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Abstract

In this paper, two supervised methods for enhancing the classification accuracy of theNon-

negative Matrix Factorization(NMF) algorithm are presented. The idea is to extend the NMF

algorithm in order to extract features that enforce not onlythe spatial locality, but also the separability

between classes in a discriminant manner. The first method employs discriminant analysis in the

features derived from NMF. In this way, a two phase discriminant feature extraction procedure is

implemented, namely NMF plusLinear Discriminant Analysis(LDA). The second method incorpo-

rates the discriminant constraints inside the NMF decomposition. Thus, a decomposition of a face

to its discriminant parts is obtained and new update rules for both the weights and the basis images

are derived. The introduced methods have been applied to theproblem of frontal face verification

using the well known XM2VTS database. Both methods greatly enhance the performance of NMF

for frontal face verification.

Index Terms

Subspace techniques, non-negative matrix factorization,linear discriminant analysis, frontal face

verification.

I. I NTRODUCTION

Face recognition/verification has attracted the attentionof researchers for more than two

decades and is among the most popular research areas in the field of computer vision and

pattern recognition.

The two problems of face verification and recognition are conceptually different. A recog-

nition system assists a human expert in determining the identity of a test face. In many

cases, only the percentage of correctly identified faces within a number of matches is adequate

(recognition rate) for evaluating the performance of a facerecognition system [1]. By varying

the number of matches, the curve of the cumulative match score versus the number of matches

is obtained [2]. For details on some state-of-the-art face recognition systems, the interested
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reader can refer to [1], [3], [4], [5], [6], [7], [8], [9], [10]. A person verification system should

decide whether an identity claim is valid or invalid. The performance of face verification

systems is measured in terms of theFalse Rejection Rate(FRR) achieved at a fixedFalse

Acceptance Rate(FAR). There is a trade-off between FAR and FRR. That is, it is possible

to reduce either of them with the risk of increasing the otherone. This trade-off between

the FAR and FRR can create a curve, where FRR is plotted as a function of FAR. This

curve is calledReceiver Operating Characteristic(ROC) curve [11], [12]. The performance

of a verification system is often quoted by a particular operating point of the ROC curve

where FAR=FRR. This operating point is calledEqual Error Rate(EER). Recently, frontal

face verification competitions using the XM2VTS [13]- [15] database have been conducted.

The interested reader can refer to [13], [14], and to the references therein for the tested face

verification algorithms.

The most popular among the techniques used for frontal face recognition/verification are

the subspace methods. The subspace algorithms consider theentire image as a feature vector

and aim at finding projections (bases) that optimize a given criterion defined over the feature

vectors that correspond to different classes. Then, the original high dimensional image space

is projected into a low dimensional one. The classification is usually performed according to

a simple distance measure at this low dimensional space.

Various criteria have been employed in order to find the basesof the low dimensional

spaces. Some of them have been defined in order to find projections that best express the

population without using the information about the way the data are separated to different

classes, e.g.Principal Component Analysis(PCA) [16], NMF [17]). Another class of criteria

is the one that deals directly with the discrimination between classes, e.g. LDA [18], [19].

Finally, statistical independence in the low dimensional feature space can be also used as a

criterion in order to find the linear projections e.g.Independent Component Analysis(ICA)
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[4], [20].

One of the oldest and well studied methods for low dimension face representation using

criteria that aim at fair facial image representation is theEigenfacesapproach [16]. This

representation was used in [21] for face recognition. The idea behind the Eigenfaces repre-

sentation is to choose a linear transformation for dimensionality reduction that maximizes

the scatter of all projected samples.

Another subspace method that aims at finding a face representation by using basis images

without using class information is NMF [17]. The NMF approach was motivated by the

biological aspect that the firing rates of neurons are non-negative. The NMF algorithm, like

PCA, represents a facial image as a linear combination of basis images. The difference

with PCA is that it does not allow negative elements either in the basis vectors or in the

representation weights used in the linear combination of the basis images. This constraint

results to radically different bases than PCA. On one hand, the bases of PCA are the

Eigenfaces, some of which resemble distorted versions of the entire face. On the other hand

the bases of NMF are localized features that correspond better to the intuitive notion of face

parts [17]. NMF variants for object recognition have been proposed in [22], [23]. Various

distance metrics suitable for the NMF representation spacehave been proposed in [24].

Methods for initializing the weights and the bases of the NMFdecomposition have been

proposed in [25]. Theoretical aspects regarding when NMF gives a unique decomposition of

an object into its parts are provided in [26].

In [27], a technique for imposing additional constraints tothe NMF minimization algorithm

has been proposed. This technique, the so-calledLocal Non-negative Matrix Factorization

(LNMF), is an extension of NMF and gives even more localized bases. It has been shown

that LNMF leads to better classification performance in comparison to NMF and PCA [27].

In [28] the LNMF decomposition has been proposed for face detection. LNMF has also
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been found to give higher facial expression recognition rate than NMF [29]. To enhance

the sparsity of NMF decomposition another approach has beenproposed in [30] that is a

combination of sparse coding and NMF.

In this paper, we develop a series of techniques for exploiting discriminant information

in NMF. The first class of techniques use the NMF basis images in order to discover a low

dimensional space and search for discriminant projectionsin this space. This is similar to

Fisherfaces [18], [19], where an initial PCA based dimensionality reduction step is used,

before applying LDA in this new space for finding discriminant projections. Of course

the motivations of Fisherfaces and the proposed NMF plus LDAmethod are different. In

Fisherfaces, first PCA is used in order to satisfy the invertibility of the within scatter matrix

and afterwards LDA is used in this new space. In the proposed NMF plus LDA method, LDA

is used along with NMF in order to investigate whether there is any discriminant information

in part-based decompositions, like NMF.

The second class of techniques is motivated by LNMF where additional spatial-locality

constraints have been considered in the minimization of thecost function of NMF. Instead

of spatial locality constraints, we incorporate discriminant constraints inside the NMF de-

composition. Here we propose two such techniques, both motivated by the fact that we want

a part based decomposition with enhanced discriminant power. The first method gives basis

images that are the same for all the different facial classes, while the latter results to a class

specific decomposition that is unique for each facial (person) class. The intuitive motivation

behind the class-specific methods is to find for every face a unique decomposition into its own

discriminant parts. A similar technique has been used in [31], where discriminant constraints

have been incorporated in the LNMF cost function. The approach in [31] has given better

recognition accuracy than NMF and LNMF, when applied to facial expression recognition.

