagesx; ¢ R%, where
R, = [0,4+00) and let the cardinality of each facial cla&s to be N,. A linear subspace
transformation of the original’-dimensional space onto /& -dimensional subspace (usually
M < F) is a matrixW e ®M*F" estimated using the databade The new feature vector
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x e RM is given by:
x = Wx. (2)

The rows of the matriW contain the bases of the lower dimension feature space. d$esb
matrix W could be the same for all facial classes of the database dd dmuunique for

each facial class. In case of class-specific image baseshdoreference person the set

7, = U —U,, that corresponds to impostor images is used in order totireanghe two-class
problem (genuine versus impostor class) [12], [32].

After the projection given by (1), a distance metric is chose order to measure the
similarity of a test facial image to a certain class. Thisikinty measure can be thé,
norm, the L, norm, the normalized correlation or the Mahalanobis distaji]. In case of
face verification, the algorithm should also learn a thré&slom the similarity measure in
order to accept or reject a client/impostor claim.

I1l. NMF REVISITED
In this section, we will briefly describe the use of Bregmartatises [33]-[35] and how

NMF decomposition is obtained. Some notes on how NMF is elddrin LNMF in order

to give even more sparse basis images are also given.

A. Bregman Distance and Kullback-Leibler Divergence

Let ¢ : D — R be a continuously differentiable and strictly convex fumectdefined on a
closed, convex seb C R%. The Bregman distance associated with the functias defined
for x,q € D [36]:

By(x|la) = ¢(x) — ¢(q) — Vo(x)(x — q) ()

whereV¢(x) is the gradient ofp at x. When¢(x) takes the form of the convex function:
o(x) = Z x;Inx; 3)
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for x = [z;...2r|T, then the Bregman distance is reformulated to Kullback-eeikKL)

divergence (or relative entropy) betwererandq [33]-[35] as:

L
KL(x||q) £ ) "(a;In PRl ;) (4)
whereq = [q;...qr|". It can be shown that, in general, every Bregman distance ris no
negative and is equal to zero if and only if its two argumemésexjual. More details about
optimization algorithms using Bregman distances and KL rd@ece with linear constraints

can be found in [35].

B. The NMF Algorithm

The basic idea behind NMF is to approximate the imagby a linear combination of
the elements oh ¢ R such thatx ~ Zh, whereZ « R7*" is a nonnegative matrix,
whose columns sum to one. In order to measure the error ofppe@mationx ~ Zh the
K L(x||Zh) divergence can been used [34].

In order to apply NMF in the databageé, the matrix X e RY** = [z;;] should be
constructed, where, ; is thei-th element of the-th image. In other words thgth column
of X is the x; facial image. NMF aims at finding two matricés ¢ R = [2,;] and

H e ®RY*F = [h, ;] such that :

X ~ ZH. (5)

The facial imagex; after the NMF decomposition can be writtensas~ Zh;, whereh; is

the j-th column ofH. Thus, the columns of the matri& can be considered as basis images
and the vectoh; as the corresponding weight vector. Thigvectors can also be considered
as the projected vectors of a lower dimensional featureesf@arcthe original facial vector
Xj.

The defined cost for the decomposition (5) is the sum of all Klexjences for all images
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in the database. This way the following metric can be formed :

Dn(X]|ZH) = ZKL(X]'HZhj> - Z(IU N(e=—7— i )+ Zzz Kl — :)3”) (6)

zikh
; v 2k Zikle g

as the measure of the cost for factoriXginto ZH [34].

The NMF factorization is the outcome of the following optiaiion problem :
rén}rll Dy (X||ZH) subject to (7)
Zig >0, hyj >0, sz‘ =1, Vj.

NMF has non-negative constraints on both the elemeni ahd of H; these nonnegativity
constraints permit the combination of multiple basis ingigeorder to represent a face using
only additions between the different bases. In contrasia PL6], [21], no subtractions can
occur. For these reasons, the nonnegativity constraintesymond better to the intuitive notion
of combining facial parts in order to create a complete fad&litional intuitive explanations
why NMF is indeed a sparse part-based decomposition alotigexperimental verifications
of this fact are given in [17], [22], [23], [25], [27], [29]

Recently some theoritical work has been done in order to shbenvwhe NMF does give

a correct decomposition into parts [26]. Let some object thacomprised ofA parts and
each part can be i® different positions (in [26] the different positions areewied as part’s
articulations). Then, if the images obey the following mulecan be proven that when NMF
is applied to this database it can give a correct decompasitito parts[26]:

« Each imagex in the database can be represented as a linear combinatibe different
parts in the different positions. Both parts and weights ef lihear combination obey
the nonnegativity constraint.

. The different bases are linear independent.

« The database contains all combinations of parts in therdiftepositions. This constraint
require from the database to have a totalddf images.
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10

Of course, these set of requirements is quite restrictived @nnot be satisfied in the
case of facial image databases since it is not feasible te hvhe possible images with
combinations of different eyes, noses, mouths in diffeqgogitions. Thus, when NMF is
applied to a facial database it can only give an approximatibthe decomposition into
parts. In all cases NMF is indeed a sparse part-based desttiopd17], [22], [23], [25],
[26], [27], [29].