These approaches are consistent with the image representation paradigms of neuroscience
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which involve sparseness, non-negative constraints, minimization of redundant information

and enhanced discriminant power. All the introduced algorithms are applied to the frontal

face verification problem.

The outline of this paper is as follows. The problem of frontal face verification and

how subspace methods can be applied to this problem is discussed in Section II. The

NMF decomposition is revisited in Section III. The NMF plus LDA method is described

in Section IV. Methods for incorporating discriminant constraints inside NMF cost and the

corresponding decompositions are introduced in Section V.Experimental results are depicted

in Section VI. Finally, conclusions are drawn in Section VII.

II. FRONTAL FACE VERIFICATION AND SUBSPACETECHNIQUES

In this Section, we will briefly outline the problem of frontal face verification and the

framework under which a subspace method can be used in order to solve this problem.

Let U be a facial image database. Each facial imagex ∈ U is supposed to belong to one

of the K facial (person) classes{U1,U2, . . . ,UK} with U =
⋃K

i=1 Ui. For a face verification

system that uses the databaseU , a genuine (or client) claim is performed when a persont

provides its facial imagex, claims thatx ∈ Ur andt = r. When a persont provides its facial

imagex and claims thatx ∈ Ur, with t 6= r, an impostor claim occurs. The scope of a face

verification system is to handle properly these claims by accepting the genuine claims and

rejecting the impostor ones.

Let the facial image databaseU be comprised byL facial imagesxj ∈ ℜF
+, where

ℜ+ = [0, +∞) and let the cardinality of each facial classUr to be Nr. A linear subspace

transformation of the originalF -dimensional space onto aM -dimensional subspace (usually

M ≪ F ) is a matrixW ∈ ℜM×F estimated using the databaseU . The new feature vector
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x́ ∈ ℜM is given by:

x́ = Wx. (1)

The rows of the matrixW contain the bases of the lower dimension feature space. The bases

matrix W could be the same for all facial classes of the database or could be unique for

each facial class. In case of class-specific image bases, forthe reference personr, the set

Ir = U −Ur, that corresponds to impostor images is used in order to construct the two-class

problem (genuine versus impostor class) [12], [32].

After the projection given by (1), a distance metric is chosen in order to measure the

similarity of a test facial image to a certain class. This similarity measure can be theL1

norm, theL2 norm, the normalized correlation or the Mahalanobis distance [1]. In case of

face verification, the algorithm should also learn a threshold on the similarity measure in

order to accept or reject a client/impostor claim.

III. NMF R EVISITED

In this section, we will briefly describe the use of Bregman distances [33]-[35] and how

NMF decomposition is obtained. Some notes on how NMF is extended in LNMF in order

to give even more sparse basis images are also given.

A. Bregman Distance and Kullback-Leibler Divergence

Let φ : D → ℜ be a continuously differentiable and strictly convex function defined on a

closed, convex setD ⊆ ℜF
+. The Bregman distance associated with the functionφ is defined

for x,q ∈ D [36]:

Bφ(x||q) , φ(x) − φ(q) −∇φ(x)(x − q) (2)

where∇φ(x) is the gradient ofφ at x. Whenφ(x) takes the form of the convex function:

φ(x) =
∑

i

xi ln xi (3)
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for x = [x1 . . . xF ]T , then the Bregman distance is reformulated to Kullback-Leibler (KL)

divergence (or relative entropy) betweenx andq [33]-[35] as:

KL(x||q) ,
∑

i

(xi ln
xi

qi

+ qi − xi) (4)

whereq = [q1 . . . qF ]T . It can be shown that, in general, every Bregman distance is non-

negative and is equal to zero if and only if its two arguments are equal. More details about

optimization algorithms using Bregman distances and KL divergence with linear constraints

can be found in [35].

B. The NMF Algorithm

The basic idea behind NMF is to approximate the imagex by a linear combination of

the elements ofh ∈ ℜM
+ such thatx ≈ Zh, whereZ ∈ ℜF×M

+ is a nonnegative matrix,

whose columns sum to one. In order to measure the error of the approximationx ≈ Zh the

KL(x||Zh) divergence can been used [34].

In order to apply NMF in the databaseU , the matrix X ∈ ℜF×L
+ = [xi,j] should be

constructed, wherexi,j is thei-th element of thej-th image. In other words thej-th column

of X is the xj facial image. NMF aims at finding two matricesZ ∈ ℜF×M
+ = [zi,k] and

H ∈ ℜM×L
+ = [hk,j] such that :

X ≈ ZH. (5)

The facial imagexj after the NMF decomposition can be written asxj ≈ Zhj, wherehj is

the j-th column ofH. Thus, the columns of the matrixZ can be considered as basis images

and the vectorhj as the corresponding weight vector. Thehj vectors can also be considered

as the projected vectors of a lower dimensional feature space for the original facial vector

xj.

The defined cost for the decomposition (5) is the sum of all KL divergences for all images
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in the database. This way the following metric can be formed :

DN(X||ZH) =
∑

j

KL(xj||Zhj) =
∑

i,j

(xi,j ln(
xi,j

∑

k zi,khk,j

) +
∑

k

zi,khk,j − xi,j) (6)

as the measure of the cost for factoringX into ZH [34].

The NMF factorization is the outcome of the following optimization problem :

min
Z,H

DN(X||ZH) subject to (7)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

NMF has non-negative constraints on both the elements ofZ and ofH; these nonnegativity

constraints permit the combination of multiple basis images in order to represent a face using

only additions between the different bases. In contrast to PCA [16], [21], no subtractions can

occur. For these reasons, the nonnegativity constraints correspond better to the intuitive notion

of combining facial parts in order to create a complete face.Additional intuitive explanations

why NMF is indeed a sparse part-based decomposition along with experimental verifications

of this fact are given in [17], [22], [23], [25], [27], [29]

Recently some theoritical work has been done in order to show when the NMF does give

a correct decomposition into parts [26]. Let some object that is comprised ofA parts and

each part can be inP different positions (in [26] the different positions are viewed as part’s

articulations). Then, if the images obey the following rules it can be proven that when NMF

is applied to this database it can give a correct decomposition into parts[26]:

• Each imagex in the database can be represented as a linear combination ofthe different

parts in the different positions. Both parts and weights of the linear combination obey

the nonnegativity constraint.

• The different bases are linear independent.