By using an auxiliary function and the Expectation Maximiaat(EM) algorithm [34],
the following update rules fok; ; and z; ;, guarantee a non increasing behavior of (6). The

update rule for the-th iteration forh, ; is given by:
A Z(t—l) Ti 5
i~k T z(tfl)h;’tj—l)

h;(:) h(t_,l) 1%, (8)
»J k,j (t—1)
whereas, for the; ;, the update rules are given by:
() miy
A0 _ ey TR ©)
i,k i,k Z h(t)
k.
and
/(t)
(t) Zik
ZiJf = —/(t) (10)
1%Lk

Sincex; ~ Zh;, a natural way to compute the projection xf to a lower dimensional
feature space using NMF i¢; = Z'x;. The pseudo-invers&’ = (ZTZ)"'Z" can be
calculated using singular value decomposition methodg. [B order to proceed to the
dimensionality reduction, it has been also claimed thatcan be used as an alternative
[31], due to the fact that the calculation @&f may suffer from numerical instability. For a
true non-negative dimensionality reduction the ma#ixshould be used for feature extraction
in the test images.

C. The LNMF algorithm

The idea of NMF decomposition was further extended to the IEN®I’] where additional

constraints concerning the spatial locality of the baseseveenployed in the optimization
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11

problem defined in (7).

Let U = [u;;] = ZTZ, V = [v;;] = HH”, both beingM x M, LNMF aims at learning
local features by imposing the following three additiormaddlity constraints on the NMF. The
first constraint is to create bases that cannot be furthesrdpased into more components
[27]. Let z; = [z1;...2, |7 be thejth basis vector. Given the existing constraint that
> 7 = 1 Vi, we want thaty~, 27, to be as small as possible so thatcontains as many
zero elements as possible (make the bases as sparse adepo3siis is accomplished by
imposing) . u;; to be minimal [27].

Another constraint is to make the bases to be as orthogon@sasible, so as to minimize
the redundancy between different bases. This can be imposedquiring Z#j u;; to be
minimal [27]. In other words we want the elements of maftixthat are not in the main
diagonal to be as close to zero as possible. The elementstakrtiaat are not in the main
diagonal correspond to the dot product between the diffdpasis vectors and the closest
the dot product is to zero the more orthogonal the basis x&ctn be considered. The final
constraint requires that only the components giving thetnmportant information should
be retained. This constraint, requires thaf v;; is maximized [27]. For additional details
the interested reader may refer to [27].

Of course, these constraints do not guarantee that the ¢gestiion will be either orthog-
onal or the most sparse that can be derived from the traiioglfdatabase. The only thing
that is guaranteed by imposing these heuristic constranisat the derived decomposition
will be more sparse and more orthogonal than the one obtalmedgh NMF. When the
above constraints are incorporated in (6), a new cost fongs created as:

D (X||ZH) = Dy(X||ZH) + o1 > uii+ o2 uij— B vig (11)
i i#j i
whereay, ag, > 0 are constants. For simplicity in [27] it was set = a, = «. A solution
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12

for the minimization of the cost given in (11) subject to thenstraints imposed in NMF (7)
(non-negative constraints faf , andh;; and the constraint that the columns of the matrix
Z should sum to one), can be found in [27]. In order to ensuretieacost function (11) is
nonincreasing, while using a series of approximations gteoto eliminate the constants

and g3, the following update rule fof; ; is employed:

() _ (t-1) (t-1) Lij
hk,j = \/hk,j Zzi,k (1) (=1)° (12)

i 174, l,j
The update rules for the, ;, are the same as the NMF decomposition and are given by (9)
and (10).
IV. NMF pLusLDA

The two previously presented methods do not use the infewmatout how the various
facial images are separated into different facial clasBes.most straightforward way in order
to exploit discriminant information in NMF is to try to diseer discriminant projections for
the facial image vectors after the projection to the imagsebamatrixZ' (or Z7). Let the
matrix X that contains all the facial images of the datakidsée organized as follows. The
j-th column of the databask is the p-th image of ther-th class. Thusj = Z;:ll N; + p.

The vectorh; that correspond to thg¢th column of the matrixH, is the coefficient vector
for the pth facial image of the'th class and will be denoted ag” = [} ...5"),]”. The
mean vector of the vectorﬁﬁ) for the classr is denoted ag(”) = [ug’”) . .,A;}]T and the

mean of all classes g8 = [y ... ua]?. Then, the within scatter for the coefficient vectors

h; is defined as:

K N,
Sw=>_> (00 —p)n}) - p" (13)
r=1 p=1

whereas the between scatter matrix is defined as:
K
Sy =Y No(p — p)(u" — )" (14)
r=1
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13

The matrixS,, defines the scatter of sample vector coefficients around tihess mean.
The dispersion of samples that belong to the same class ctbir corresponding mean
should be as small as possible. A convenient metric for tepedsion of the samples is the
trace ofS,,. The matrix,S, denotes the between-class scatter matrix and defines ttiersufa
the mean vectors of all classes around the global medgach class formed by the samples
that belong to the same class must be as far as possible feoothhbr classes. Therefore, the
trace ofS, should be as large as possible. By taking into consideratierptevious remarks,
the well known Fisher discriminant criterion is construttes:

o tr[\IITSb\Il]

J(¥) = tr[w”s,, v

(15)

where tfR] is the trace of the matriR. The maximization of/ yields a set of discriminant
projections that is given by the columns of the matdx,. If S,, is invertible then the
projection matrix®,,, is given by the generalized eigenvectorsSgf'S;.