• The database contains all combinations of parts in the different positions. This constraint

require from the database to have a total ofAP images.
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Of course, these set of requirements is quite restrictive and cannot be satisfied in the

case of facial image databases since it is not feasible to have all the possible images with

combinations of different eyes, noses, mouths in differentpositions. Thus, when NMF is

applied to a facial database it can only give an approximation of the decomposition into

parts. In all cases NMF is indeed a sparse part-based decomposition [17], [22], [23], [25],

[26], [27], [29].

By using an auxiliary function and the Expectation Maximization (EM) algorithm [34],

the following update rules forhk,j andzi,k guarantee a non increasing behavior of (6). The

update rule for thet-th iteration forhk,j is given by:

h
(t)
k,j = h

(t−1)
k,j

∑

i z
(t−1)
i,k

xi,j
∑

l z
(t−1)
i,l

h
(t−1)
l,j

∑

i z
(t−1)
i,k

(8)

whereas, for thezi,k, the update rules are given by:

ź
(t)
i,k = z

(t−1)
i,k

∑

j h
(t)
k,j

xi,j
∑

l z
(t−1)
i,l

h
(t)
l,j

∑

j h
(t)
k,j

(9)

and

z
(t)
i,k =

ź
(t)
i,k

∑

l ź
(t)
l,k

. (10)

Sincexj ≈ Zhj, a natural way to compute the projection ofxj to a lower dimensional

feature space using NMF iśxj = Z†xj. The pseudo-inverseZ† = (ZTZ)−1ZT can be

calculated using singular value decomposition methods [37]. In order to proceed to the

dimensionality reduction, it has been also claimed thatZT can be used as an alternative

[31], due to the fact that the calculation ofZ† may suffer from numerical instability. For a

true non-negative dimensionality reduction the matrixZT should be used for feature extraction

in the test images.

C. The LNMF algorithm

The idea of NMF decomposition was further extended to the LNMF [27] where additional

constraints concerning the spatial locality of the bases were employed in the optimization
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problem defined in (7).

Let U = [ui,j] = ZTZ, V = [vi,j] = HHT , both beingM × M , LNMF aims at learning

local features by imposing the following three additional locality constraints on the NMF. The

first constraint is to create bases that cannot be further decomposed into more components

[27]. Let zj = [z1,j . . . zn,j]
T be the jth basis vector. Given the existing constraint that

∑

i zi,j = 1 ∀i, we want that
∑

i z
2
i,j to be as small as possible so thatzj contains as many

zero elements as possible (make the bases as sparse as possible). This is accomplished by

imposing
∑

i ui,i to be minimal [27].

Another constraint is to make the bases to be as orthogonal aspossible, so as to minimize

the redundancy between different bases. This can be imposedby requiring
∑

i6=j ui,j to be

minimal [27]. In other words we want the elements of matrixU that are not in the main

diagonal to be as close to zero as possible. The elements of matrix that are not in the main

diagonal correspond to the dot product between the different basis vectors and the closest

the dot product is to zero the more orthogonal the basis vectors can be considered. The final

constraint requires that only the components giving the most important information should

be retained. This constraint, requires that
∑

i vi,i is maximized [27]. For additional details

the interested reader may refer to [27].

Of course, these constraints do not guarantee that the decomposition will be either orthog-

onal or the most sparse that can be derived from the training facial database. The only thing

that is guaranteed by imposing these heuristic constraintsis that the derived decomposition

will be more sparse and more orthogonal than the one obtainedthrough NMF. When the

above constraints are incorporated in (6), a new cost function is created as:

DL(X||ZH) = DN(X||ZH) + α1

∑

i

ui,i + α2

∑

i6=j

ui,j − β
∑

i

vi,i (11)

whereα1, α2, β > 0 are constants. For simplicity in [27] it was setα1 = α2 = α. A solution
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for the minimization of the cost given in (11) subject to the constraints imposed in NMF (7)

(non-negative constraints forzi,k andhk,j and the constraint that the columns of the matrix

Z should sum to one), can be found in [27]. In order to ensure that the cost function (11) is

nonincreasing, while using a series of approximations in order to eliminate the constantsα

andβ, the following update rule forhk,j is employed:

h
(t)
k,j =

√

h
(t−1)
k,j

∑

i

z
(t−1)
i,k

xi,j
∑

l z
(t−1)
i,l h

(t−1)
l,j

. (12)

The update rules for thezi,k are the same as the NMF decomposition and are given by (9)

and (10).

IV. NMF PLUS LDA

The two previously presented methods do not use the information about how the various

facial images are separated into different facial classes.The most straightforward way in order

to exploit discriminant information in NMF is to try to discover discriminant projections for

the facial image vectors after the projection to the image bases matrixZ† (or ZT ). Let the

matrix X that contains all the facial images of the databaseU , be organized as follows. The

j-th column of the databaseX is theρ-th image of ther-th class. Thus,j =
∑r−1

i=1 Ni + ρ.

The vectorhj that correspond to thejth column of the matrixH, is the coefficient vector

for the ρth facial image of therth class and will be denoted asη(r)
ρ = [η

(r)
ρ,1 . . . η

(r)
ρ,M ]T . The

mean vector of the vectorsη(r)
ρ for the classr is denoted asµ(r) = [µ

(r)
1 . . . µ

(r)
M ]T and the

mean of all classes asµ = [µ1 . . . µM ]T . Then, the within scatter for the coefficient vectors

hj is defined as:

Sw =
K

∑

r=1

Nr
∑

ρ=1

(η(r)
ρ − µ(r))(η(r)

ρ − µ(r))T (13)

whereas the between scatter matrix is defined as:

Sb =
K

∑

r=1

Nr(µ
(r) − µ)(µ(r) − µ)T . (14)
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The matrixSw defines the scatter of sample vector coefficients around their class mean.

The dispersion of samples that belong to the same class around their corresponding mean

should be as small as possible. A convenient metric for the dispersion of the samples is the

trace ofSw. The matrix,Sb denotes the between-class scatter matrix and defines the scatter of

the mean vectors of all classes around the global meanµ. Each class formed by the samples

that belong to the same class must be as far as possible from the other classes. Therefore, the

trace ofSb should be as large as possible. By taking into consideration the previous remarks,

the well known Fisher discriminant criterion is constructed as:

J(Ψ) =
tr[ΨTSbΨ]

tr[ΨTSwΨ]
(15)

where tr[R] is the trace of the matrixR. The maximization ofJ yields a set of discriminant

projections that is given by the columns of the matrixΨopt. If Sw is invertible then the

projection matrixΨopt is given by the generalized eigenvectors ofS−1
w Sb.

There is not upper limit for how many bases someone can construct using NMF decom-

position in (9) and unless we create a limited number of basesby NMF the matrixSw is

singular. That is, there always exist vectorsφi that satisfyφT
i Swφi = 0. These vectors turn

out to be very effective if they satisfyφT
i Sbφi > 0 at the same time [3], [6], [38]. In that

case the Fisher discriminant criterion degenerates into the following between-class scatter

criterion:

Jb(Φ) = tr[ΦTSbΦ] (Φ = [. . . φi . . .], ||φi|| = 1). (16)

We will use the main results of [6] in order to extract discriminant features using an arbi-

trary number of NMF bases. The discriminant features are then extracted by the minimization

of the criterions (15) and (16). The discriminant projections that are derived from the (15)

will be calledregular discriminant projections(or regular NMFfaces) while the ones created

by (16) will be calledirregular discriminant projections(or irregular NMFfaces).
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Let the total scatter matrix of the feature vectorshj be defined as:

St = Sw + Sb (17)

it is easy to prove that the matrixSt is a compact and self-adjoint operator inℜM [6]. Thus,

its eigenvector system forms an orthonormal bases forℜM [6].

Let O andO⊥ be the two complementary spaces spanned by the orthonormal eigenvectors

that correspond to no-zero and to zero eigenvalues ofSt, respectively. It is easy to prove,

using the theory developed in [6], thatO⊥ does not contain any discriminant information in

respect to the criterion (15) and (16). The isomorphic mapping in order to move from the

feature space of the vectorshj to O is the matrixΠ whose columns are the orthonormal

eigenvectors ofSt that correspond to its non-zero eigenvalues. In order to findthe non-zero

eigenvectors ofSt efficiently, we can use algorithms like [21].

Let Šw andŠb be the within scatter and the between scatter matrices in thespaceO. These

matrices are given by̌Sw = ΠTSwΠ and byŠb = ΠTSbΠ . In the spaceO the matrixŠw

is still singular. LetΞ1 andΞ2 be the orthonormal eigenvectors that correspond to non-zero

and to zero eigenvectors of the matrixŠw, respectively.

In the space spanned by the vectors contained inΞ1 the discriminant projections are given

by the columns of the matrixΘ1 that are the eigenvectors ofS̃−1
w S̃b, whereS̃w = ΞT

1 ŠwΞ1

andS̃b = ΞT
1 ŠbΞ1. In the space that is spanned by the columns ofΞ2 it can be easily proven

that Ŝb = ΞT
2 ŠbΞ2 is not singular [6]. Thus, the discriminant projections in this space are

given by the matrixΘ2 that has as columns the orthonormal eigenvectors ofŜb.

The linear transform that extracts the regular discriminant features (will be calledregular

NMFfacesin the rest of the paper) using NMF is:

Φ1 = ΘT
1 ΞT

1 ΠTZ†, (18)

whereas, the linear transform that extracts the irregular discriminant features (will be called
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irregular NMFfacesin the rest of the paper) using NMF is:

Φ2 = ΘT
2 ΞT

2 ΠTZ† (19)

where Z is the decomposition of NMF given by (9). The total number of discriminant

projections derived from this procedure is2(K − 1).

V. LDA INCORPORATED INSIDENMF

In this subsection, we introduce alternatives to NMF plus LDA by incorporating discrim-

inant constraints inside the cost function to be minimized for obtaining the new decompo-

sitions. Two different discriminant decompositions are proposed. These decompositions are

motivated by the need of finding basis images that correspondto discriminant parts of faces.

The first is the same for all facial classes in the database. The second one uses alternative

discriminant constraints and gives a decomposition that isdifferent for every facial class. This

class-specific decomposition is intuitively motivated by the theory that humans memorize

different discriminant features (e.g. noses, eyes) for different faces and use these features for

recognizing them or verifying the identity of a face [39], [40]. The interested reader may

refer to [39], [40] and to references within for different theories and technologies for human

and machine recognition of faces.

A. The DNMF Algorithm

In order to incorporate discriminant constraints into the NMF decomposition we substitute

the locality constraints of LNMF with discriminant constraints. This way, a modified diver-

gence can be constructed that is derived from the minimization of the Fisher criterion. This

is done by requiring tr[Sw] to be as small as possible while tr[Sb] is required to be as large

as possible. The new cost function is given by:

Dd(X||ZDH) = DN(X||ZDH) + γtr[Sw] − δtr[Sb]. (20)

whereγ andδ are constants. Following the same EM approach used by NMF [34] and LNMF

[27] techniques, we come up with the following update rules for the weight coefficientshk,j
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that belongs to ther-th facial class:

h
(t)
k,j =

T1 +

√

T 2
1 + 4(2γ − (2γ + 2δ) 1

Nr
)h

(t−1)
k,j

∑

i z
(t−1)
i,k

xi,j
∑

l z
(t−1)
i,l

h
(t−1)
l,j

2(2γ − (2γ + 2δ) 1
Nr

)
. (21)

The detailed derivation of (21) along with the definition ofT1 are given in Appendix I.

The update rules for the basesZD are the same as in NMF and can be given by (9) and

(10). The above decomposition is a supervised non-negativematrix factorization method that

decomposes the facial images into parts while, enhancing the class separability. This method

will be called Discriminant Non-negative Matrix Factorization(DNMF) in the rest of the

paper. The matrixZ†
D = (ZT

DZD)−1ZT
D, which is the pseudo-inverse ofZD, is then used for

extracting the discriminant features asx́ = Z
†
Dx. The ZT

D can be used instead ofZ†
D for a

true non-negative dimensionality reduction. It is interesting to notice here that there is no

restriction on how many dimensions we may keep forx́ and that the bases of the DNMF

are common for all the different facial classes in the database.

B. The CSDNMF Algorithm

In this subsection alternative discriminant constraints are integrated inside the cost function

(6). The minimization procedure of the new cost function yields aClass-Specific Discriminant

Non-negative Matrix Factorization(CSDNMF) method. In order to formulate the CSDNMF

decomposition, the facial image vectors of the genuine claims to the reference personr

are in the firstNG = Nr columns of the matrixX. Then, the columns fromNr + 1 to L

correspond to impostor claims. The total number of impostorclaims isNI = L − Nr. The

coefficient vectorhj of the imagexj that corresponds to theρth image of the genuine class

will be denoted asη(G)
ρ . If the facial vectorxj is the ρth image of the impostor class then

the corresponding coefficient vectorhj will be denoted asη(I)
ρ .