There is not upper limit for how many bases someone can cataising NMF decom-
position in (9) and unless we create a limited number of bageBIMF the matrixS,, is
singular. That is, there always exist vect@ssthat satisfyp, S,,¢, = 0. These vectors turn
out to be very effective if they satisfp! S,¢, > 0 at the same time [3], [6], [38]. In that
case the Fisher discriminant criterion degenerates intofollowing between-class scatter
criterion:

J(®) = 1[@7S,®] (@ = [... ;... [I]| = 1. (16)

We will use the main results of [6] in order to extract disdnant features using an arbi-
trary number of NMF bases. The discriminant features ane éx¢racted by the minimization
of the criterions (15) and (16). The discriminant projestidhat are derived from the (15)
will be calledregular discriminant projectiongor regular NMFface¥ while the ones created
by (16) will be calledirregular discriminant projectiongor irregular NMFfaces.
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Let the total scatter matrix of the feature vectarsbe defined as:
St = Sw + Sb (17)

it is easy to prove that the matri is a compact and self-adjoint operatoridi’ [6]. Thus,
its eigenvector system forms an orthonormal base$dr[6].

Let O andO+ be the two complementary spaces spanned by the orthonoigealectors
that correspond to no-zero and to zero eigenvalueS, pfespectively. It is easy to prove,
using the theory developed in [6], th&" does not contain any discriminant information in
respect to the criterion (15) and (16). The isomorphic magpn order to move from the
feature space of the vectols to O is the matrixII whose columns are the orthonormal
eigenvectors of5; that correspond to its non-zero eigenvalues. In order totfiednon-zero
eigenvectors ofs, efficiently, we can use algorithms like [21].

Let S,, andS, be the within scatter and the between scatter matrices iaphee?. These
matrices are given b, = IT”S,IT and byS, = II”S,II . In the spac&) the matrixS,,
is still singular. Let=; and =, be the orthonormal eigenvectors that correspond to nom-zer
and to zero eigenvectors of the matBy,, respectively.

In the space spanned by the vectors containésl,ithe discriminant projections are given
by the columns of the matri®, that are the eigenvectors 8f'S,, whereS,, = 7S, =,
and$S, = =TS,E,. In the space that is spanned by the columnEpft can be easily proven
that S, = =I'S,E, is not singular [6]. Thus, the discriminant projections nistspace are
given by the matrix®, that has as columns the orthonormal eigenvectorS,of

The linear transform that extracts the regular discrimirfeatures (will be calledegular

NMFfacesin the rest of the paper) using NMF is:
¢, = 0'='T1I"Z", (18)

whereas, the linear transform that extracts the irregukrigninant features (will be called
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irregular NMFfacesin the rest of the paper) using NMF is:
¢, = =] II"ZT (19)

where Z is the decomposition of NMF given by (9). The total number agcdminant

projections derived from this procedure2gk — 1).

V. LDA INCORPORATED INSIDENMF
In this subsection, we introduce alternatives to NMF plusAUY incorporating discrim-

inant constraints inside the cost function to be minimizeddbtaining the new decompo-
sitions. Two different discriminant decompositions aregwsed. These decompositions are
motivated by the need of finding basis images that correspmigscriminant parts of faces.
The first is the same for all facial classes in the database.sElcond one uses alternative
discriminant constraints and gives a decomposition thdiffisrent for every facial class. This
class-specific decomposition is intuitively motivated I ttheory that humans memorize
different discriminant features (e.g. noses, eyes) fdedght faces and use these features for
recognizing them or verifying the identity of a face [39]0]4 The interested reader may
refer to [39], [40] and to references within for differenetiries and technologies for human
and machine recognition of faces.

A. The DNMF Algorithm
In order to incorporate discriminant constraints into tfdMdecomposition we substitute

the locality constraints of LNMF with discriminant constres. This way, a modified diver-
gence can be constructed that is derived from the mininozatf the Fisher criterion. This
is done by requiring 18,,] to be as small as possible whiléSy] is required to be as large

as possible. The new cost function is given by:
Dy(X||ZpH) = DN(X||ZpH) + Atr[S,] — Otr[S,)]. (20)

wherey andé are constants. Following the same EM approach used by NMFRajg#LNMF
[27] techniques, we come up with the following update rulesthe weight coefficientsy, ;
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that belongs to the-th facial class:

) T, + \/Tf +42y = @y +20) )Y Em s e e
O ° LA 21
" 2(2y — (27 +20)7) @D

The detailed derivation of (21) along with the definition ‘Bf are given in Appendix I.
The update rules for the bas#s, are the same as in NMF and can be given by (9) and
(10). The above decomposition is a supervised non-negatatex factorization method that
decomposes the facial images into parts while, enhancmgldss separability. This method
will be called Discriminant Non-negative Matrix FactorizatiofDNMF) in the rest of the
paper. The matrixz!, = (ZEZp)~'ZE, which is the pseudo-inverse @p, is then used for
extracting the discriminant features fis= Z! x. The Z% can be used instead @, for a
true non-negative dimensionality reduction. It is intéireg to notice here that there is no
restriction on how many dimensions we may keep foand that the bases of the DNMF

are common for all the different facial classes in the databa

B. The CSDNMF Algorithm
In this subsection alternative discriminant constraimésiategrated inside the cost function

(6). The minimization procedure of the new cost functiodgeaClass-Specific Discriminant
Non-negative Matrix FactorizatiofCSDNMF) method. In order to formulate the CSDNMF
decomposition, the facial image vectors of the genuinendaio the reference person
are in the firstNg = N, columns of the matrixXX. Then, the columns fron, + 1 to L
correspond to impostor claims. The total number of impostams isN; = L — N,.. The
coefficient vectoth; of the imagex; that corresponds to theth image of the genuine class
will be denoted asnE,G). If the facial vectorx; is the pth image of the impostor class then
the corresponding coefficient vecthy will be denoted asﬂ”.

In the previous section, we have seen that tf®,irshould be small whereaq$] should
be large for the vectorh;.
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In this section we replace these constraints with others shde better with the face
verification problem. Let a distance metric (e.g. the norm) be used in order to quantify
the similarity of a test facial image vectar; to a given facial class. It sounds reasonable
to require that the feature vectors corresponding to thaiuigenclass, should have great
similarity with the mean image of the genuine class (smaitasice metric value with the
mean image of the genuine facial class), while the featuceove of the impostor class should
have small similarity with the mean image of the referenagaleclass (large distance metric
value with the mean image of the genuine facial class).

In order to define the similarity of the projectidn) of the facial imagex; to a given class

r in the feature space of the coefficients, thenorm can be used as:
d,(hy) = |[h; — p@]? (22)

where u(“) is the mean vector of the vectovﬁ,G). The use of other similarity measures
like L, or the normalized correlation has not given a closed formthar update rules.
However, the experimental results using these measures sirailar. In the reduced feature
space of the vectors; we demand that the similarity measurce$nff)) (impostor similarity
measures) to be maximized while minimizing the similarityeanuresdr(n,(,G)) (genuine
similarity measures). Then the optimization problem far tassr is the maximization of:
LS ) = LS - O = wiw (23)
Ni x, €1, Y Ni p=1 ’ v
whereW, = L 5™V () — (@) (nf) — @)T. The second optimization problem is the

minimization of:
1 1 Qe
— > do(hy) = —> [In\P - p | = u[B, 24
NG = ( J> NG =1 an K H [ ]7 ( )

G G
whereB, = 5= 37, (;”) — p(@) (" — p@)".
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We impose these two additional constraints in the cost fondiven in (7) as:

D.(X||Z,H,) = Dy(X||Z,H,) + Ctr[B,] — 6tr[W,]. (25)

where(, 0 > 0 are constants. The decomposition is person specific (diffebases, for
each reference face clasy For j = 1,..., Ng (genuine class), the update rule for the

coefficientsh,, ; of the reference personis given by:

T + \/T2 + 4 ( ¢—(2¢+ QG)NL)h;] Y > Zi(;;_l) <t$11§h( 0

hg) _ 1%, 1,5
7 25 (2¢ — (2¢ +20) )

(26)

whereas the update rule for the weight coefficients of theostgr class{= Ng+1,...,L)

is given by:

2 Zﬂf,tz l)hg,tj_n

Ts + \/T32 — 8N TY S D
(1

whereT, and T3 are given in Appendix Il. The update rules for the bases méatyifor the
reference person are the same as in NMF decomposition and can be given by (9)1&a)d
When someone claims that a test imageorresponds to a reference facial classhenx
is projected using the pseudo-inverseZpf Z!, matrix asx = Z{x. In the same manner as

NMF and DNMF the matrixZ? can be used for a true non-negative dimensionality redoictio

VI. EXPERIMENTAL RESULTS
A. Database Description
The experiments were conducted in the XM2VTS database ukmgrotocol described

in [15]. The images were aligned semi-automatically acogrdo the eyes position of each
facial image using the eye coordinates. The facial images dewn-scaled to a resolution of
64 x 64 pixels. Histogram equalization was used for normalizing frcial image luminance.