In the previous section, we have seen that the tr[Sw] should be small whereas tr[Sb] should

be large for the vectorshj.
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In this section we replace these constraints with others that suite better with the face

verification problem. Let a distance metric (e.g. theL2 norm) be used in order to quantify

the similarity of a test facial image vectorxj to a given facial class. It sounds reasonable

to require that the feature vectors corresponding to the genuine class, should have great

similarity with the mean image of the genuine class (small distance metric value with the

mean image of the genuine facial class), while the feature vectors of the impostor class should

have small similarity with the mean image of the reference facial class (large distance metric

value with the mean image of the genuine facial class).

In order to define the similarity of the projectionhj of the facial imagexj to a given class

r in the feature space of the coefficients, theL2 norm can be used as:

dr(hj) = ||hj − µ(G)||2 (22)

where µ(G) is the mean vector of the vectorsη(G)
ρ . The use of other similarity measures

like L1 or the normalized correlation has not given a closed form forthe update rules.

However, the experimental results using these measures were similar. In the reduced feature

space of the vectorshj we demand that the similarity measuresdr(η
(I)
ρ ) (impostor similarity

measures) to be maximized while minimizing the similarity measuresdr(η
(G)
ρ ) (genuine

similarity measures). Then the optimization problem for the classr is the maximization of:

1

NI

∑

xj∈Ir

dr(hj) =
1

NI

NI
∑

ρ=1

||η(I)
ρ − µ(G)||2 = tr[Wr], (23)

whereWr = 1
NI

∑NI

ρ=1(η
(I)
ρ − µ(G))(η

(I)
ρ − µ(G))T . The second optimization problem is the

minimization of:

1

NG

∑

xj∈Ur

dr(hj) =
1

NG

NG
∑

ρ=1

||η(G)
ρ − µ(G)||2 = tr[Br], (24)

whereBr = 1
NG

∑NG

ρ=1(η
(G)
ρ − µ(G))(η

(G)
ρ − µ(G))T .
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We impose these two additional constraints in the cost function given in (7) as:

Dc(X||ZrHr) = DN(X||ZrHr) + ζtr[Br] − θtr[Wr]. (25)

whereζ, θ > 0 are constants. The decomposition is person specific (different basesZr for

each reference face classr). For j = 1, . . . , NG (genuine class), the update rule for the

coefficientshk,j of the reference personr is given by:

h
(t)
k,j =

T2 +

√

T 2
2 + 4 1

NG
(2ζ − (2ζ + 2θ) 1

NG
)h

(t−1)
k,j

∑

i z
(t−1)
i,k

xi,j
∑

l z
(t−1)
i,l

h
(t−1)
l,j

2 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)
(26)

whereas the update rule for the weight coefficients of the impostor class (j = NG +1, . . . , L)

is given by:

h
(t)
k,j =

T3 +

√

T 2
3 − 8NIθh

(t−1)
k,j

∑

i z
(t−1)
i,k

xi,j
∑

l z
(t−1)
i,l

h
(t−1)
l,j

4θ
(27)

whereT2 andT3 are given in Appendix II. The update rules for the bases matrix Zr for the

reference personr are the same as in NMF decomposition and can be given by (9) and(10).

When someone claims that a test imagex corresponds to a reference facial classr, thenx

is projected using the pseudo-inverse ofZr, Z†
r, matrix asx́ = Z†

rx. In the same manner as

NMF and DNMF the matrixZT
r can be used for a true non-negative dimensionality reduction.

VI. EXPERIMENTAL RESULTS

A. Database Description

The experiments were conducted in the XM2VTS database usingthe protocol described

in [15]. The images were aligned semi-automatically according to the eyes position of each

facial image using the eye coordinates. The facial images were down-scaled to a resolution of

64×64 pixels. Histogram equalization was used for normalizing the facial image luminance.

The XM2VTS database contains 295 subjects, 4 recording sessions and two shots (rep-

etitions) per recording session. The XM2VTS database provides two experimental setups
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namely, Configuration I and Configuration II [15]. Each configuration is divided into three

different sets: the training set, the evaluation set and thetest set. The training set is used

to create client and impostor models for each person. The evaluation set is used to learn

the verification decision thresholds. In case of multimodalsystems, the evaluation set is

also used to train the fusion manager [15]. For both configurations the training set has 200

clients, 25 evaluation impostors and 70 test impostors. Thetwo configurations differ in the

distribution of client training and client evaluation data. For additional details concerning

XM2VTS database the interested reader can refer to [15].

B. Training Procedure

In the training phase, the basis images corresponding to theNMF (Section III-B), the

LNMF (Section III-C), the proposed DNMF (Section V-A), the proposed CSDNMF (Section

V-B), the Eigenfaces, the Fisherfaces and the proposed NMFfaces (regular and irregular

discriminant bases of NMF plus LDA method proposed in Section IV) are found. For all

the approaches except from CSDNMF the bases are common for allfacial classes. In the

case of CSDNMF, the training set is used for calculating for each reference personr a

different set of bases for feature selection. A convenient way for having an insight of the

class separability is to compute the quantityJ = tr[Sb]/tr[Sw] in the training set [41]. In

Figure 1,J is plotted versus the number of iterations used in the decomposition. Note that

there is a significant scale difference in they-axis of Figures 1a and 1b. This indicates a

much better class separability in case of DNMF compared to the ones obtained either by

NMF or by LNMF (class separability is measured in respect toJ).

By imposing only non-negativity constraints, the features extracted by NMF have a rather

holistic appearance. This can be seen in Figure 2(a). LNMF greatly improves the bases

image sparseness and minimizes redundant information by imposing locality constraints. The

proposed DNMF and CSDNMF also minimize the redundant information while maximizing
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Fig. 1. (a) J plotted versus the number of iterations for the NMF and LNMF (b) J plotted versus the number of iterations

for DNMF.

class separability (the class separability is measured in respect toJ). To quantify the degree

of sparseness of basis images, someone can measure the normalized kurtosis of a base image

z defined as [20]:

κ(z) =

∑

i(zi − z̄)4

(
∑

i(zi − z̄)2)2
− 3. (28)

wherez = [z1 . . . zF ]T and z̄ = 1
F

∑F

i=1 zi. The largest the number of kurtosis the sparsest an

image is. It was experimentally found that the average kurtosis over the maximum number

of 199 basis images are:k̄NMF = 8.12, k̄LNMF = 160.58, k̄DNMF = 26.88 and k̄CSDNMF =

33.88.