The XM2VTS database contains 295 subjects, 4 recordingosssand two shots (rep-
etitions) per recording session. The XM2VTS database gesvitwo experimental setups
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namely, Configuration | and Configuration Il [15]. Each confagion is divided into three
different sets: the training set, the evaluation set andtaisé set. The training set is used
to create client and impostor models for each person. Theiaian set is used to learn
the verification decision thresholds. In case of multimosiggtems, the evaluation set is
also used to train the fusion manager [15]. For both configana the training set has 200
clients, 25 evaluation impostors and 70 test impostors. thleeconfigurations differ in the
distribution of client training and client evaluation dator additional details concerning
XM2VTS database the interested reader can refer to [15].
B. Training Procedure

In the training phase, the basis images corresponding tdNti& (Section I1I-B), the
LNMF (Section IlI-C), the proposed DNMF (Section V-A), theoposed CSDNMF (Section
V-B), the Eigenfaces, the Fisherfaces and the proposed NdBféregular and irregular
discriminant bases of NMF plus LDA method proposed in Sacti) are found. For all
the approaches except from CSDNMF the bases are common ftacal classes. In the
case of CSDNMF, the training set is used for calculating forheeeference person a
different set of bases for feature selection. A convenieay for having an insight of the
class separability is to compute the quantity= tr[S;|/tr[S,,] in the training set [41]. In
Figure 1,J is plotted versus the number of iterations used in the deositipn. Note that
there is a significant scale difference in thexis of Figures 1la and 1b. This indicates a
much better class separability in case of DNMF compared ¢oathes obtained either by
NMF or by LNMF (class separability is measured in respect Yo

By imposing only non-negativity constraints, the featunesaeted by NMF have a rather
holistic appearance. This can be seen in Figure 2(a). LNMdattyr improves the bases
image sparseness and minimizes redundant information pgdsimg locality constraints. The
proposed DNMF and CSDNMF also minimize the redundant inféionavhile maximizing
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class separability (the class separability is measuredspect taJ). To quantify the degree

of sparseness of basis images, someone can measure thdirexrkartosis of a base image

z defined as [20]:

> iz — z)*

"E) =S o

(28)

- 3.

wherez = [z;...2¢]7 andz = %ZL z;. The largest the number of kurtosis the sparsest an

image is. It was experimentally found that the average kistover the maximum number

of 199 basis images aréjvjwp = 8.12, E)LN]\/[F = 160.58, l%DNMF = 26.88 andl?;chNMF =

33.88.

For comparison a number of 25 images for the NMF, the LNMF pitegposed DNMF and

the CSDNMF are given in Figure 2. In Figures 2a and 2b the image®rdered row-wise

according to their descending degree of sparseness, at@duhccording to (28). Obviously

DNMF and CSDNMF is a compromise between NMF and LNMF in termspdrseness.

Probably, the most important issue concerning the DNMF &eddSDNFM algorithm, that

has been experimental verified, is the fact that almost atufes found by its basis images
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are represented by the salient face features, such as ggésows or mouth. As can be seen
the features retrieved by LNMF have random positions thatreat be directly attributed to

facial features.

[/
RIR CI N

Fig. 2. A set of 25 basis images for (a) NMF, (b) LNMF (c) DNMF (d) @$MF.

By a visual inspection of the images of Figure 3, it can be skanEigenfaces, Fisherfaces
and regular NMFfaces (it also holds for the irregular) resiendegraded versions of faces.
The basis images in Figure 3a-3c are sorted in descendingr afdtheir corresponding

eigenvalue.
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Fig. 3. A set of 25 basis images for (a) EigenFaces, (b) FisherRarethe regular NMFfaces.

The parameters and in the DNFM cost (20) and the parametérandr in (25) should
be carefully selected. Due to the fact that the cost funatiefined by the proposed DNMF
and CSDNMF is formed by several terms that are simultaneoogtimized (minimized
of maximized), its global optimization suffers. Althoughet cost functions (20) and (25)
are globally minimized, each term has each own rate of cgevee. The parameters
andd govern the convergence speed for minimizin®@ it and maximizing tS,], while the
parameterg and# govern the convergence speed fdWr,.| and tfB,]|. An automated way
of choosing the parametefsand ¢ for the proposed DNMF and andn for the proposed
CSDNMF is to use an adaptive formulation for them rather thdixedd one. Starting with
small parameter values, the algorithm proceeds while, et @aration step, the degree of
sparseness is checked using the kurtosis and the algoeistarts with new parameter values.
This is repeated till the kurtosis exceeds a certain thildsfvee have chosen as a threshold

the average kurtosis to be greater than 20).
In our experiments we have tested valuesfoand ¢ in the rangel0, 1] (this also holds

for the casel andn). We have seen that very small values of these constantsl sgethe
decrease of {8,], the increase of [8,] and the minimization oD,(X||ZH). However, the
algorithm may stop too early and the number of iterationshinigpt be sufficient to reach a
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local minimum forD,(X||ZH). A premature stop can affect the process of correctly legrni
the basis images that might not be sparse anymore. The lsefisreave been obtained when

choosing values in the range.1, 0.5].

C. Experimental Results in Configuration |

The training set of the Configuration | contains 200 personk &images per person. The
evaluation set contain% images per client for genuine claims a@l evaluation impostors
with 8 images per impostor. Thus, evaluation set gives a tota} ef 200 = 600 client
claims and25 x 8 x 200 = 40.000 impostor claims. The test set hdasimages per client
and 70 impostors with8 images per impostor and giv@sx 200 = 400 client claims and
70 x 8 x 200 = 112.000 impostor claims. The maximum number of Eigenfaces [21] mive
by the training set is 599. The number of classes is 200 and, the number of Fisherfaces
[19] is 199. For NMF plus LDA, 1000 basis images have beenteckmitially using NMF
and after the regular and irregular discriminant informathas been found according to
(18) and (19) that gives a total of 398 projections (199 ragidlMFfaces and 199 irregular
NMFfaces). For NMF, LNMF, DNMF and CSDNMF, 199 bases have ba&lsno considered
for comparison.

The facial images have been then projected using these inéseslow dimensional feature
space and the normalized correlation was used in order toeddfie similarity measure
between two faces as:

xI'x,

D(x,,x) = ot (29)

TR AT%]
wherex, andx; are the reference and the test facial image, respectiveile wh andx; are
their projections to one of the subspace. Of course otheitasity metrics are suitable like
Ly,L, or the Mahalanobis distance [1] but in the specific databasedrmalized correlation
or (the cosine distance) has given the best results forallested methods. For completeness
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experiments using thé, norm are presented for the CSDNMF method since thenorm
has been used for formulating the CSDNMF decomposition (25).

In case of NMF plus LDA two different discriminant projeatiare found by (18) and

(®1x,)T (®1x:

(19). Thus, two different similarity values are created by(x,,x;) = BT E e and
by Dy (x,,x;) = %m for the regular and the irregular discriminant information

respectively. In [6] it has been proposed to use a simplefutechnique by weighting the
irregular score with some empirical coefficient. Insteadisihg the empirical parameter we
used the evaluation set of the Configuration | in order to leardiscriminant weighting
vectorw using also LDA. The final similarity measure between thedarnage vectors,

andx; is given by:

Dy(x,,%,) = WT[DQ(XT7Xt) Dy (x,,x)]". (30)

The similarity measures for each person, calculated in adifuation and training set form
the distance vectad(r). The elements of the vectal(r) are sorted in descending order and
are used for the person specific thresholds on the distanesuree LetT)(r) denote the
Q-th order statistic of the vector of distancel§;) (the Q-th smallest distance in the vector).
The threshold of the personis chosen to be equal tf,(r). Let x}, x? andx? be the 3
instances of the persanin the training set. A claim of a person (with a facial imagé to
the identityr is considered valid ifnax;{D(xZ,x;)} < Tg(r). Obviously when varying),
different pairs of FAR and FRR can be created and that way a RD@&ds produced and
the EER can be measured [15].

The performance of the methods that project to face-pagt bikses as NMF, LNMF, the
proposed DNMF and CSDNMF algorithms for various feature disn@ns is illustrated in
Figure 4a. The best EER achieved for the proposed CSDNM¥i% and 3.7% when the
normalized correlation (cosine) and tthe norm has been used, respectively, while keeping
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more than 110 dimensions. The best performance of the peddoBIMF is4.61%. The best
EER for NMF and LNMF is more thas%. That is, a decrease of more tha# in terms
of EER has been achieved by incorporating the proposedimisent constraints in the cost
of NMF. Even though NMF, LNMF, DNMF and CSDNMF are optimizationethods that
depend on the initialization of the bases and may get trappddcal minima we have not
verified large deviations in verification performance wheartgg with different initial values
(the standard deviation for the best performance after 4@ms was about.2% in terms of
EER). An alternative to random initialization is a structlieitialization that has proposed
in [25].

The performance of the methods that project to face base£ldgenfaces, Fisherfaces and
NMFfaces (regular and irregular) for various feature disens is illustrated in Figure 4b.
The best EER achieved was3% when 80 regular and 80 irregular projections have been
kept. The best EER for Fisherfaces has bé&f and for Eigenfaced.3%. Unfortunately,
the EER of the tested methods does not decrease monotgnigtil the number of image
bases kept. This fact has been verified in other face recogrsubspace methods like [1],
[3], [4], [6] where the performance does not always increagl the number of the kept
dimensions.

Therefore, the proposed NMFfaces scheme has the best atoifigoerformance. Unfor-
tunately the decompositions like the proposed DNMF and ttepgsed CSDNMF have
worst performance in comparison to the proposed NMFfacaeb Fisherfaces. We have
experimentally found that the training set contains limhitiscriminant information for the
DNFM and CSDNFM methods (only 3 images per facial class) toramed properly. We
have also found that when adding in the training set imagéseed from video of the
same session (about 60-100 images per person) of the yaseihof the Configuration |
(which is different from the session the test images have lez&racted) a decrease of about
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2—2.5% in the terms of EER has been verified. We have also used theggesfor training
NMFfaces and Fisherfaces and no significant improvemeneifopnance has been verified

(about0.2 — 0.3% in terms of EER).