For comparison a number of 25 images for the NMF, the LNMF, theproposed DNMF and

the CSDNMF are given in Figure 2. In Figures 2a and 2b the imagesare ordered row-wise

according to their descending degree of sparseness, calculated according to (28). Obviously

DNMF and CSDNMF is a compromise between NMF and LNMF in terms ofsparseness.

Probably, the most important issue concerning the DNMF and the CSDNFM algorithm, that

has been experimental verified, is the fact that almost all features found by its basis images
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are represented by the salient face features, such as eyes, eyebrows or mouth. As can be seen

the features retrieved by LNMF have random positions that can not be directly attributed to

facial features.

(a) (b)

(c) (d)

Fig. 2. A set of 25 basis images for (a) NMF, (b) LNMF (c) DNMF (d) CSDNMF.

By a visual inspection of the images of Figure 3, it can be seen that Eigenfaces, Fisherfaces

and regular NMFfaces (it also holds for the irregular) resemble degraded versions of faces.

The basis images in Figure 3a-3c are sorted in descending order of their corresponding

eigenvalue.
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(a) (b) (c)

Fig. 3. A set of 25 basis images for (a) EigenFaces, (b) FisherFaces(c) the regular NMFfaces.

The parametersγ andδ in the DNFM cost (20) and the parametersζ andη in (25) should

be carefully selected. Due to the fact that the cost functiondefined by the proposed DNMF

and CSDNMF is formed by several terms that are simultaneouslyoptimized (minimized

of maximized), its global optimization suffers. Although the cost functions (20) and (25)

are globally minimized, each term has each own rate of convergence. The parametersγ

andδ govern the convergence speed for minimizing tr[Sw] and maximizing tr[Sb], while the

parametersζ andθ govern the convergence speed for tr[Wr] and tr[Br]. An automated way

of choosing the parametersγ and δ for the proposed DNMF andζ and η for the proposed

CSDNMF is to use an adaptive formulation for them rather than afixed one. Starting with

small parameter values, the algorithm proceeds while, at each iteration step, the degree of

sparseness is checked using the kurtosis and the algorithm restarts with new parameter values.

This is repeated till the kurtosis exceeds a certain threshold (we have chosen as a threshold

the average kurtosis to be greater than 20).

In our experiments we have tested values forγ and δ in the range[0, 1] (this also holds

for the caseζ andη). We have seen that very small values of these constants speed up the

decrease of tr[Sw], the increase of tr[Sb] and the minimization ofDd(X||ZH). However, the

algorithm may stop too early and the number of iterations might not be sufficient to reach a
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local minimum forDd(X||ZH). A premature stop can affect the process of correctly learning

the basis images that might not be sparse anymore. The best results have been obtained when

choosing values in the range[0.1, 0.5].

C. Experimental Results in Configuration I

The training set of the Configuration I contains 200 persons with 3 images per person. The

evaluation set contains3 images per client for genuine claims and25 evaluation impostors

with 8 images per impostor. Thus, evaluation set gives a total of3 × 200 = 600 client

claims and25 × 8 × 200 = 40.000 impostor claims. The test set has2 images per client

and 70 impostors with8 images per impostor and gives2 × 200 = 400 client claims and

70 × 8 × 200 = 112.000 impostor claims. The maximum number of Eigenfaces [21] given

by the training set is 599. The number of classes is 200 and, thus, the number of Fisherfaces

[19] is 199. For NMF plus LDA, 1000 basis images have been created initially using NMF

and after the regular and irregular discriminant information has been found according to

(18) and (19) that gives a total of 398 projections (199 regular NMFfaces and 199 irregular

NMFfaces). For NMF, LNMF, DNMF and CSDNMF, 199 bases have beenalso considered

for comparison.

The facial images have been then projected using these basesinto a low dimensional feature

space and the normalized correlation was used in order to define the similarity measure

between two faces as:

D(xr,xt) =
x́T

r x́t

||x́r||||x́t||
(29)

wherexr andxt are the reference and the test facial image, respectively while x́r and x́t are

their projections to one of the subspace. Of course other similarity metrics are suitable like

L1,L2 or the Mahalanobis distance [1] but in the specific database the normalized correlation

or (the cosine distance) has given the best results for all the tested methods. For completeness
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experiments using theL2 norm are presented for the CSDNMF method since theL2 norm

has been used for formulating the CSDNMF decomposition (25).

In case of NMF plus LDA two different discriminant projection are found by (18) and

(19). Thus, two different similarity values are created byDg(xr,xt) = (Φ1xr)T (Φ1xt)
||Φ1xr||||Φ1xt||

and

by Du(xr,xt) = (Φ2xr)T (Φ2xt)
||Φ2xr||||Φ2xt||

for the regular and the irregular discriminant information,

respectively. In [6] it has been proposed to use a simple fusion technique by weighting the

irregular score with some empirical coefficient. Instead ofusing the empirical parameter we

used the evaluation set of the Configuration I in order to learna discriminant weighting

vectorw using also LDA. The final similarity measure between the facial image vectorsxr

andxt is given by:

Dt(xr,xr) = wT [Dg(xr,xt) Du(xr,xt)]
T . (30)

The similarity measures for each person, calculated in bothevaluation and training set form

the distance vectord(r). The elements of the vectord(r) are sorted in descending order and

are used for the person specific thresholds on the distance measure. LetTQ(r) denote the

Q-th order statistic of the vector of distances,d(r) (theQ-th smallest distance in the vector).

The threshold of the personr is chosen to be equal toTQ(r). Let x1
r, x2

r and x3
r be the 3

instances of the personr in the training set. A claim of a person (with a facial imagext) to

the identityr is considered valid ifmaxj{D(xj
r,xt)} < TQ(r). Obviously when varyingQ,

different pairs of FAR and FRR can be created and that way a ROC curve is produced and

the EER can be measured [15].

The performance of the methods that project to face-part like bases as NMF, LNMF, the

proposed DNMF and CSDNMF algorithms for various feature dimensions is illustrated in

Figure 4a. The best EER achieved for the proposed CSDNMF is3.4% and 3.7% when the

normalized correlation (cosine) and theL2 norm has been used, respectively, while keeping
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more than 110 dimensions. The best performance of the proposed DNMF is4.61%. The best

EER for NMF and LNMF is more than8%. That is, a decrease of more than4% in terms

of EER has been achieved by incorporating the proposed discriminant constraints in the cost

of NMF. Even though NMF, LNMF, DNMF and CSDNMF are optimization methods that

depend on the initialization of the bases and may get trappedto local minima we have not

verified large deviations in verification performance when starting with different initial values

(the standard deviation for the best performance after 10 restarts was about0.2% in terms of

EER). An alternative to random initialization is a structured initialization that has proposed

in [25].