T T T T T T T T T T T
v NMF = = Eigenfaces
I c= LNMF \ ++++ Fisherfaces
P _— DNMF Y -7 Regular NMFfaces
0.14F- . # CSDNMF-L2 f 0071y = Irregular NMFfaces [
i = = CSDNMF-Cos \ — NMFfaces fusion

EER

e,
RESRE
~

SeaL"Re,

SLe

L L L L L L L L L L L L L L L L L
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

Feature Dimensionality Feature Dimensionality

(a) (b)

Fig. 4. EER for Configuration I: a) EER plotted versus feature dimeasitgrfor part-based decompositions as LNMF,
NMF, the proposed CSDNMF (using cosine ahd metrics) and the proposed DNMF; b) EER plotted versus feature

dimensionality for Eigenfaces, FisherFaces and the proposed NbE-{aegular, irregular and fusion).

D. Experimental Results in Configuration Il

The Configuration Il differs from the Configuration | in the distition of client training
and client evaluation data. The training set of the Configomadtcontains 200 persons with 4
images per person. The evaluation set contaimsages per client for genuine claims. Thus,
the evaluation set gives a total Bfx 200 = 400 genuine claims. The training set contains
4 references images for each client. The same approach asiig@ation | has been used
for accepting a claim as valid and for threshold calculation

Figure 5a depicts the plot of the EER versus the dimensignalithe feature vectors for
face-part like bases. As can be seen, CSDNMF have the bestipearice in comparison to the
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NMF, LNMF and DNMF. The minimum EER achieved when projecttogCSDNMF bases
has been equal t©.8% and2.2% when the cosine andl, norm has been used, respectively.
For DNFM the minimum EER has been measured alaift, while for NMF and LNMF
the EER has been found equal 3a%.

Figure 5b depicts the plot of the EER versus the dimensitynafithe feature vectors. As
can be seen, the fusion of the two different NMFfaces (regaital irregular) have the best
performance and the minimum achieved EER has beéi &iben keeping 80 dimensions.

For the Fisherfaces the best EER has beefi, while for the Eigenfaces has bedn %.

T T T T T T T T T T T
' NMF = = Eigenfaces
1 v LNMF 11 Fisherfaces
0.09r 1 — DNMF A -7 Regular NMFfaces
i . # CSDNMF-L2 0.07 = Irregular NMFfaces
K = = CSDNMF-Cos = NMFfaces fusion

EER

0 I I I I I

0 I I I I I I I I I I I I I
20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180

Feature Dimensionality Feature Dimensionality

(@) (b)

Fig. 5. EER for Configuration Il a) EER plotted versus feature dimeraditynfor part-based decompositions as LNMF,
NMF, CSDNMF (using cosine anflz metrics) and the DNMF; b) EER plotted versus feature dimensionality fariages,

FisherFaces and the proposed NMFfaces (regular, irregular as@if).

VIlI. CONCLUSIONS
A series of novel techniques for supervised facial featxteaetion has been developed.
The new techniques are based on the NMF decomposition tlthbéisis images which are
intuitively related to face parts. The first discriminanthaique gives basis images that are
holistic and is comprised of two different phases, namely AN&hd LDA thus producing

January 23, 2006 DRAFT



28

the so-called NMFfaces. The other class of techniques aimdihg face decompositions in
discriminant parts by integrating discriminant constraimside the cost of NMF. The new
subspace techniques have been applied to frontal facecegiofn. A significant improvement
of the performance of NMF has been verified in the frontal fication problem when the
proposed constraints are incorporated. The proposed NddEflough outperform the well-

known Fisherfaces and Eigenfaces in face verification.
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APPENDIX I

DERIVATION OF THE DNMF DECOMPOSITION

In order to derive the coefficients of DNMF we have used anleuyifunction similar to
those in the EM algorithm in [34]. Let' be an auxiliary function fod (F) if G(F,F¢~Y) >
Y (F) andG(F,F) = Y(F). If G is an auxiliary function oft’, thenY” is nonincreasing under
the updatéF?! = arg ming G(F, F¢~1)[34]. With the help of the auxiliary function the update
rules for the coefficientdl and for the base%, of DNMF can be derived. By fixing the
matrix Zp, the matrixH is updated by minimizingy ;(H) = D4(X||ZpH) defined in (20).
Let the functionG, be defined as:

Gy,H,HY) =3, (@i Inm ; — x )+

(t-1)

i ( . Zi,kh
> Zj >k 5, Z—iyll;;;tj—l) (In(z; khe ;) — In S Zi,zl;;lgf]fl) )+ (31)

Zi Zj Zk Z@khk’j + vtr[Sw] - 5tr[Sb]
This function G,(H,H*~Y) is an auxiliary function forY;(H). It is straightforward to
show thatG,(H,H) = Yy(H). In order to prove thaiG,(H,H*V) > Y,;(H) since,
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In(> ", zixhej) is convex, the following inequality holds:

()" ziphig) < = arln % (32)
f f k
. . . RhTY .
for all non-negativey; that satisfy) , a;, = 1. By letting a;, = 27% we obtain:
l zi1h l,j
(t-1) (t-1)
—In(> " ziphiy) <Y ———F (In(zihey) — In ——2—). (33)
k DY Zi,lhl(,j ) > Zi,lhl(,j :

From (33) it is straightforward to show th&,(H, H*~Y) > Y,;(H). Thus G,(H, HY)
is an auxiliary function ofy,;(H).
The update rules are derived from setti?%%w to zero for all thehy, ;. Let hy; be

(r)

the [-th element of thep-th image for ther-th class, thushy,; = Nk WE need to calculate

the partial derivativedSu! and 8” 5], The partial derivative of th@M is given by:

“ Ohy,
atr[S ] - az Zc_ Zm 1(77mz Zii nmz ILLE ))
o (r) - o () o
Mok M.k i =1 m=1 pk
_ Yoo — ) o) — w)? (38)
s O o,

.- OGNS, " ) 1 CENG!

= = Y 2 - 2 - )= =) =20 — )

N, N,
m=1,m##p
For the partial derivativ@% we have:
Mo,k
Otr[Sy] O, K N1 — )2 - Ay — u)?
= el ZZN ) ZN +
on'') on'") i % \

K (c) 2 (r)

0 - 0 —
_ Z Nc(“k—(r)”’“) —J—NTM (35)
c,c#r 8np,k 677
S (©) (r) L1 (r)
= = DTN — ) 2N — ) (- — 1) =20 — ). (36)
c,c#r "

Using (34) and (35) we have:

8Gd(H, H(t_l)) Z Zi khk 1 1
Tig

o B i S )20 =1

(37)
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The quadratic equation (37) can be expanded as:

Zq, h
-3 xi,l% + g+ 297G — (27 + 20) (5 o) Pan) ey + 20phiy = 0 <

Xon
S g (1 (2 20 G )+ 20
+(2y — (2y + 25)Ni)h2, = 0.
(38)
By solving the quadratic equation (38) the update rules cadebized as:
Tt T2 4020 = (o + 2030 02 s
et = 2(2y — (27 + 20) %) 9
whereT; is given by:
T, = (27 + 25)(i > i) — 20 — 1. (40)
T A AAL
APPENDIX I

DERIVATION OF THECSDNMFDECOMPOSITION

The derivation of CSDNMF decomposition results in the samg asmthe decomposition
of DNMF. Let r be the reference facial class. In a similar manner to Appehdve can
prove thatGC(Hr,Hf«t_l)) is an auxiliary function ofY.(H,) = D.(X||Z,H,) defined in
(25), whereG.(H,, H' ™) is given by:

Go(H, H) = 5,5 (wiyInwiy — zi5)+
D i 2ok ;kh G )1> (In(zi ghr;) — In %)—i— (41)

D2 2 Zigkh g + Cr[B,] — Otr[W, .

In this decomposition we have two different update rulese €@m the genuine class and one

for the impostor class. Fdr= 1, ..., N; (genuine class) the update rules for the coefficients

—1

. . (t—1)
hi, for the reference personare given by Iettlng% = 0. Then,

Ohi 1
0G.(H,, H'™Y) axhiy V1 @ _ (D)
: 7 1 2 - 29 - — 0
ahk,l Z:E l n znh(t Q) hkl_‘_Zz k+ < hkl Mk )N ( H’k )NG
(42)
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The quadratic equation (42) is expanded as:

(i 1)

2 khy,

_Zz zl k h(t 1)+hk,l+2CNLGhz,l_(2C+20)NI ( ZAhkk)hkl+20N kahkl—o{:)’
2 h( )

= S (1= (20 + 20055 (55 S ) + 2050 )t

+3(2¢ - <2<+29>Ni>hil =0.
(43)

By solving the quadratic equation (43) the update rules ferifly of the genuine class are:

T, + \/T2 + 4+ —(2¢ = (2¢+ 29)1\/ )h/(:z Y > Zz‘(,tigl)gu;&f) =y

=, Inl
25 (2¢ — (2¢ +20) 5)

iy = (44)

whereT; is given by:

20 + 20 h 29— 0. 45
= (2(¢ )NG NGA;# k) A (45)

The update rules for the coefficients; for the impostor class of the reference person

A . (t—1)
are given by Iettmg% =0

0G.(H, Hv(f_l)) Zi khkzz Z (@)
) — E ; i, h — 46
ath 7 ) ! Zn Zi nh (t=1) hk )1 * - ik ol = ) O ( )

wherej = Ngs + 1,..., L. By solving the quadratic equation (46) the update rules tier t

hi,; are given by

Ty + \/T32 — 8NOh D S, 2 1)—2 Ve

hiy = 47
Y 7 (47)
whereT3 is given by:
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