The performance of the methods that project to face bases like Eigenfaces, Fisherfaces and

NMFfaces (regular and irregular) for various feature dimensions is illustrated in Figure 4b.

The best EER achieved was0.8% when 80 regular and 80 irregular projections have been

kept. The best EER for Fisherfaces has been1.6% and for Eigenfaces4.3%. Unfortunately,

the EER of the tested methods does not decrease monotonically with the number of image

bases kept. This fact has been verified in other face recognition subspace methods like [1],

[3], [4], [6] where the performance does not always increasewith the number of the kept

dimensions.

Therefore, the proposed NMFfaces scheme has the best verification performance. Unfor-

tunately the decompositions like the proposed DNMF and the proposed CSDNMF have

worst performance in comparison to the proposed NMFfaces and Fisherfaces. We have

experimentally found that the training set contains limited discriminant information for the

DNFM and CSDNFM methods (only 3 images per facial class) to be trained properly. We

have also found that when adding in the training set images extracted from video of the

same session (about 60-100 images per person) of the training set of the Configuration I

(which is different from the session the test images have been extracted) a decrease of about
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2−2.5% in the terms of EER has been verified. We have also used these images for training

NMFfaces and Fisherfaces and no significant improvement in performance has been verified

(about0.2 − 0.3% in terms of EER).
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Fig. 4. EER for Configuration I: a) EER plotted versus feature dimensionality for part-based decompositions as LNMF,

NMF, the proposed CSDNMF (using cosine andL2 metrics) and the proposed DNMF; b) EER plotted versus feature

dimensionality for Eigenfaces, FisherFaces and the proposed NMFfaces (regular, irregular and fusion).

D. Experimental Results in Configuration II

The Configuration II differs from the Configuration I in the distribution of client training

and client evaluation data. The training set of the Configuration I contains 200 persons with 4

images per person. The evaluation set contains2 images per client for genuine claims. Thus,

the evaluation set gives a total of2 × 200 = 400 genuine claims. The training set contains

4 references images for each client. The same approach as in Configuration I has been used

for accepting a claim as valid and for threshold calculation.

Figure 5a depicts the plot of the EER versus the dimensionality of the feature vectors for

face-part like bases. As can be seen, CSDNMF have the best performance in comparison to the

DRAFT January 23, 2006



27

NMF, LNMF and DNMF. The minimum EER achieved when projectingto CSDNMF bases

has been equal to1.8% and2.2% when the cosine andL2 norm has been used, respectively.

For DNFM the minimum EER has been measured about2.6%, while for NMF and LNMF

the EER has been found equal to3.7%.

Figure 5b depicts the plot of the EER versus the dimensionality of the feature vectors. As

can be seen, the fusion of the two different NMFfaces (regular and irregular) have the best

performance and the minimum achieved EER has been 0.6% when keeping 80 dimensions.

For the Fisherfaces the best EER has been1.2%, while for the Eigenfaces has been3.1%.
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Fig. 5. EER for Configuration II a) EER plotted versus feature dimensionality for part-based decompositions as LNMF,

NMF, CSDNMF (using cosine andL2 metrics) and the DNMF; b) EER plotted versus feature dimensionality for Eigenfaces,

FisherFaces and the proposed NMFfaces (regular, irregular and fussion).

VII. C ONCLUSIONS

A series of novel techniques for supervised facial feature extraction has been developed.

The new techniques are based on the NMF decomposition that find basis images which are

intuitively related to face parts. The first discriminant technique gives basis images that are

holistic and is comprised of two different phases, namely NMF and LDA thus producing
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the so-called NMFfaces. The other class of techniques aim atfinding face decompositions in

discriminant parts by integrating discriminant constraints inside the cost of NMF. The new

subspace techniques have been applied to frontal face verification. A significant improvement

of the performance of NMF has been verified in the frontal verification problem when the

proposed constraints are incorporated. The proposed NMFfaces though outperform the well-

known Fisherfaces and Eigenfaces in face verification.
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APPENDIX I

DERIVATION OF THE DNMF DECOMPOSITION

In order to derive the coefficients of DNMF we have used an auxiliary function similar to

those in the EM algorithm in [34]. LetG be an auxiliary function forY (F) if G(F,F(t−1)) ≥

Y (F) andG(F,F) = Y (F). If G is an auxiliary function ofY , thenY is nonincreasing under

the updateFt = arg minF G(F,F(t−1))[34]. With the help of the auxiliary function the update

rules for the coefficientsH and for the basesZD of DNMF can be derived. By fixing the

matrix ZD, the matrixH is updated by minimizingYd(H) = Dd(X||ZDH) defined in (20).

Let the functionGd be defined as:

Gd(H,H(t−1)) =
∑

i

∑

j(xi,j ln xi,j − xi,j)+

∑

i

∑

j

∑

k

zi,kh
(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

)+

∑

i

∑

j

∑

k zi,khk,j + γtr[Sw] − δtr[Sb].

(31)

This function Gd(H,H(t−1)) is an auxiliary function forYd(H). It is straightforward to

show thatGd(H,H) = Yd(H). In order to prove thatGd(H,H(t−1)) ≥ Yd(H) since,
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ln(
∑

k zi,khk,j) is convex, the following inequality holds:

− ln(
∑

k

zi,khk,j) ≤ −
∑

k

ak ln
zi,khk,j

ak

(32)

for all non-negativeak that satisfy
∑

k ak = 1. By letting ak =
zi,kh

(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

we obtain:

− ln(
∑

k

zi,khk,j) ≤
∑

k

zi,kh
(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

). (33)

From (33) it is straightforward to show thatGd(H,H(t−1)) ≥ Yd(H). ThusGd(H,H(t−1))

is an auxiliary function ofYd(H).

The update rules are derived from setting∂Gd(H,H(t−1))
∂hk,l

to zero for all thehk,l. Let hk,l be

the l-th element of theρ-th image for ther-th class, thus,hk,l = η
(r)
ρ,k. We need to calculate

the partial derivatives∂tr[Sw]
∂hk,l

and ∂tr[Sb]
∂hk,l

. The partial derivative of the∂tr[Sw]
∂hk,l

is given by:

∂tr[Sw]

∂η
(r)
ρ,k

=
∂

∑

i

∑K

c=1

∑Nc

m=1(η
(c)
m,i − µ

(c)
i )2

∂η
(r)
ρ,k

=
∑

i

K
∑

c=1

Nc
∑

m=1

∂(η
(c)
m,i − µ

(c)
i )2

∂η
(r)
ρ,k

=
Nc
∑

m=1,m6=ρ

∂(η
(r)
m,k − µ

(r)
k )2

∂η
(r)
ρ,k

+
∂(η

(r)
ρ,k − µ

(r)
k )2

∂η
(r)
ρ,k

(34)

= −
Nc
∑

m=1,m6=ρ

2(η
(r)
m,k − µ

(r)
k )

1

Nr

+ 2(η
(r)
ρ,k − µ

(r)
k )(1 −

1

Nr

) = 2(η
(r)
ρ,k − µ

(r)
k ).

For the partial derivative∂tr[Sb]

∂η
(r)
ρ,k

we have:

∂tr[Sb]

∂η
(r)
ρ,k

=
∂

∑

i

∑K

c=1 Nc(µ
(c)
i − µi)

2

∂η
(r)
ρ,k

=
∑

i

K
∑

c=1

Nc

∂(µ
(c)
i − µi)

2

∂η
(r)
ρ,k

=
K

∑

c=1

Nc

∂(µ
(c)
k − µk)

2

∂η
(r)
ρ,k

=
K

∑

c,c 6=r

Nc

∂(µ
(c)
k − µk)

2

∂η
(r)
ρ,k

+ Nr

∂(µ
(r)
k − µk)

2

∂η
(r)
ρ,k

(35)

= −
1

L

K
∑

c,c 6=r

2Nc(µ
(c)
k − µk) + 2Nr(µ

(r)
k − µk)(

1

Nr

−
1

L
) = 2(µ

(r)
k − µk). (36)

Using (34) and (35) we have:

∂Gd(H,H(t−1))

∂hk,l

= −
∑

i

xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

1

hk,l

+
∑

i

zi,k +2γ(hk,l−µ
(r)
k )−2δ(µ

(r)
k −µk) = 0

(37)
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The quadratic equation (37) can be expanded as:

−
∑

i xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

+ hk,l + 2γh2
k,l − (2γ + 2δ)( 1

Nr

∑

λ hk,λ)hk,l + 2δµkhk,l = 0 ⇔

−
∑

i xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

+ (1 − (2γ + 2δ)( 1
Nr

∑

λ,λ6=l hk,λ) + 2δµk)hk,l+

+(2γ − (2γ + 2δ) 1
Nr

)h2
k,l = 0.

(38)

By solving the quadratic equation (38) the update rules can bederived as:

hk,l =

T1 +

√

T 2
1 + 4(2γ − (2γ + 2δ) 1

Nr
)h

(t−1)
k,l

∑

i z
(t−1)
i,k

xi,j
∑

n z
(t−1)
i,n h

(t−1)
n,l

2(2γ − (2γ + 2δ) 1
Nr

)
(39)

whereT1 is given by:

T1 = (2γ + 2δ)(
1

Nr

∑

λ,λ6=l

hk,λ) − 2δµk − 1. (40)

APPENDIX II

DERIVATION OF THE CSDNMF DECOMPOSITION

The derivation of CSDNMF decomposition results in the same way as the decomposition

of DNMF. Let r be the reference facial class. In a similar manner to Appendix I we can

prove thatGc(Hr,H
(t−1)
r ) is an auxiliary function ofYc(Hr) = Dc(X||ZrHr) defined in

(25), whereGc(Hr,H
(t−1)
r ) is given by:

Gc(Hr,H
(t−1)
r ) =

∑

i

∑

j(xi,j ln xi,j − xi,j)+

∑

i

∑

j

∑

k

zi,kh
(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)
k,j

∑

l zi,lh
(t−1)
l,j

)+

∑

i

∑

j

∑

k zi,khk,j + ζtr[Br] − θtr[Wr].

(41)

In this decomposition we have two different update rules. One for the genuine class and one

for the impostor class. Forl = 1, . . . , NG (genuine class) the update rules for the coefficients

hk,l for the reference personr are given by letting∂Gc(Hr,H
(t−1)
r )

∂hk,l
= 0. Then,

∂Gc(Hr,H
(t−1)
r )

∂hk,l

= −
∑

i

xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

1

hk,l

+
∑

i

zi,k+2ζ(hk,l−µ
(G)
k )

1

NG

−2θ(µ
(G)
k −µ

(I)
k )

1

NG

= 0.

(42)
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The quadratic equation (42) is expanded as:

−
∑

i xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

+ hk,l + 2ζ 1
NG

h2
k,l − (2ζ + 2θ) 1

NG
( 1

NG

∑

λ hk,λ)hk,l + 2θ 1
NG

µI
khk,l = 0 ⇔

−
∑

i xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

+ (1 − (2ζ + 2θ) 1
NG

( 1
NG

∑

λ,λ6=l hk,λ) + 2θ 1
NG

µ
(I)
k )hk,l+

+ 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)h2
k,l = 0.

(43)

By solving the quadratic equation (43) the update rules for the hk,l of the genuine class are:

hk,l =

T2 +

√

T 2
2 + 4 1

NG
(2ζ − (2ζ + 2θ) 1

NG
)h

(t−1)
k,l

∑

i z
(t−1)
i,k

xi,j
∑

n z
(t−1)
i,n h

(t−1)
n,l

2 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)
(44)

whereT2 is given by:

T2 = (2ζ + 2θ)
1

NG

(
1

NG

∑

λ,λ6=l

hk,λ) − 2θ
1

NG

µ
(I)
k − 1. (45)

The update rules for the coefficientshk,l for the impostor class of the reference personr

are given by letting∂Gc(Hr,H
(t−1)
r )

∂hk,l
= 0:

∂Gc(Hr,H
(t−1)
r )

∂hk,l

= −
∑

i

xi,l

zi,kh
(t−1)
k,l

∑

n zi,nh
(t−1)
n,l

1

hk,l

+
∑

i

zi,k − 2
1

N I
θ(hk,l − µ

(G)
k ) = 0 (46)

wherej = NG + 1, . . . , L. By solving the quadratic equation (46) the update rules for the

hk,l are given by

hk,l =

T3 +

√

T 2
3 − 8NIθh

(t−1)
k,l

∑

i z
(t−1)
i,k

xi,j
∑

n z
(t−1)
i,n h

(t−1)
n,l

4θ
(47)

whereT3 is given by:

T3 = 2θµ
(G)
k + NI . (48)
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